?. , Top: drawing of a set of initial data x ? u 0 (x, y) increasing from 0 to 1

. Bibliography,

Y. Achdou, F. Camilli, and I. Capuzzo-dolcetta, Mean field games: numerical methods for the planning problem, SIAM J. Control Optim, vol.50, pp.77-109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00465404

M. Agueh and G. Carlier, Barycenters in the Wasserstein space, SIAM J. Math. Anal, vol.43, pp.904-924, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637399

G. Alberti, G. Crippa, and A. Mazzucato, Loss of regularity for the continuity equation with non-Lipschitz velocity field, Ann. PDE, vol.5, issue.9, p.pp, 2019.

J. , Recherches sur la courbe que forme une corde tendue mise en vibration, Histoire de l'Académie royale des sciences et belles-lettres de Berlin pour l'Année 1747, vol.1750, pp.214-219

G. Allaire, Shape optimization by the homogenization method, 2002.

F. Almgren, J. Taylor, and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim, vol.31, pp.387-438, 1993.

L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math, vol.158, pp.227-260, 2004.

L. Ambrosio, A. Baradat, and Y. Brenier, Monge-Ampère gravitation as a ?-limit of good rate functions

L. Ambrosio, M. Colombo, G. De-philippis, and A. Figalli, A global existence result for the semigeostrophic equations in three dimensional convex domains, Discrete Contin. Dyn. Syst, vol.34, pp.1251-1268, 2014.

L. Ambrosio and A. Figalli, On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations, Calc. Var. Partial Differential Equations, vol.31, pp.497-509, 2008.

L. Ambrosio and A. Figalli, Geodesics in the space of measure-preserving maps and plans, Archive for Rational Mechanics and, Analysis, vol.194, pp.421-462, 2009.

L. Ambrosio and W. Gangbo, Hamiltonian ODE in the Wasserstein spaces of probability measures, Comm. Pure Appl. Math, vol.61, pp.18-53, 2008.

L. Ambrosio, N. Gigli, and G. , Savaré Gradient flows in metric spaces and the Wasserstein spaces of probability measures, Lectures in Mathematics, 2005.

L. Ambrosio, N. Gigli, and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J, vol.163, pp.1405-1490, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00769376

L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math, pp.1-80, 2000.

L. Ambrosio and S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal, vol.208, pp.261-301, 2004.

L. Ambrosio and H. M. Soner, Level set approach to mean curvature flow in arbitrary codimension, J. Differential Geom, vol.43, pp.693-737, 1996.

S. Angenent, S. Haker, and A. Tannenbaum, Minimizing flows for the Monge-Kantorovich problem, SIAM J. Math. Anal, vol.35, pp.61-97, 2003.

S. Arguillère, E. Trélat, A. Trouvé, and L. Younes, Shape deformation analysis from the optimal control viewpoint, J. Math. Pures Appl, issue.9, pp.139-178, 2015.

M. Arnaudon, A. B. Cruzeiro, C. Léonard, and J. , Zambrini An entropic interpolation problem for incompressible viscid fluids preprint

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits, Ann. Institut Fourier, vol.16, pp.319-361, 1966.

V. Arnold and B. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol.125, 1998.

J. Aubin, Mathematical methods of game and economic theory, Studies in Mathematics and its Applications, vol.7, 1979.

E. Aurell, K. Gaw?dzki, C. Mejía-monasterio, R. Mohayaee, and P. Muratore-ginanneschi, Refined second law of thermodynamics for fast random processes, J. Stat. Phys, vol.147, pp.487-505, 2012.

D. Auroux, J. Blum, and M. Nodet, A Diffusive back and forth nudging algorithm for data assimilation, C. R. Math. Acad. Sci. Paris, vol.349, pp.849-854, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01099292

H. Bahouri, J. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00732127

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math, vol.121, pp.131-175, 1999.

D. Bakry, I. Gentil, and M. Ledoux, On Harnack inequalities and optimal transportation, Ann. Sc. Norm. Super. Pisa, issue.5, pp.705-727, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00742654

M. Balinski, A competitive (dual) simplex method for the assignment problem, Math. Programming, vol.34, pp.125-141, 1986.

J. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal, vol.63, pp.337-403, 1976.

J. Ball, A version of the fundamental theorem for Young measures, Lecture Notes in Phys, vol.344, pp.207-215, 1989.

A. Baradat, Continuous dependence of the pressure field with respect to endpoints for ideal incompressible fluids, Calc. Var. Partial Differential Equations, vol.58, issue.1, p.22, 2019.

A. Baradat, Nonlinear instability in Vlasov type equations around rough velocity profiles, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.37, pp.489-547, 2020.

A. Baradat, On the existence of a scalar pressure field in the Brödinger problem, SIAM J. Math. Anal, vol.52, pp.370-401, 2020.

A. Baradat and L. Monsaingeon, Small noise limit and convexity for generalized incompressible flows, Schrödinger problems, and optimal transport, Arch. Ration. Mech. Anal, vol.235, pp.1357-1403, 2020.

C. Bardos and N. Besse, The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits, Kinet. Relat. Models, vol.6, pp.893-917, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00925109

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.2, pp.101-118, 1985.

C. Bardos, A. Le-roux, and J. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, vol.4, pp.1017-1034, 1979.

G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, 1994.

J. Barré, D. Crisan, . Th, and . Goudon, Two-dimensional pseudo-gravity model: particles motion in a non-potential singular force field, Trans. Amer. Math. Soc, vol.371, pp.2923-2962, 2019.

F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math, vol.134, pp.335-361, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00694256

A. Barton and N. Ghoussoub, Dynamic and stochastic propagation of the Brenier optimal mass transport, European J. Appl. Math, vol.30, pp.1264-1299, 2019.

M. Beiglböck, P. Henry-labordère, and N. Touzi, Monotone martingale transport plans and Skorokhod embedding, Stochastic Process. Appl, vol.127, pp.3005-3013, 2017.

M. Beiglböck and N. Juillet, On a problem of optimal transport under marginal martingale constraints, Ann. Probab, vol.44, pp.42-106, 2016.

G. Bellettini, J. Hoppe, M. Novaga, and G. Orlandi, Closure and convexity results for closed relativistic strings, Complex Anal. Oper. Theory, vol.4, pp.473-496, 2010.

J. Benamou and Y. Brenier, Weak existence for the semigeostrophic equation formulated as a coupled Monge-Ampere/transport problem, SIAM J. Appl. Math, vol.58, pp.1450-1461, 1998.

J. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math, vol.84, pp.375-393, 2000.

J. Benamou, G. Carlier, and L. , Nenna Generalized incompressible flows, multimarginal transport and Sinkhorn algorithm, Numer. Math, vol.142, pp.33-54, 2019.

J. Benamou, M. Cuturi, G. Carlier, and L. Nenna, Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput, vol.37, pp.1111-1138, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01096124

R. Berman and B. Berndtsson, Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties, Ann. Fac. Sci. Toulouse Math, issue.6, pp.649-711, 2013.

R. Berman, S. Boucksom, V. Guedj, and A. Zeriahi, A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Etudes Sci, vol.117, pp.179-245, 2013.

R. Berman and M. Önheim, Propagation of chaos, Wasserstein gradient flows and toric Kähler-Einstein metrics, Anal. PDE, vol.11, issue.6, pp.1343-1380, 2018.

R. Berman and M. Önheim, Propagation of chaos for a class of first order models with singular mean field interactions, SIAM J. Math. Anal, vol.51, pp.159-196, 2019.

P. Bernard, Semi-concave singularities and the Hamilton-Jacobi equation, Regul. Chaotic Dyn, vol.18, pp.674-685, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00999547

P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS), vol.9, pp.85-121, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00003587

M. Bernot, A. Figalli, and F. Santambrogio, Generalized solutions for the Euler equations in one and two dimensions, J. Math. Pures Appl, vol.91, pp.137-155, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00284725

F. Berthelin and A. Vasseur, From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal, vol.36, pp.1807-1835, 2005.

J. Bertrand, A. Pratelli, and M. Puel, Kantorovich potentials and continuity of total cost for relativistic cost functions, J. Math. Pures Appl, issue.9, pp.93-122, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01967247

. Ch, P. Besse, F. Degond, J. Deluzet, G. Claudel et al., A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci, vol.14, pp.393-415, 2004.

N. Besse and U. Frisch, A constructive approach to regularity of Lagrangian trajectories for incompressible Euler flow in a bounded domain, Comm. Math. Phys, vol.351, pp.689-707, 2017.

O. Besson and J. Pousin, Solutions for linear conservation laws with velocity fields in L ?, Arch. Ration. Mech. Anal, vol.186, pp.159-175, 2007.

F. Bethuel, G. Orlandi, and D. Smets, Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, Ann. of Math, issue.2, pp.37-163, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00114011

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math, issue.2, pp.223-342, 2005.

. Ph, D. Biane, and . Voiculescu, A free probability analogue of the Wasserstein metric on the trace-state space, Geom. Funct. Anal, vol.11, pp.1125-1138, 2001.

G. Birkhoff, Tres observaciones sobre el algebra lineal, Revista Series A, vol.5, pp.147-151, 1946.

A. Blanchet, V. Calvez, and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal, vol.46, pp.691-721, 2008.

A. Bloch, R. Brockett, and T. Ratiu, Completely integrable gradient flows, Comm. Math. Phys, vol.147, pp.57-74, 1992.

J. Blum and F. Dimet, Data assimilation for geophysical fluids, Handbook of numerical analysis, XIV. Special volume: computational methods for the atmosphere and the oceans, pp.385-441, 2009.

A. Bobylev, J. A. Carrillo, and I. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Statist. Phys, vol.98, pp.743-773, 2000.

G. C. Boillat, P. Dafermos, T. P. Lax, and . Liu, Recent mathematical methods in nonlinear wave propagation, 1640.

G. Boillat and T. Ruggeri, Energy momentum, wave velocities and characteristic shocks in Euler's variational equations with application to the Born-Infeld theory, J. Math. Phys, vol.45, pp.3468-3478, 2004.

F. Bolley, Y. Brenier, and G. Loeper, Contractive metrics for scalar conservation laws, J. Hyperbolic Differ. Equ, vol.2, pp.91-107, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00453877

M. Born and L. Infeld, Foundations of a new field theory, Proc. Roy. Soc. London A, vol.144, pp.425-451, 1934.

G. Bouchitté and G. Buttazo, Characterization of optimal shapes and masses through Monge-Kantorovich equation, J. Eur. Math. Soc, vol.3, pp.139-168, 2001.

G. Bouchitté, C. Jimenez, and R. Mahadevan, Asymptotic analysis of a class of optimal location problems, J. Math. Pures Appl, issue.9, pp.382-419, 2011.

F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal, vol.157, pp.75-90, 2001.

F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal, vol.32, pp.891-933, 1998.

K. Brakke, The Motion of a Surface by its Mean Curvature, 1978.

Y. Brenier, Une application de la symétrisation de Steiner aux équations hyperboliques: la méthode de transport et écroulement, C. R. Acad. Sci. Paris Ser. I Math, vol.292, pp.563-566, 1981.

Y. Brenier, Une équation homologique avec contrainte, C. R. Acad. Sci. Paris Sér. I Math, vol.295, pp.103-106, 1982.

Y. Brenier, Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1, J. Differential Equations, vol.50, pp.375-390, 1983.

Y. Brenier, Averaged multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal, vol.21, pp.1013-1037, 1984.

Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris I Math, vol.305, pp.805-808, 1987.

Y. Brenier, Une formulation de type Vlassov-Poisson pour les équations d'Euler des fluides parfaits incompressibles, RR-107 INRIA, 1988.

Y. Brenier, Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discretes, C. R. Acad. Sci. Paris Sér I Math, vol.308, pp.587-589, 1989.

Y. Brenier, A combinatorial algorithm for the Euler equations of incompressible flows, Comput. Methods Appl. Mech. Engrg, vol.75, pp.325-332, 1989.

Y. Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids, J.of the AMS, vol.2, pp.225-255, 1989.

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math, vol.44, pp.375-417, 1991.

Y. Brenier, The dual least action principle for an ideal, incompressible fluid Arch, Rational Mech. Anal, vol.122, pp.323-351, 1993.

Y. Brenier, A homogenized model for vortex sheets, Arch. Rational Mech. Anal, vol.138, pp.319-353, 1997.

Y. Brenier, Minimal geodesics on groups of volume-preserving maps, Comm. Pure Appl. Math, vol.52, pp.411-452, 1999.

Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, vol.12, pp.495-512, 1999.

Y. Brenier, Derivation of the Euler equations from a caricature of Coulomb interaction, Comm. Math. Phys, vol.212, pp.93-104, 2000.

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, vol.25, pp.737-754, 2000.

Y. Brenier, Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math, vol.127, pp.585-595, 2003.

Y. Brenier, Extended Monge-Kantorovich theory, Optimal transportation and applications, Lecture Notes in Math, p.1813, 2003.

Y. Brenier, Order preserving vibrating strings and applications to electrodynamics and magnetohydrodynamics, Methods Appl. Anal, vol.11, pp.515-532, 2004.

Y. Brenier, Hydrodynamic structure of the augmented Born-Infeld equations, vol.172, pp.65-91, 2004.

Y. Brenier, Non relativistic strings may be approximated by relativistic strings, Methods Appl. Anal, vol.12, pp.153-167, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00103454

Y. Brenier, Generalized solutions and hydrostatic approximation of the Euler equation, Phys. D, vol.237, pp.14-17, 2008.

Y. Brenier, L2 formulation of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal, vol.193, pp.1-19, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00101596

Y. Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci, vol.19, pp.547-570, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00202710

Y. Brenier, On the hydrostatic and Darcy limits of the convective Navier-Stokes equations, Chin. Ann. Math. Ser. B, vol.30, pp.683-696, 2009.

Y. Brenier, A modified least action principle allowing mass concentrations for the early universe reconstruction problem, Confluentes Mathematici, vol.3, pp.361-385, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00488716

Y. Brenier, Remarks on the Minimizing Geodesic Problem in Inviscid Incompressible Fluid Mechanics, vol.47, pp.55-64, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00827679

Y. Brenier, Rearrangement, convection, convexity and entropy, vol.371, 2005.

Y. Brenier, Topology-preserving diffusion of divergence-free vector fields and magnetic relaxation, Comm. Math. Physics, vol.330, pp.757-770, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00814263

Y. Brenier, Connections between optimal transport, combinatorial optimization and hydrodynamics, ESAIM Math. Model. Numer. Anal, vol.49, pp.1593-1605, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01070575

Y. Brenier, A double large deviation principle for Monge-Ampère gravitation, Bull. Inst. Math. Acad. Sin. (N.S.), vol.11, pp.23-41, 2016.

Y. Brenier, The initial value problem for the Euler equations of incompressible fluids viewed as a concave maximization problem, Comm. Math. Phys, vol.364, pp.579-605, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01536091

Y. Brenier, Geometric origin and some properties of the arctangential heat equation, Tunis. J. Math, vol.1, pp.561-584, 2019.

Y. Brenier and L. Corrias, A kinetic formulation for multi-branch entropy solutions of scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.15, pp.169-190, 1998.

Y. Brenier and M. Cullen, Rigorous derivation of the x-z semigeostrophic equations, Commun. Math. Sci, vol.7, pp.779-784, 2009.

Y. Brenier, C. De-lellis, and L. Székelyhidi, Weak-strong uniqueness for measure-valued solutions, Comm. Math. Phys, vol.305, pp.351-361, 2011.

Y. Brenier and X. Duan, From Conservative to Dissipative Systems Through Quadratic Change of Time, with Application to the Curve-Shortening Flow, vol.227, pp.545-565, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01485459

Y. Brenier, U. Frisch, M. Hénon, G. Loeper, S. Matarrese et al., Reconstruction of the early universe as a convex optimization problem, Mon. Not. R. Astron. Soc, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00012457

Y. Brenier and W. Gangbo, L p approximation of maps by diffeomorphisms, Calc. Var. Partial Differential Equations, vol.16, pp.147-164, 2003.

Y. Brenier, W. Gangbo, G. Savaré, and M. Westdickenberg, Sticky particle dynamics with interactions, J. Math. Pures Appl, issue.9, pp.577-617, 2013.

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal, vol.35, pp.2317-2328, 1998.

Y. Brenier and J. Jaffré, Upstream differencing for multiphase flow in reservoir simulation, SIAM J. Numer. Anal, vol.28, pp.685-696, 1991.
URL : https://hal.archives-ouvertes.fr/inria-00075414

Y. Brenier and G. Loeper, A geometric approximation to the Euler equations: The Vlasov-Monge-Ampère equation, Geom. Funct. Anal, vol.14, pp.1182-1218, 2004.

Y. Brenier, N. Mauser, and M. Puel, Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system, Commun. Math. Sci, pp.437-447, 2003.

Y. Brenier, F. Otto, and C. Seis, Upper bounds on coarsening rates in demixing binary viscous liquids, SIAM J. Math. Anal, vol.43, pp.114-134, 2011.

Y. Brenier and W. Yong, Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism, J. Math. Phys, vol.46, issue.6, p.62305, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00009149

P. Brenner, The Cauchy problem for symmetric hyperbolic systems in L p, Math. Scand, vol.19, pp.27-37, 1966.

D. Bresch, M. Gisclon, and I. Lacroix-violet, On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models, Arch. Ration. Mech. Anal, vol.233, pp.975-1025, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01496960

D. Bresch, A. Kazhikhov, and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal, vol.36, pp.796-814, 2004.

A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, 2000.

H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, 1973.

H. Brezis, Analyse fonctionnelle appliquée, 1974.

H. Brezis and F. Browder, Partial differential equations in the 20th century, Adv. Math, vol.135, pp.76-144, 1998.

H. Brezis, J. Coron, and E. Lieb, Harmonic maps with defects, Comm. Math. Phys, vol.107, pp.649-705, 1986.

H. Brezis and M. Crandall, Uniqueness of solutions of the initial-value problem for u t ? ??(u) = 0, J. Math. Pures Appl, issue.9, pp.153-163, 1979.

H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques, C. R. Acad. Sci. Paris Sér. A-B, vol.282, pp.1197-1198, 1976.

T. Buckmaster, C. De-lellis, L. Székelyhidi, and V. Vicol, Onsager's conjecture for admissible weak solutions, Comm. Pure Appl. Math, vol.72, pp.229-274, 2019.

B. Buet, G. P. Leonardi, and S. Masnou, Discretization and approximation of surfaces using varifolds, Geom. Flows, vol.3, pp.28-56, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02141277

B. Buffoni, Generalized flows satisfying spatial boundary conditions, J. Math. Fluid Mech, vol.14, pp.501-528, 2012.

G. R. Burton, Rearrangements of functions, maximization of convex functionals and vortex rings, Math. Ann, vol.276, pp.225-253, 1987.

G. R. Burton and R. J. Douglas, Uniqueness of the polar factorisation and projection of a vector-valued mapping, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.20, pp.405-418, 2003.

L. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc, vol.5, pp.99-104, 1992.

L. Caffarelli, Boundary regularity of maps with convex potentials, Ann. of Math, vol.144, pp.453-496, 1996.

L. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys, vol.214, pp.547-563, 2000.

L. Caffarelli, C. Gutiérrez, and Q. Huang, On the regularity of reflector antennas, Ann. of Math, issue.2, pp.299-323, 2008.

E. Caglioti, F. Golse, and M. Iacobelli, A gradient flow approach to quantization of measures, Math. Models Methods Appl. Sci, vol.25, pp.1845-1885, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01109228

C. Cancès, . Th, M. Gallouët, L. Laborde, and . Monsaingeon, Simulation of multiphase porous media flows with minimising movement and finite volume schemes, European J. Appl. Math, vol.30, pp.1123-1152, 2019.

C. Cao and E. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math, issue.2, pp.245-267, 2007.

P. Cardaliaguet, F. Delarue, J. Lasry, and P. Lions, The Master Equation and the Convergence Problem in Mean Field Games, Annals of Math. Studies, vol.201, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01196045

E. Carlen and J. Maas, Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance, J. Funct. Anal, vol.273, pp.1810-1869, 2017.

R. Carles, R. Danchin, J. Saut, . Madelung, -. Gross et al., Nonlinearity, vol.25, pp.2843-2873, 2012.

G. Carlier, V. Duval, G. Peyré, and B. Schmitzer, Convergence of entropic schemes for optimal transport and gradient flows, SIAM J. Math. Anal, vol.49, pp.1385-1418, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01246086

G. Carlier and I. Ekeland, Matching for teams, Econom. Theory, vol.42, pp.397-418, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00661901

G. Carlier, A. Galichon, and F. Santambrogio, From Knothe's transport to Brenier's map and a continuation method for optimal transport, SIAM J. Math. Anal, vol.41, issue.10, pp.2554-2576, 2009.

J. A. Carrillo, M. D. Francesco, and C. Lattanzio, Contractivity of Wasserstein Metrics and Asymptotic Profiles for Scalar Conservation Laws, J. Differential Equations, vol.231, pp.425-458, 2006.

J. A. Carrillo, R. Mccann, and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal, vol.179, pp.217-263, 2006.

A. Chambert-loir, Quand la géométrie devient tropicale, Pour la Science, vol.492, pp.26-33, 2018.

A. Chambolle and M. Novaga, Convergence of an algorithm for the anisotropic and crystalline mean curvature flow, SIAM J. Math. Anal, vol.37, pp.1978-1987, 2006.

N. Champagnat and P. Jabin, Well posedness in any dimension for Hamiltonian flows with non BV force terms, Comm. Partial Differential Equations, vol.35, pp.786-816, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00373784

. Th, L. D. Champion, and . Pascale, The Monge problem for strictly convex norms in Rd, J. Eur. Math. Soc. (JEMS), pp.1355-1369, 2010.

S. Chang and Y. Wang, Some higher order isoperimetric inequalities via the method of optimal transport, Int. Math. Res. Not. IMRN, issue.24, pp.6619-6644, 2014.

G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation, 2000.

J. Chemin, Existence globale pour le problème des poches de tourbillon, C. R. Acad. Sci. Paris Sér. I Math, vol.312, pp.803-806, 1991.

J. Chemin, , 1998.

J. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00112069

S. Y. Cheng and S. T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math, vol.29, pp.495-516, 1976.

V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry, Monge-Kantorovich depth, quantiles, ranks and signs, Ann. Statist, vol.45, pp.223-256, 2017.

P. Chiappori, R. Mccann, and B. Pass, Multi-to one-dimensional optimal transport, Comm. Pure Appl. Math, vol.70, pp.2405-2444, 2017.

L. Chizat, G. Peyré, B. Schmitzer, and F. Vialard, Unbalanced Optimal Transport: Geometry and Kantorovich Formulation, J. Funct. Anal, vol.274, pp.3090-3123, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01271981

A. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp, vol.22, pp.745-762, 1968.

A. Chorin, Numerical methods for use in combustion modeling, Computing methods in applied sciences and engineering, Proc. Fourth Internat. Sympos, pp.229-236, 1979.

A. Chorin, R. Kupferman, and D. Levy, Optimal prediction for Hamiltonian partial differential equations, J. Comput. Phys, vol.162, issue.1, pp.267-297, 2000.

A. Chorin and J. Marsden, A mathematical introduction to fluid mechanics, 1979.

D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol.41, 1993.

. Ph, J. Clément, and . Maas, A Trotter product formula for gradient flows in metric spaces, J. Evol. Equ, vol.11, pp.405-427, 2011.

F. Colombini and N. Lerner, Uniqueness of continuous solutions for BV vector fields, Duke Math. J, vol.111, pp.357-384, 2002.

M. Colombo, L. Pascale, and S. D. Marino, Multimarginal optimal transport maps for one-dimensional repulsive costs, Canad. J. Math, vol.67, pp.350-368, 2015.

A. Constantin, T. Kappeler, B. Kolev, and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom, vol.31, pp.155-180, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00130915

P. Constantin, E. Weinan, and E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys, vol.165, pp.207-209, 1994.

D. Cordero-erausquin and B. Klartag, Moment measures, J. Funct. Anal, vol.268, pp.3834-3866, 2015.

D. Cordero-erausquin, B. Nazaret, and C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math, vol.182, issue.2, pp.307-332, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00157943

D. Cordoba and D. Faraco, Lack of uniqueness for weak solutions of the incompressible porous media equation, Arch. Ration. Mech. Anal, vol.200, pp.725-746, 2011.

L. Corrias, Fast Legendre-Fenchel transform and applications to Hamilton-Jacobi equations and conservation laws, SIAM J. Numer. Anal, vol.33, pp.1534-1558, 1996.

C. Cotar, G. Friesecke, and B. Pass, Infinite-body optimal transport with Coulomb cost, Calc. Var. Partial Differential Equations, vol.54, pp.717-742, 2015.

G. Cottet and P. Koumoutsakos, Vortex methods, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01063292

M. Crandall, L. C. Evans, and P. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc, vol.282, pp.487-502, 1984.

M. Crandall, H. Ishii, and P. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), vol.27, pp.1-67, 1992.

G. Crippa and C. D. Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math, vol.616, pp.15-46, 2008.

M. Cullen, A mathematical theory of large-scale atmosphere/ocean flow, 2006.

M. Cullen, W. Gangbo, and L. Pisante, The semigeostrophic equations discretized in reference and dual variables, Arch. Ration. Mech. Anal, vol.1185, pp.341-363, 2007.

M. Cullen, J. Norbury, and J. Purser, Generalised Lagrangian solutions for atmospheric and oceanic flows, SIAM J. Appl. Math, vol.51, pp.20-31, 1991.

M. Cullen and J. Purser, An extended Lagrangian theory of semigeostrophic frontogenesis, J. Atmospheric Sci, vol.41, pp.1477-1497, 1984.

B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math, vol.178, pp.1-37, 1997.

B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.7, pp.1-26, 1990.

C. Dafermos, Hyperbolic conservation laws in continuum physics, 2016.

A. Dalibard, Kinetic formulation for heterogeneous scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.23, pp.475-498, 2006.

F. D'andrea and P. Martinetti, A view on optimal transport from noncommutative geometry, vol.6, 2010.

C. De-lellis and L. Székelyhidi, The Euler equations as a differential inclusion, Ann. of Math, issue.2, pp.1417-1436, 2009.

C. De-lellis and L. Székelyhidi, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal, vol.195, pp.225-260, 2010.

C. De-lellis and L. Székelyhidi, On turbulence and geometry: from Nash to Onsager, Notices Amer. Math. Soc, vol.66, pp.677-685, 2019.

J. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc, vol.4, pp.553-586, 1991.

N. Depauw, Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan, C. R. Math. Acad. Sci. Paris, vol.337, pp.249-252, 2003.

G. De-philippis and A. Figalli, W2,1 regularity for solutions of the Monge-Ampere equation, Invent. Math, vol.192, pp.55-69, 2013.

G. De-philippis and A. Figalli, The Monge-Ampère equation and its link to optimal transportation, Bull. Amer. Math. Soc. (N.S.), vol.51, pp.527-580, 2014.

B. Després and C. Mazeran, Constant Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Ration. Mech. Anal, vol.178, pp.327-372, 2005.

H. Dietert, , 2019.

S. D. Marino, B. Maury, and F. Santambrogio, Measure sweeping processes, J. Convex Anal, vol.23, pp.567-601, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01249493

R. J. Diperna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys, vol.91, pp.1-30, 1983.

R. J. Diperna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal, vol.88, pp.223-270, 1985.

R. J. Diperna, Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc, vol.292, pp.383-420, 1985.

R. J. Diperna and P. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math, vol.98, pp.511-547, 1989.

R. J. Diperna and A. , Majda Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys, vol.108, pp.667-689, 1987.

B. Dobrouvine, S. Novikov, A. Fomenko, and G. Contemporaire, , 1982.

R. Dobrushin, Vlasov equations, Funct. Anal. Appl, vol.13, pp.115-123, 1979.

J. Dolbeault, B. Nazaret, and G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differential Equations, vol.34, pp.193-231, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00262455

D. Donatelli and P. Marcati, Analysis of oscillations and defect measures for the quasineutral limit in plasma physics, Arch. Ration. Mech. Anal, vol.206, pp.159-188, 2012.

X. Duan, Hyperbolicity of the time-like extremal surfaces in Minkowski spaces
URL : https://hal.archives-ouvertes.fr/hal-01538332

J. Duchon and R. Robert, Relaxation of the Euler equations and hydrodynamic instabilities, Quarterly Appl. Math, vol.50, pp.235-255, 1992.

M. Duerinckx and S. Serfaty, Mean-field dynamics for Ginzburg-Landau vortices with pinning and forcing, Ann. PDE, vol.4, issue.19, p.pp, 2018.

E. Weinan and J. Liu, Gauge method for viscous incompressible flows, Commun. Math. Sci, vol.1, pp.317-332, 2003.

E. Weinan, Y. Rykov, and Y. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys, vol.177, pp.349-380, 1996.

D. Ebin and J. Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math, vol.92, pp.102-163, 1970.

D. Ebin and R. Saxton, The initial value problem for elastodynamics of incompressible bodies, Arch. Rational Mech. Anal, vol.94, pp.15-38, 1986.

M. Edelstein, On nearest points of sets in uniformly convex Banach spaces, J. London Math. Soc, vol.43, pp.375-377, 1968.

I. Ekeland, The Hopf-Rinow theorem in infinite dimension, J. Diff. Geo, vol.13, pp.287-301, 1978.

I. Ekeland and W. Schachermayer, Optimal transport and the geometry of L 1 (R d ), Proc. Amer. Math. Soc, vol.142, pp.3585-3596, 2014.

Y. Eliashberg and T. Ratiu, The diameter of the symplectomorphism group is infinite, Invent. Math, vol.103, pp.327-340, 1991.

B. Engquist, B. Froese, and Y. Yang, Optimal transport for seismic full waveform inversion, Commun. Math. Sci, vol.14, pp.2309-2330, 2016.

M. Erbar, A gradient flow approach to the Boltzmann equation

M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Archive for Rational Mechanics and, Analysis, pp.1-42, 2012.

M. Erbar, M. Rumpf, B. Schmitzer, and S. Simon, Computation of optimal transport on discrete metric measure spaces, Numer. Math, vol.144, pp.157-200, 2020.

L. Euler, Opera Omnia, Series Secunda, vol.12, pp.274-361

L. C. Evans, EDP Partial differential equations, American Mathematical Society, 2010.

L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc, vol.137, 1999.

L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, 2015.

L. C. Evans and D. Gomes, Linear programming interpretations of Mather's variational principle, ESAIM Control Optim. Calc. Var, vol.8, pp.693-702, 2002.

G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics, Phys. D, vol.78, pp.222-240, 1994.

M. Fathi and J. Maas, Entropic Ricci curvature bounds for discrete interacting systems, Ann. Appl. Probab, vol.26, pp.1774-1806, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358648

H. Federer, Geometric measure theory, 1969.

E. Feireisl, P. Gwiazda, A. ?wierczewska-gwiazda, and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, vol.55, p.141, 2016.

R. Feynman, Le cours de physique de Feynman -Electromagnétisme 2 -2e édition, 2017.

A. Figalli and A. Guionnet, Universality in several-matrix models via approximate transport map, Acta Math, vol.217, pp.81-176, 2016.

A. Figalli, F. Maggi, and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math, vol.182, pp.167-211, 2010.

A. Figalli and L. Rifford, Mass transportation on sub-Riemannian manifolds, Geom. Funct. Anal, vol.20, pp.124-159, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00541484

M. Freidlin and A. Wentzell, Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften, vol.260

U. Frisch, Turbulence. The legacy of A. N. Kolmogorov, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00630884

U. Frisch, S. Matarrese, R. Mohayaee, and A. , Sobolevski, reconstruction of the initial conditions of the Universe by optimal mass transportation, Nature, vol.417, pp.260-262, 2002.

A. Galichon, Optimal transport methods in economics, 2016.

. Th, Q. Gallouët, and . Mérigot, A Lagrangian scheme a la Brenier for the incompressible Euler equations, Found. Comput. Math, vol.18, pp.835-865, 2018.

. Th, A. Gallouët, F. Natale, and . Vialard, Generalized Compressible Flows and Solutions of the H(div) Geodesic Problem, Arch. Ration. Mech. Anal, vol.235, pp.1707-1762, 2020.

W. Gangbo and R. Mccann, The Geometry of Optimal Transportation, Acta Mathematica, vol.177, pp.113-161, 1996.

F. Gay-balmaz, D. Holm, and T. Ratiu, Geometric dynamics of optimization, Commun. Math. Sci, vol.11, pp.163-231, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01092291

I. Gentil, A. Guillin, and L. Miclo, Modified logarithmic Sobolev inequalities and transportation inequalities, Probab. Theory Related Fields, vol.133, pp.409-436, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00001609

P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations, vol.16, pp.1761-1794, 1991.

P. Gérard, P. Markowich, N. Mauser, and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math, vol.50, pp.323-379, 1997.

D. Gérard-varet and N. Masmoudi, Well-posedness for the Prandtl system without analyticity or monotonicity, Ann. Sci. Ec. Norm. Supér, issue.4, pp.1273-1325, 2015.

J. Gerbeau, C. L. Bris, and T. Lelièvre, Mathematical methods for the magnetohydrodynamics of liquid metals, 2006.

B. Gess, B. Perthame, and P. Souganidis, Semi-discretization for stochastic scalar conservation laws with multiple rough fluxes, SIAM J. Numer. Anal, vol.54, pp.2187-2209, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01481284

B. Gess, J. Sauer, and E. Tadmor, Optimal regularity in time and space for the porous medium equation

N. Ghoussoub, Self-dual partial differential systems and their variational principles, 2009.

N. Ghoussoub, Y. Kim, and T. Lim, Structure of optimal martingale transport plans in general dimensions, Ann. Probab, vol.47, pp.109-164, 2019.

N. Ghoussoub and B. Maurey, Remarks on multi-marginal symmetric Monge-Kantorovich problems, Discrete Contin. Dyn. Syst, vol.34, pp.1465-1480, 2014.

N. Ghoussoub and A. Moameni, Symmetric Monge-Kantorovich problems and polar decompositions of vector fields, Geom. Funct. Anal, vol.24, pp.1129-1166, 2014.

E. Ghys and G. Monge, le mémoire sur les déblais et les remblais, Image des Mathématiques, 2012.

U. Gianazza, G. Savaré, and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal, vol.194, pp.133-220, 2009.

G. Gibbon, D. Holm, R. Kerr, and I. Roulstone, Quaternions and particle dynamics in the Euler fluid equations, Nonlinearity, vol.19, pp.1969-1983, 2006.

J. Giesselmann, C. Lattanzio, and A. Tzavaras, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal, vol.223, pp.1427-1484, 2017.

M. Giga and Y. Giga, Minimal vertical singular diffusion preventing overturning for the Burgers equation, Recent advances in scientific computing and PDEs, Contemp. Math, vol.330, 2003.

Y. Giga and T. Miyakawa, A kinetic construction of global solutions of first order quasilinear equations, Duke Math. J, vol.50, pp.505-515, 1983.

N. Gigli, K. Kuwada, and S. Ohta, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math, vol.66, pp.307-331, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00769390

N. Gigli and F. Otto, Entropic Burgers' equation via a minimizing movement scheme based on the Wasserstein metric, Calc. Var. Partial Differential Equations, vol.47, pp.181-206, 2013.

O. Glass, A. Munnier, and F. Sueur, Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid, Invent. Math, vol.214, pp.171-287, 2018.
URL : https://hal.archives-ouvertes.fr/hal-00950544

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math, vol.18, pp.697-715, 1965.

T. Glimm and V. Oliker, Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem, J. Math. Sci. (N.Y.), vol.117, pp.4096-4108, 2003.

E. Godlewski and P. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol.118, 1996.

M. Goldman and F. Otto, A variational proof of partial regularity for optimal transportation maps
URL : https://hal.archives-ouvertes.fr/hal-01504078

F. Golse, . Sh, . Jin, . Th, and . Paul, The Random Batch Method for N-Body Quantum Dynamics
URL : https://hal.archives-ouvertes.fr/hal-02405783

F. Golse, P. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal, vol.76, pp.110-125, 1988.

F. Golse, C. Mouhot, . Th, and . Paul, On the mean field and classical limits of quantum mechanics, Comm. Math. Phys, vol.343, pp.165-205, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01119132

F. Golse and L. Saint-raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci, vol.13, pp.661-714, 2003.

L. Gosse and G. Toscani, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations, SIAM J. Numer. Anal, vol.43, pp.2590-2606, 2006.

N. Gozlan and N. Juillet, On a mixture of Brenier and Strassen theorems, Proc. Lond. Math. Soc, issue.3, pp.434-463, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01855463

E. Grenier, Defect measures of the Vlasov-Poisson system in the quasineutral regime, Comm. Partial Differential Equations, vol.20, pp.1189-1215, 1995.

E. Grenier, On the derivation of homogeneous hydrostatic equations, M2AN Math. Model. Numer. Anal, vol.33, pp.965-970, 1999.

E. Grenier, T. Nguyen, and I. Rodnianski, Landau damping for analytic and Gevrey data

M. Gromov, Partial Differential Relations, 1986.

A. Guionnet and D. Shlyakhtenko, Free monotone transport, Invent. Math, vol.197, pp.613-661, 2014.

D. Han-kwan and M. Iacobelli, Quasineutral limit for Vlasov-Poisson via Wasserstein stability estimates in higher dimension, J. Differential Equations, vol.263, pp.1-25, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01708193

D. Han-kwan and F. Rousset, Quasineutral limit for Vlasov-Poisson with Penrose stable data, Ann. Sci. ENS, issue.4, pp.1445-1495, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01708216

M. Hauray and P. Jabin, N-particles approximation of the Vlasov equations with singular potential, Arch. Ration. Mech. Anal, vol.183, pp.489-524, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00000670

F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I Math, vol.312, pp.591-596, 1991.

D. Holm, Stochastic evolution of augmented Born-Infeld equations, J. Nonlinear Sci, vol.29, pp.115-138, 2019.

D. Holm, A. Trouvé, and L. Younes, The Euler-Poincaré theory of metamorphosis, Quart. Appl. Math, vol.67, pp.661-685, 2009.

E. Hopf, The partial differential equation u t +uu x = µu xx, Comm. Pure Appl. Math, vol.3, pp.201-230, 1950.

L. Hörmander, The analysis of linear partial differential operators, vol.III, 1985.

B. Hoskins, The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations, J. Atmospheric Sci, vol.32, pp.233-242, 1975.

M. Huesmann, D. Trevisan, and . Benamou, Brenier formulation of martingale optimal transport, Bernoulli, vol.25, pp.2729-2757, 2019.

R. Hug, E. Maitre, and N. Papadakis, Multi-physics optimal transportation and image interpolation, ESAIM Math. Model. Numer. Anal, vol.49, pp.1671-1692, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00998370

. Ph and . Isett, A proof of Onsager's conjecture, Ann. of Math, issue.2, pp.871-963, 2018.

R. Jerrard and D. Smets, On the motion of a curve by its binormal curvature, J. Eur. Math. Soc, pp.1487-1515, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01482304

A. Jüngel and D. Matthes, The Derrida-Lebowitz-Speer-Spohn equation: existence, nonuniqueness, and decay rates of the solutions, SIAM J. Math. Anal, vol.39, pp.1996-2015, 2008.

A. Jüngel and Y. Peng, A hierarchy of hydrodynamic models for plasmas: zerorelaxation-time limits, Comm. Partial Differential Equations, vol.24, pp.1007-1033, 1999.

B. Khesin, G. Misio?ek, and K. Modin, Geometric hydrodynamics via Madelung transform

M. Kiessling, Electromagnetic field theory without divergence problems, J. Statist. Phys, vol.116, issue.1-4, pp.1057-1159, 2004.

Y. Kim and E. Milman, A generalization of Caffarelli's contraction theorem via (reverse) heat flow, Math. Ann, vol.354, pp.827-862, 2012.

A. Kiselev and V. ?verák, Small scale creation for solutions of the incompressible two-dimensional Euler equation, Ann. of Math, issue.2, pp.1205-1220, 2014.

J. Kitagawa, Q. Mérigot, and B. Thibert, Convergence of a Newton algorithm for semi-discrete optimal transport, J. Eur. Math. Soc, vol.21, pp.2603-2651, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01290496

S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Lectures in Appl. Math, vol.23, pp.293-326, 1986.

S. Klainerman, PDE as a unified subject, Special Volume, Part I, pp.279-315, 2000.

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math, vol.34, pp.481-524, 1981.

B. Kloeckner, A geometric study of Wasserstein spaces: Euclidean spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci, issue.5, pp.297-323, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00275067

S. Knott, On the optimal mapping of distributions, J. Optim. Theory Appl, vol.43, pp.39-49, 1984.

R. Kohn and G. Strang, Optimal design and relaxation of variational problems, Comm. Pure Appl. Math, vol.39, pp.113-182, 1986.

S. Kondratyev, L. Monsaingeon, and D. Vorotnikov, A new optimal transport distance on the space of finite Radon measures, Adv. Differential Equations, vol.21, pp.1117-1164, 2016.

H. O. Kreiss, Problems with different time scales for partial differential equations, Comm. Pure Appl. Math, vol.33, pp.399-439, 1980.

S. N. Kruzhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), vol.81, issue.123, pp.228-255, 1970.

J. Lasry and P. Lions, Mean field games, Jpn. J. Math, vol.2, pp.229-260, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00667356

C. Lattanzio and A. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Comm. Partial Differential Equations, vol.42, pp.261-290, 2017.

T. Laux and F. Otto, Felix Brakke's inequality for the thresholding scheme, Calc. Var. Partial Differential Equations, vol.59, issue.39, p.pp, 2020.

H. Lavenant, Time-convexity of the entropy in the multiphasic formulation of the incompressible Euler equation, Calc. Var. Partial Differential Equations, vol.56, p.pp, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01442103

M. Lemou, F. Méhats, and P. , A new variational approach to the stability of gravitational systems, Comm. Math. Phys, vol.302, pp.161-224, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00378457

. Ch and . Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst. A, vol.34, pp.1533-1574, 2014.

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math, vol.63, pp.193-248, 1934.

R. Leveque, Numerical methods for conservation laws, Lectures in Mathematics ETH Zürich, 1992.

B. Lévy, A numerical algorithm for L2 semi-discrete optimal transport in 3D, ESAIM Math. Model. Numer. Anal, vol.49, pp.1693-1715, 2015.

M. Lewin, E. Lieb, and R. Seiringer, Universal Functionals in Density Functional Theory

B. Li, F. Habbal, and M. Ortiz, Optimal transportation meshfree approximation schemes for fluid and plastic flows, Internat. J. Numer. Methods Engrg, vol.83, pp.1541-1579, 2010.

L. Lichtenstein, Über einige Existenzprobleme der Hydrodynamik, Math. Z, vol.23, pp.196-323, 1927.

E. Lieb and M. Loss, Graduate Studies in Mathematics, 2001.

M. Liero, A. Mielke, and G. Savaré, Optimal Entropy-Transport problems and a new Hellinger-Kantorovich distance, Invent. Math, vol.211, pp.969-1117, 2018.

H. Lindblad, A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time, Proc. Amer. Math. Soc, vol.132, pp.1095-110, 2004.

J. Lions, R. Temam, and S. H. Wang, On the equations of the large-scale ocean, Nonlinearity, vol.5, pp.1007-1053, 1992.

P. Lions, Incompressible models, Mathematical topics in fluid mechanics, vol.1, p.3, 1996.

P. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana, vol.1, pp.145-201, 1985.

P. Lions and S. Mas-gallic, Une méthode particulaire déterministe pour des équations diffusives non linéaires, C. R. Acad. Sci. Paris Sér. I Math, vol.332, pp.369-376, 2001.

P. Lions, . Th, and . Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, vol.9, pp.553-618, 1993.

P. Lions, B. Perthame, and P. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math, vol.49, pp.599-638, 1996.

P. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc, vol.7, pp.169-191, 1994.

H. Liu, R. Glowinski, S. Leung, and J. Qian, A finite element/operator-splitting method for the numerical solution of the three dimensional Monge-Ampère equation, J. Sci. Comput, vol.81, pp.2271-2302, 2019.

J. G. Liu, R. Pego, and D. Slepcev, Least action principles for incompressible flows and geodesics between shapes, Calc. Var. Partial Differential Equations, vol.58, 2019.

G. Loeper, Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampere systems, Comm. Partial Differential Equations, vol.30, pp.1141-1167, 2005.

G. Loeper, A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system, SIAM J. Math. Anal, vol.38, pp.795-823, 2006.

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl, issue.9, pp.68-79, 2006.

G. Loeper, The reconstruction problem for the Euler-Poisson system in cosmology, Arch. Ration. Mech. Anal, vol.179, pp.153-216, 2006.

G. Loeper, On the regularity of solutions of optimal transportation problems, Acta Math, vol.202, pp.241-283, 2009.

M. Lopes-filho, H. Lopes, and J. Precioso, Least action principle and the incompressible Euler equations with variable density, Trans. Amer. Math. Soc, vol.363, pp.2641-2661, 2011.

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math, issue.2, pp.903-991, 2009.

Y. Lucet, Faster than the fast Legendre transform, the linear-time Legendre transform, Numer. Algorithms, vol.16, issue.2, pp.171-185, 1998.

S. Luckhaus, . Th, and . Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, vol.3, pp.253-271, 1995.

X. Ma, N. Trudinger, and X. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal, vol.177, pp.151-183, 2005.

E. Madelung, Quantentheorie in hydrodynamischer Form, Z. Phys, vol.40, pp.322-326, 1926.

A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol.53, 1984.

A. Majda, Introduction to turbulent dynamical systems in complex systems, 2016.

A. Majda and A. Bertozzi, Vorticity and incompressible flow, 2002.

C. Marchioro and M. , Pulvirenti Mathematical theory of incompressible non viscous fluids, 1994.

J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, vol.17, 1999.

N. Masmoudi and T. K. Wong, On the H s theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal, vol.204, pp.231-271, 2012.

D. Matthes and H. Osberger, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal, vol.48, pp.697-726, 2014.

B. Maurey and . Inégalité-de-brunn-minkowski-lusternik, et autres inégalités géométriques et fonctionnelles, Séminaire Bourbaki, vol.928, pp.95-113, 2003.

R. Mccann, A convexity principle for interacting gases, Adv. Math, vol.128, pp.153-179, 1997.

R. Mccann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal, vol.11, pp.589-608, 2001.

R. Mccann, Displacement convexity of Boltzmann's entropy characterizes the strong energy condition from general relativity

R. Mccann and P. Topping, Ricci flow, entropy and optimal transportation, Amer. J. Math, vol.132, pp.711-730, 2010.

Q. Mérigot, A multiscale approach to optimal transport, Computer Graphics Forum, vol.30, issue.5, pp.1583-1592, 2011.

Q. Mérigot and J. Mirebeau, Minimal geodesics along volume preserving maps, through semi-discrete optimal transport, SIAM J. Numer. Anal, vol.54, pp.3465-3492, 2016.

B. Merriman, J. Bence, and S. Osher, Motion of multiple junctions: a level set approach, J. Comput. Phys, vol.112, pp.334-363, 1994.

G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal, vol.158, pp.61-90, 2001.

L. Métivier, R. Brossier, Q. Mérigot, and E. Oudet, A graph space optimal transport distance as a generalization of Lp distances: application to a seismic imaging inverse problem, Inverse Problems, vol.35, p.49, 2019.

P. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal, vol.23, pp.74-113, 2007.

A. Mielke, M. Peletier, and D. Renger, On the relation between gradient flows and the large-deviation principle, Potential Anal, vol.41, pp.1293-1327, 2014.

A. Mielke and U. Stefanelli, Weighted energy-dissipation functionals for gradient flows, ESAIM Control Optim. Calc. Var, vol.17, pp.52-85, 2011.

S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys, vol.210, pp.447-466, 2000.

G. Misio?ek and S. Preston, Fredholm properties of Riemannian exponential maps on diffeomorphism groups, Invent. Math, vol.179, pp.191-227, 2010.

S. Modena and L. Székelyhidi, Non-renormalized solutions to the continuity equation, Calc. Var. Partial Differential Equations, vol.58, issue.208, p.pp, 2019.

K. Moffatt, Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology, J. Fluid Mech, vol.159, pp.359-378, 1985.

K. Moffatt and E. Dormy, Self-exciting fluid dynamos, Cambridge Texts in Applied Mathematics, 2019.

A. Mondino and S. Suhr, An optimal transport formulation of the Einstein equations of general relativity

F. Morgan, Geometric measure theory. A beginner's guide, 2000.

J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc, vol.120, pp.286-294, 1965.

S. Müller and M. Palombaro, On a differential inclusion related to the Born-Infeld equations, SIAM J. Math. Anal, vol.46, pp.2385-2403, 2014.

F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.5, issue.4, pp.489-507, 1978.

J. Nash, C1 isometric imbeddings, pp.383-396, 1954.

Y. Neretin, Categories of bistochastic measures and representations of some infinite-dimensional groups, Sb, vol.183, issue.2, pp.52-76, 1992.

J. Nieto, F. Poupaud, and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Arch. Ration. Mech. Anal, vol.158, pp.29-59, 2001.

A. Nouri and F. Poupaud, An existence theorem for the multifluid Navier-Stokes problem, J. Differential Equations, vol.122, pp.71-88, 1995.

V. Oliker, J. Rubinstein, and G. Wolansky, Supporting quadric method in optical design of freeform lenses for illumination control of a collimated light, Adv. in Appl. Math, vol.62, pp.160-183, 2015.

Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal, vol.256, pp.810-864, 2009.

F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational approach, vol.52, pp.873-915, 1999.

F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, vol.26, pp.101-174, 2001.

F. Otto and M. Reznikoff, A new criterion for the logarithmic Sobolev inequality and two applications, J. Funct. Anal, vol.243, pp.121-157, 2007.

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal, vol.173, pp.361-400, 2000.

F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance, SIAM J. Math. Anal, vol.37, pp.1227-1255, 2005.

E. Y. Panov, On kinetic formulation of first-order hyperbolic quasilinear systems, Ukrainian Math. Vistnik, vol.1, issue.4, pp.548-563, 2004.

L. Paoli and M. Schatzman, A numerical scheme for impact problems, SIAM J. Numer. Anal, vol.40, pp.702-768, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01885729

D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. Marsden et al., Structurepreserving discretization of incompressible fluids, Phys. D, vol.240, issue.6, pp.443-458, 2011.

J. Pedlosky, Geophysical Fluid Dynamics, 1979.

M. Perepelitsa, A note on strong solutions to the variational kinetic equation for scalar conservation laws, Journal of Hyperbolic Differential Equations, vol.11, pp.621-632, 2014.

B. Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. (N.S.), vol.41, pp.205-244, 2004.

M. Petrache, Decorrelation as an Avatar of Convexity

G. Peyré, L. Chizat, F. Vialard, and J. Solomon, Quantum entropic regularization of matrix-valued optimal transport, European J. Appl. Math, vol.30, pp.1079-1102, 2019.

G. Peyré and M. Cuturi, Computational optimal transport

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math, vol.38, pp.309-332, 1981.

J. Polchinski, String theory. Vol. I. Cambridge Monographs on Mathematical Physics, 1998.

F. Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Comm. Partial Differential Equations, vol.22, pp.337-358, 1997.

M. Puel and L. Saint-raymond, Quasineutral limit for the relativistic Vlasov-Maxwell system, Asymptot. Anal, vol.40, pp.303-352, 2004.

T. Qin, Symmetrizing nonlinear elastodynamic system, J. Elasticity, vol.50, pp.245-252, 1998.

S. T. Rachev, L. Rüschendorf, ;. , and I. I. , Mass transportation problems, 1998.

S. Reich, Data assimilation: the Schrödinger perspective, Acta Numer, vol.28, pp.635-711, 2019.

T. Rivière, Conservation laws for conformally invariant variational problems, Invent. Math, vol.168, pp.1-22, 2007.

T. Rivière and M. Struwe, Partial regularity for harmonic maps and related problems, Comm. Pure Appl. Math, vol.61, pp.451-463, 2008.

T. Rivière and D. Ye, Resolutions of the prescribed volume form equation, NoDEA Nonlinear Differential Equations Appl, vol.3, pp.323-369, 1996.

P. Rouchon, The Jacobi equation, Riemannian curvature and the motion of a perfect incompressible fluid, European J. Mech. B Fluids, vol.11, pp.317-336, 1992.

H. L. Royden, Real analysis, 1988.

G. Russo, Deterministic diffusion of particles, Comm. Pure Appl. Math, vol.43, pp.697-733, 1990.

L. Saint-raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal, vol.166, pp.47-80, 2003.

F. Santambrogio, Optimal transport for applied mathematicians, 2015.

R. Sart, A viscous augmented Born-Infeld model for magnetohydrodynamic flows, J. Math. Fluid Mech, vol.12, pp.354-378, 2010.

V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal, vol.3, pp.343-401, 1993.

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geometry, vol.17, pp.307-335, 1982.

E. Schrödinger, Ann. Inst. H. Poincaré, vol.2, pp.269-310, 1932.

. Ph and . Serfati, Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl, issue.9, pp.95-104, 1995.

S. Serfaty, Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations, J. Amer. Math. Soc, vol.30, pp.713-768, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01377812

D. Serre, Systems of conservation laws, 2000.
URL : https://hal.archives-ouvertes.fr/ensl-01402415

D. Serre, Hyperbolicity of the nonlinear models of Maxwell's equations, Arch. Ration. Mech. Anal, vol.172, pp.309-331, 2004.

D. Serre, Multidimensional shock interaction for a Chaplygin gas, Arch. Ration. Mech. Anal, vol.191, pp.539-577, 2009.

D. Serre, About the Young measures associated with Y. Brenier's ABI model, J. Differential Equations, vol.256, pp.3709-3720, 2014.

D. Serre and A. Vasseur, L2-type contraction for systems of conservation laws, J. Ec. polytech. Math, vol.1, pp.1-28, 2014.

S. Shandarin and Y. Zeldovich, The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium, Rev. Modern Phys, vol.61, pp.185-220, 1989.

A. Shnirelman, Ergodic properties of eigenfunctions, Uspehi Mat, Nauk, vol.29, pp.181-182, 1974.

A. Shnirelman, On the principle of the shortest way in the dynamics of systems with constraints, Global analysis studies and applications, Lecture Notes in Math, vol.II, pp.117-130, 1986.

A. Shnirelman, On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Math. Sbornik USSR, vol.56, pp.79-105, 1987.

A. Shnirelman, Generalized fluid flows, their approximation and applications, Geom. Funct. Anal, vol.4, pp.586-620, 1994.

A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math, vol.50, pp.1261-1286, 1997.

J. Speck, The nonlinear stability of the trivial solution to the Maxwell-Born-Infeld system, J. Math. Phys, vol.53, issue.8, p.pp, 2012.

G. Strang, Introduction to applied mathematics, 1986.

M. Struwe, Applications to nonlinear partial differential equations and Hamiltonian systems, 1996.

K. Sturm, Convex functionals of probability measures and nonlinear diffusions on manifolds, J. Math. Pures Appl, vol.84, issue.9, pp.149-168, 2005.

K. Sturm, On the geometry of metric measure spaces, Acta Math, vol.196, pp.65-177, 2006.

L. Székelyhidi, Relaxation of the incompressible porous media equation, Ann. Sci. Ec. Norm. Supér, issue.4, pp.491-509, 2012.

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. Verw. Gebiete, vol.46, pp.67-105, 1978.

T. Tao, On the universality of the incompressible Euler equation on compact manifolds, vol.38, pp.1553-1565, 2018.

L. Tartar, Compacité par compensation: résultats et perspectives, Nonlinear partial differential equations and their applications, Res. Notes in Math, vol.84, 1983.

L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, vol.115, pp.193-230, 1990.

M. Taylor, Partial differential equations. III. Nonlinear equations, Applied Mathematical Sciences, p.117, 1997.

R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires, Arch. Ration. Mech. Anal, vol.32, pp.135-153, 1969.

Q. H. Tran, M. Baudin, and F. Coquel, A relaxation method via the Born-Infeld system, Math. Models Methods Appl. Sci, vol.19, pp.1203-1240, 2009.

Y. R. Tsai, Y. Giga, and S. Osher, A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations, Math. Comp, vol.72, pp.159-181, 2003.

D. Ullmo, I. Swiecicki, . Th, and . Gobron, Quadratic mean field games, Phys. Rep, vol.799, pp.1-35, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02291869

J. Urbas, On the second boundary value problem for equations of Monge-Ampère type, J. Reine Angew. Math, vol.487, pp.115-124, 1997.

J. Vanneste and D. Wirosoetisno, Two-dimensional Euler flows in slowly deforming domains, Phys. D, vol.237, pp.774-799, 2008.

J. L. Vázquez, The Porous Medium Equation, 2007.

A. Vershik, Kantorovich Metric: Initial History and Little-Known Applications, Journal of Mathematical Sciences, vol.133, pp.1410-1417, 2006.

C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol.58, 2003.

C. Villani, Optimal Transport, Old and New, 2009.

A. Visinitin, Structural compactness and stability of semi-monotone flows, SIAM J. Math. Anal, vol.50, pp.2628-2663, 2018.

C. Viterbo, Solutions of Hamilton-Jacobi equations and symplectic geometry, Sémin. Equ. Dériv. Partielles, Ecole Polytech, 1996.

M. and V. Renesse, An optimal transport view of Schrödinger's equation, Canad. Math. Bull, vol.55, pp.858-869, 2012.

M. Von-renesse and K. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math, vol.58, pp.923-940, 2005.

D. Vorotnikov, Global generalized solutions for Maxwell-alpha and Euleralpha equations, Nonlinearity, vol.25, pp.309-327, 2012.

D. Vorotnikov, Partial differential equations with quadratic nonlinearities viewed as matrix-valued optimal ballistic transport problems

E. Wiedemann, Existence of weak solutions for the incompressible Euler equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.28, pp.727-730, 2011.

M. Willem, , 1996.

G. Wolansky, On time reversible description of the process of coagulation and fragmentation, Arch. Ration. Mech. Anal, vol.193, pp.57-115, 2009.

W. Wolibner, Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, Math. Z, vol.37, issue.1, pp.698-726, 1933.

L. C. Young, Lectures on the calculus of variations, 1980.

V. Yudovich, Non-stationary flows of an ideal incompressible fluid, Zh. Vychisl. Mat i Mat. Fiz, vol.3, pp.1032-1066, 1963.

Y. Zeldovich, Gravitational instability: An approximate theory for large density perturbations, Astron. Astrophys, vol.5, pp.84-89, 1970.