Statique des poutres, résistance des matériaux
Jean-Michel Génevaux

To cite this version:

HAL Id: cel-00611692
https://cel.archives-ouvertes.fr/cel-00611692v4
Submitted on 4 Jul 2014 (v4), last revised 30 Jan 2018 (v7)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ENSIM 4A

Mécanique :
Statique des poutres (résistance des matériaux)

Jean-Michel Génevaux
avec les complicités des étudiant-e-s qui m’ont détecté
les (trop) nombreuses autant qu’originales fautes d’orthographe et de grammaire.

Chaque fois que je me plante, je pousse.[10]

11 juin 2014
Table des matières

1 Méthode de travail 4

2 dictionnaire 7

3 Cours de théorie des poutres 9

 3.1 Bibliographie 9
 3.2 Les ceintures de théorie des poutres 9
 3.3 Plan de progression dans cet enseignement 9
 3.4 Les Outils 12
 3.4.1 De l’elasticité à la théorie des poutres 12
 3.4.2 Notion de poutre 16
 3.4.3 Liaisons - isostaticité - hyperstaticité 19
 3.4.4 Efforts intérieurs 27
 3.4.5 Description de la section droite 32
 3.4.6 Annexe 1 38
 3.5 Lois de comportement de la poutre 38
 3.5.1 Objectif 38
 3.5.2 1ère cinématique 38
 3.5.3 2nd cinématique 43
 3.5.4 3ième cinématique 47
 3.5.5 Formules de Bresse 50
 3.5.6 exemple d’utilisation : sollicitation de traction 52
 3.5.7 flexion simple autour de l’axe $H\vec{z}$ 52
 3.6 Résolutions de problèmes 55
 3.6.1 Résolution par superposition 55
 3.6.2 Méthodes énergétiques 56
 3.6.3 résolution de systèmes hyperstatiques 58
 3.6.4 Systèmes articulé 61
 3.7 Une cinématique mieux adaptée 61
 3.7.1 Cisaillement 61
 3.7.2 Torsion 61
 3.8 Dimensionnement 61
 3.8.1 Cercle de Mohr des contraintes 62
 3.8.2 Critères de limite d’élasticité 62
 3.8.3 Méthode de calcul 62
 3.8.4 Exemple de calcul 63
 3.9 Non linéarités géométriques (grands déplacements) 65
 3.9.1 Exemple 65
 3.9.2 équation 65
 3.9.3 méthode incrémentale 65
 3.9.4 flambement 65
 3.10 Formulation variationnelle 65
 3.10.1 Principe des travaux virtuels 65
 3.10.2 Equation d’équilibre 65
3.10.3 Modèle variationnel en déplacement ... 65
3.10.4 Modèle variationnel mixte .. 65
Si vous êtes l’une des 208 personnes qui téléchargeront annuellement ce polycopié sur archives-ouvertes.fr, et que vous passez par Le Mans, venez m’offrir un café (sans sucre)... et on en profitera pour parler du contenu afin de l’améliorer.

Jean-Michel
Chapitre 1

Méthode de travail

Tous les documents (cours, td, tp, examens, corrigés, qcm) relatifs à ce cours sont disponibles sous http://umtice.univ-lemans.fr/course/view.php?id=403.

Cet enseignement sera dispensé pendant les séances de CRAIES ("Coopérons à notre Rythme Individualisé Efficace et Sympathique"). Lorsque plusieurs enseignements sont proposés pendant les séances de CRAIES, vous choisissez à quelle séance vous vous rendez. Pour que vous puissiez organiser vos apprentissages, un passeport personnel et pour l’année résume :
- le nombre de séances à priori qu’il vous faut suivre,
- les étapes de formation (brevets),
- les objectifs de formations (ceintures ou examen).

Les séquences d’enseignement en présentiel (CRAIES) sont divisées en quatre parties :
- Lors de votre entrée dans la salle, vous prenez un ”page-up”, et vous y insérez la couleur de votre ceinture, et les drapeaux des brevets dont vous êtes référent. Vous posez en évidence sur la table votre ”page-up” et votre plan d’action.
- Lors d’un second temps, il est demandé à chacun s’il a une question. La question est posée à haute voix, l’enseignant répond à tous. Ce module étant ouvert gratuitement sur le net, nous souhaitons enregistrer en vidéo les phases de questions-réponses qui seront ensuite indexées dans le polycopié aux lieux adéquats, ce qui permettra de les consulter en différé. Cela permettra aux personnes suivant ce cours à distance, de consulter les FAQ (frequently asked questions). Si vous ne souhaitez pas apparaître à l’écran, par respect pour votre droit à l’image ou pour cause mise en plis déféctueuse ce matin là car vous aviez tellement travaillé (ou autre) hier soir, seule votre voix peut être enregistrée en ne vous plaçant pas dans le cadre de la webcam.
- Une phase d’exercice (brevets) est alors faite, à votre rythme.
- Les deux dernières minutes d’une séquence sont utilisées pour noter plan d’action votre état d’avancement.

Ce polycopié est divisé en plusieurs parties :
- Pour vérifier de façon individuelle que vous avez acquis les compétences nécessaires, des petits exercices ciblés, appelés brevets, sont disponibles dans le recueil banque de brevets. Ils ont été écrits suite aux erreurs rencontrées les plus fréquemment dans les copies d’examen. Cette banque de brevets concerne l’ensemble des trois années de formation à l’ENSIM. Un arbre des connaissances vous permet, en grisonnant les brevets dont vous êtes détenteur-trice de savoir où vous en êtes dans la formation proposée. Pour un brevet que vous avez bien compris, vous pouvez en devenir le référent : votre rôle est alors d’aider les autres à l’obtenir. Un système de drapeau, que vous posez sur votre table lors des séances suivantes, permet aux étudiants de vous identifier et de venir chercher de l’aide. Vous n’êtes pas obligé de répondre instantanément à la demande d’aide : finissez ce que vous êtes en train de faire. Néanmoins,
bien que le demandeur d’aide puisse commencer un autre brevet en vous attendant, ne le laissez pas mariner pendant 1/2 h. L’aide de l’enseignant se concentre sur les brevets pour lequel il n’y a pas encore de référent.

- Pour vous entraîner à manipuler les concepts, à prendre un peu de hauteur et vous approprier la démarche globale, des sujets de travaux dirigés, des sujets d’examens et leur corrigés sont disponibles sur le site umtice cité ci-dessus.

- Pour ceux qui le souhaitent, l’examen final classique de 1h15 sur une table n’aura pas lieu. Il peut être remplacé par le passage de ceintures (de blanche à noire) qui valident chacune une étape de la formation. Une ceinture est acquise lorsque
 - vous trouvez le(s) résultat(s),
 - votre copie ne présente pas d’erreur d’homogénéité,
 - les écritures de l’ensemble de votre copie sont complètes (vecteurs, bases, points d’expression d’un torseur, unité pour un résultat chiffré).

Vous pouvez tenter d’obtenir une ceinture lorsque vous vous sentez prêt-e à le faire. Le chaînage des compétences testées est indiqué sur la figure ??.. Vous ne pouvez tenter qu’une ceinture à la fois. Pour chaque ceinture, vous avez accès à au maximum 3 sessions. Vous pouvez demander à passer une session 2 ou 3, sans attendre le premier jury de semestre. Si au bout de 3 sessions, vous ne la détenez pas, vous pouvez tenter la ceinture n + 1 suivante dans le chaînage des compétences (3 fois). L’obtention de la ceinture n + 1 vous attribue alors les ceintures n + 1 et n. Les sessions de ceintures, s’arrêtent 10 jours avant le jury de fin de semestre, sauf pour ceux qui préfèrent faire leur session 2 entre le premier jury de semestre et le second jury de semestre.

Pour tenter d’obtenir une ceinture, vous pouvez le faire lors des séances de CRAIES ou, si elles sont indiquées ”en autonomie”, par un travail en dehors des séances.

- Sur votre copie (fournie), à coté de la déclaration suivante : ”Je m’engage sur l’honneur à n’évoquer avec personne le contenu du sujet de passage de cette ceinture. Cependant, dans le cas où je ne réussirais pas à l’obtenir, j’ai compris pouvoir discuter de mon travail avec les étudiants ayant acquis cette ceinture. Si l’enseignant à l’intime conviction que je n’ai pas respecté mon engagement, je ne pourrai plus passer de ceintures dans la matière concernée pour l’année universitaire en cours, l’enseignant en informera les enseignants ayant mis en place des ceintures, et je déclare accepter de n’avoir aucun recours vis-à-vis de sa décision.”, vous écrivez ”lu et approuvé” et vous signez. Cela permet à vos camarades de faire une mesure ”libre et non faussée” de leurs savoirs scientifiques et non de leur compétence de mémorisation... ou de recopie (soupir!).

- Le passage d’une ceinture peut alors se faire selon 2 modalités. A chaque ceinture est associée une modalité :

 - **ceinture surveillée**
 - Vous imprimez une feuille de composition de ceinture disponible sur le réseau, vous la complétez et la déposez dans la boîte aux lettres ”pour l’enseignant”. Celui-ci vous donne le sujet associé dans la boîte ”pour les étudiants”
 - vous composez immédiatement dans la salle en affichant le drapeau ”ceinture”. La durée maximale est de 1h.
 - Vous rendez le sujet, votre copie et le brouillon en fin de composition dans la boîte ”à corriger”.
 - Vous pouvez passer une ceinture d’une autre matière que celle de l’enseignant présent dans la salle, mais il vous faut venir avec le sujet sous plis fermé signé de l’autre enseignant.

 - **ceinture en autonomie** :
 - Vous imprimez le sujet disponible sur le réseau.
 - Vous répondez au sujet en respectant votre engagement. Ceci peut être fait chez vous, dans une autre salle, informatique si nécessaire, au moment qui vous convient.
 - Vous apportez votre sujet, copie et brouillons à l’enseignant de la matière concernée pendant une séance de CRAIES.
 - Vous lancez un dé une première fois : s’il indique ”2”, cela signifie que au prochain lancer
de dé, "1" et "2" impliquent que vous explicitiez immédiatement à l’enseignant comment vous avez obtenu les résultats de la ceinture, "3" à "6" il n’y a pas de justification à donner autre que votre copie. Vous lancez le dé une seconde fois...

Être détenteur d’une ceinture, implique qu’en tant qu’expert de celle-ci, vous aidez vos camarades à l’obtenir, en les orientant sur les brevets afférents, en répondant à leur questions sur ces brevets, en insistant sur des points qui vous ont éventuellement fait rater la ceinture dans des tentatives précédentes, en inventant des exercices similaires, sans dévoiler le contenu du sujet de la ceinture, ni les réponses. C’est pour cette raison, que lors des séances de CRAIES, il vous faut afficher à l’aide du "page-up" vos expertises en brevet.

Vous aurez un enseignant référent-CRAIES pour l’année. Pour chaque semestre, à 1/3 et 2/3 des phases où les CRAIES sont actives, vous lui présenteriez votre plan d’action afin de discuter de votre organisation dans les apprentissages de toutes les matières fonctionnant en CRAIES.

L’interfaçage avec les modalités de contrôle des connaissances qui nécessite une note :
- si aucun point n’est indiqué sur les ceintures, la note sera obtenue par la formule $n = n_c * 20$, avec n la note, c le nombre de ceintures obtenues et n_c le nombre de ceintures disponibles, sauf indication complémentaire après la liste des ceintures,
- si un nombre de points est indiqué sur une ceinture, le cumul de vos points vous fourni la note.

Après convocation et discussion en présence du directeur des études et d’un représentant des étudiant, si l’enseignant a l’intime conviction que vous n’avez pas respecté votre engagement (sujet ne correspondant pas au sujet présent sur le réseau à la date et heure de téléchargement, réponse à un autre sujet que celui téléchargé...).
- La ceinture concernée n’est pas validée.
- Le passage de ceintures est fini pour vous pour le reste de votre scolarité avec cet enseignant : vous ne pourrez faire que des examens pour les modules à venir.
- Pour les enseignement actuels pour lequel le passage de ceintures est interrompu, vous ne pouvez basculer sur la modalité examen : votre note est figée aux ceintures précédemment acquises.
- L’enseignant en informe ses collègues qui utilisent aussi une évaluation par ceintures ou boutons. Chacun de ces enseignants, choisira pour son module, s’il vous autorise ou non une évaluation par ceinture ou bouton.

Nous vous souhaitons une bonne découverte, une intéressante confrontation des modèles que nous développerons lors de cette formation à la réalité des essais effectués en travaux pratiques, et bien sûr... une bonne coopération entre vous, sauf pendant le passage des ceintures.
Chapitre 2

dictionnaire

Il peut vous être utile de connaître les termes spécifiques à la mécanique en anglais. Voici donc une sélection de termes.

<table>
<thead>
<tr>
<th>French Term</th>
<th>English Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>acéré</td>
<td>simply supported</td>
</tr>
<tr>
<td>appuyé simplement</td>
<td>to coalesce</td>
</tr>
<tr>
<td>coalescer</td>
<td>clamped</td>
</tr>
<tr>
<td>encastré</td>
<td>to be divergence-less</td>
</tr>
<tr>
<td>être à divergence nulle</td>
<td>isothermal</td>
</tr>
<tr>
<td>isotherme</td>
<td>the chart</td>
</tr>
<tr>
<td>l’abaque</td>
<td>the coil</td>
</tr>
<tr>
<td>la bobine</td>
<td>the scatter</td>
</tr>
<tr>
<td>la dispersion</td>
<td>the pump frequency</td>
</tr>
<tr>
<td>la fréquence de pompage</td>
<td>the imaging frequency</td>
</tr>
<tr>
<td>la fréquence de sonde</td>
<td>the overtone</td>
</tr>
<tr>
<td>la fréquence supérieure</td>
<td>the leakage</td>
</tr>
<tr>
<td>la fuite</td>
<td>the nodal line</td>
</tr>
<tr>
<td>la ligne nodale</td>
<td>the sleeve</td>
</tr>
<tr>
<td>la manche, la pochette, l’alésage</td>
<td>the flexural moment of inertia</td>
</tr>
<tr>
<td>le moment quadratique d’une section droite</td>
<td>the beam</td>
</tr>
<tr>
<td>la poutre</td>
<td>the angular frequency</td>
</tr>
<tr>
<td>la pulsation</td>
<td>the groove</td>
</tr>
<tr>
<td>la rainure</td>
<td>the ruggedness</td>
</tr>
<tr>
<td>la rugosité</td>
<td>the dummy variable</td>
</tr>
<tr>
<td>la variable muette</td>
<td>the inward flow</td>
</tr>
<tr>
<td>le flux entrant</td>
<td>the outward flow</td>
</tr>
<tr>
<td>le flux sortant</td>
<td>the clearance</td>
</tr>
<tr>
<td>le jeu</td>
<td>the modulus of elasticity</td>
</tr>
<tr>
<td>le module d’Young</td>
<td>the antinode</td>
</tr>
<tr>
<td>le ventre de vibration</td>
<td>the boundary conditions</td>
</tr>
<tr>
<td>les conditions aux limites</td>
<td>free edge</td>
</tr>
<tr>
<td>libre</td>
<td>to shrink</td>
</tr>
<tr>
<td>se contracter</td>
<td>tight</td>
</tr>
<tr>
<td>serré</td>
<td>taut</td>
</tr>
<tr>
<td>tendu</td>
<td></td>
</tr>
</tbody>
</table>
Bibliographie

[6] JM Génevaux, fichiers disponible sur le réseau sous distrib doc etu / 2a modelisation / model jmg
[7] JM Génevaux, fichiers disponible sur le réseau sous distrib doc etu / 1a tdp / cinematiques
[12] Génevaux,JM A propos des tenseurs, cours Ensim 1A, 2005
[14] Albigès Résistance des matériaux
[15] Courbon
[16] Feodosiev
[17] Laroze Résistance des matériaux et structures (tome 2) éd. : Masson-Eyrolle
[18] Timoshenko
[19] Techniques de l’ingénieur, B5 I, 600.601, 5020, 5040 (concentrations de contraintes)
[22] Salencon,
[28] JM Génevaux, fichiers disponible sur le réseau sous distrib doc etu / 2a modelisation / model jmg
[29] JM Génevaux, fichiers disponible sur le réseau sous distrib doc etu / 1a tdp / cinematiques
Chapitre 3

Cours de théorie des poutres

3.1 Bibliographie

Voici ci-dessous, quelques auteurs et livres traitant de la théorie des poutres. Vous pouvez consulter ces ouvrages à la bibliothèque universitaire.

- Albignès Résistance des matériaux
- Courbon
- Feodosiev
- Laroze Résistance des matériaux et structures (tome 2) éd. : Masson-Eyrolle
- Germain Introduction à la mécanique des milieux continus éd. : Masson
- Timoshenko
- Techniques de l’ingénieur, B5 I, 600,601, 5020, 5040 (concentrations de contraintes)

3.2 Les ceintures de théorie des poutres

1. blanche (2 pts) : être venue une fois en cours de théorie des poutres pour récupérer le polycopié.
2. jaune (surveillée, 3 pts) : savoir déterminer si un système est isostatique, hypostatique ou hyperstatique de degré n.
3. orange (surveillée, 2 pts) : savoir déterminer les composantes d’un torseur d’efforts intérieurs.
4. verte (en autonomie, 3 pts) : savoir déterminer le torseur de déplacement d’un point.
5. bleue (en autonomie, 3 pts) : savoir déterminer le chargement maximal admissible d’une structure.
6. marron (en autonomie, 3 pts) : savoir résoudre un problème hyperstatique extérieurement.
7. noire (en autonomie, 3 pts) : savoir résoudre un problème hyperstatique intérieurement.
8. noire 1ière dan (en autonomie, 4 pts) : savoir optimiser la masse d’une structure en spaghetti, soutenant une charge, la position des points d’appuis étant imposés.

3.3 Plan de progression dans cet enseignement

Pour que vous veilliez à ne pas prendre du retard dans votre progression, veuillez compléter au fur et à mesure des séances votre passeport qui contient entre autre la figure 3.1.
FIG. 3.1 – Châinage de progression des ceintures et des brevets.
Statique des poutres

De la ceinture blanche

... à la ceinture jaune.
Fig. 3.2 – Les différents concepts nécessaires à la théorie des poutres.

3.4 Les Outils

3.4.1 De l’élasticité à la théorie des poutres

Le synopsis de la démarche associée à la théorie des poutres est présenté figure 3.2.

Nous travaillons ici dans un repère local à un point. Nous noterons les vecteurs de ce repère local \(\vec{x}, \vec{y}, \vec{z} \).

La théorie des poutres est une simplification de la théorie de l’élasticité. Elle peut être envisagée lorsque le corps solide déformable possède une dimension bien plus grande que les deux autres. Un solide de ce type sera appelé poutre. Si l’on fait une section dans le plan des petites dimensions, le barycentre de cette section sera noté \(H \). Si vous lisez d’autres livres de théorie des poutres, ce point est généralement appelé \(G \). Pour éviter que vous ne le confondiez avec le centre de gravité de la poutre complète (erreur devenue classique ces dernières années, mais extrêmement énervante pour l’enseignant), nous choisirons de l’appeler par la lettre \(H \). L’ensemble des barycentres de la poutre défini la ligne moyenne. Si la section est perpendiculaire à la ligne moyenne, elle sera appelée section droite. La position sur cette ligne moyenne est repérée par une abscisse \(s \). Cette ligne moyenne peut être continue, discontinue, être continue et dérivable par rapport à la variable \(s \) ou non.

La théorie des poutres fournie des solutions en déplacement et contraintes qui ne sont pas nécessairement valables en tout point. Mais loin des points d’application des chargements, des liaisons (blocages cinématiques) et des variations brusques de section, elle est tout à fait suffisante. Ces conditions sont présentes en de nombreux points de ce type de structures.

Nous rappelons les grandeurs et relations utiles en élasticité tridimensionnelle : (voir tableau 3.1)

Le même jeu de relations est présent dans le cas de la théorie des poutres, seules les grandeurs utilisées sont décrites à l’aide d’objets que l’on appelle torseur. Ce sont les mêmes êtres mathématiques que ceux que vous avez utilisé en mécanique des solides indéformables pour décrire leur mouvement. Ils seront ici simplement associés aux déplacement et rotation d’une section droite, aux déformations d’une section droite et aux efforts généralisés (résultante et moment) sur cette section.

à l’échelle macroscopique locale 3D

Nous ne rappellerons que quelques définitions de l’élasticité linéaire isotrope.

- Les différentes possibilités de déformations d’un volume élémentaire (\(dx \ dy \ dz \)). On définit les 3 déformations d’allongement (ou de contraction) \(\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz} \), ainsi que les 6 déformations de cisaillement \(\epsilon_{xy}, \epsilon_{yz}, \epsilon_{zx}, \epsilon_{yx}, \epsilon_{zy}, \epsilon_{xz} \).
<table>
<thead>
<tr>
<th></th>
<th>déplacements</th>
<th>déformations</th>
<th>contraintes</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition aux limites en déplacement</td>
<td>$\vec{u} = \vec{u}_d$ sur Γ_u</td>
<td>$\vec{\varepsilon}$</td>
<td>$\vec{\sigma}$</td>
</tr>
<tr>
<td>passage déplacements</td>
<td>+ éq. compatibilité $\varepsilon_{ik,jl} - \varepsilon_{kj,il}$</td>
<td>$\tilde{\varepsilon} = 1/2 \left(\text{grad} \vec{u} + T \text{grad} \vec{u} \right)$</td>
<td>+ éq. compatibilité (Beltrami) $(1 + \nu)\Delta \sigma_{ij} + \frac{\partial^2 (\text{trace} \tilde{\sigma})}{\partial x_i \partial x_j} = 0$ si $\text{grad} f = 0$</td>
</tr>
<tr>
<td>passage déformations</td>
<td>$\varepsilon_{il,jk} - \varepsilon_{lj,ik}$ pour $i \neq j$ et $l \neq k$</td>
<td>$\tilde{\varepsilon} = \frac{1}{2} \mu \varepsilon - \frac{\lambda}{2} \text{trace} (\varepsilon) \mathbb{I}$</td>
<td>$\tilde{\sigma} = 2\mu \tilde{\varepsilon} + \lambda \text{trace} (\tilde{\varepsilon}) \mathbb{I}$</td>
</tr>
<tr>
<td>loi de comportement</td>
<td>$\varepsilon = \frac{1}{2} \mu \varepsilon - \frac{\lambda}{2} \text{trace} (\varepsilon) \mathbb{I}$</td>
<td>$\tilde{\sigma} = 2\mu \tilde{\varepsilon} + \lambda \text{trace} (\tilde{\varepsilon}) \mathbb{I}$</td>
<td>$\tilde{\sigma} = 2\mu \tilde{\varepsilon} + \lambda \text{trace} (\tilde{\varepsilon}) \mathbb{I}$</td>
</tr>
<tr>
<td>équations d’équilibre (statique)</td>
<td>éq. de Navier : $(\lambda + \mu) \text{grad} (\text{div} \vec{u})$</td>
<td>$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + f_x = 0$</td>
<td>$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + f_x = 0$</td>
</tr>
<tr>
<td></td>
<td>$+ \mu \text{div} (\text{grad} \vec{u}) + \rho \vec{u} = 0$</td>
<td>$\frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial z} + f_y = 0$</td>
<td>$\frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial z} + f_y = 0$</td>
</tr>
<tr>
<td>condition aux limites en contraintes</td>
<td>$T(P, \vec{n}) = \tilde{\sigma} \vec{n} = \vec{F}_d$ sur Γ_f</td>
<td>$T_x = \int_S \sigma_{xx} \vec{r} dS$</td>
<td>$M_x = \int_S \sigma_{xx} \vec{z} dS$</td>
</tr>
<tr>
<td>passage contrainte torseur</td>
<td>$M_y = \int_S \sigma_{xx} \vec{z} dS$</td>
<td>$M_z = - \int_S \sigma_{xx} \vec{z} dS$</td>
<td>$M_z = - \int_S \sigma_{xx} \vec{z} dS$</td>
</tr>
</tbody>
</table>

Tab. 3.1 – Equations de la mécanique des solides déformables dans le cas d’une modélisation tridimensionnelle
<table>
<thead>
<tr>
<th>Condition aux limites en déplacement</th>
<th>torseur des déplacements</th>
<th>torseur des déformations</th>
<th>torseur des efforts intérieurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>{U} = {U}_d au point (P_d)</td>
<td>{\bar{u}} = {\bar{\epsilon}} _H</td>
<td>{\alpha_x \bar{x} + \alpha_y \bar{y} + \alpha_z \bar{z}} _H</td>
<td>{\bar{\tau}_\text{int}} = {N \bar{x} + T_y \bar{y} + T_z \bar{z}} _H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passage déplacements déformations</th>
<th>Formules de Bresse (fonction de (\epsilon_x, \gamma_y, \ldots))</th>
<th>(\alpha_x = M_x / GI_0^c)</th>
<th>(M_x = \alpha_x GI_0^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\alpha_y = M_y / EI_y^c)</td>
<td>(M_y = \alpha_y EI_y^c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha_z = M_z / EI_z^c)</td>
<td>(M_z = \alpha_z EI_z^c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\epsilon_x = N / ES)</td>
<td>(N = \epsilon_x ES)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\gamma_y = T_y / GS_y)</td>
<td>(T_y = \gamma_y GS_y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\gamma_z = T_z / GS_z)</td>
<td>(T_z = \gamma_z GS_z)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loi de comportement</th>
<th>Formules de Bresse (fonction de (N, T_y, \ldots))</th>
<th>(\sigma_{xx} = \frac{N}{S} - \frac{M_y \bar{y}^2}{I_{yy}} + \frac{M_z \bar{z}^2}{I_{zz}})</th>
<th>(\sigma_{xy} = \frac{T_y \bar{y} \bar{z}}{S})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\sigma_{yy} = 0)</td>
<td>(\sigma_{yz} = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\sigma_{zz} = 0)</td>
<td>(\sigma_{\theta x} = \frac{M_x \bar{x} \bar{y} \bar{z}}{I_0})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Équations d’équilibre (poutre droite)</th>
<th>(p_x + \frac{\partial N}{\partial x} = 0)</th>
<th>(\sigma_{xx} = \frac{N}{S} - \frac{M_y \bar{y}^2}{I_{yy}} + \frac{M_z \bar{z}^2}{I_{zz}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(p_y + \frac{\partial T_y}{\partial x} = 0)</td>
<td>(\sigma_{xy} = \frac{T_y \bar{y} \bar{z}}{S})</td>
</tr>
<tr>
<td></td>
<td>(p_z + \frac{\partial T_z}{\partial x} = 0)</td>
<td>(\sigma_{yy} = 0)</td>
</tr>
<tr>
<td></td>
<td>(c_x + \frac{\partial M_x}{\partial x} = 0)</td>
<td>(\sigma_{yz} = 0)</td>
</tr>
<tr>
<td></td>
<td>(c_y + \frac{\partial M_y}{\partial x} - T_z = 0)</td>
<td>(\sigma_{zz} = 0)</td>
</tr>
<tr>
<td></td>
<td>(c_z + \frac{\partial M_z}{\partial x} + T_y = 0)</td>
<td>(\sigma_{\theta x} = \frac{M_x \bar{x} \bar{y} \bar{z}}{I_0})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition aux limites en chargement</th>
<th>(-{\tau_{\bar{x}}} + {\tau_{\bar{y}}} = {\tau_d}) au point (P_d)</th>
<th>(\sigma_{xx} = \frac{N}{S} - \frac{M_y \bar{y}^2}{I_{yy}} + \frac{M_z \bar{z}^2}{I_{zz}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\sigma_{xy} = \frac{T_y \bar{y} \bar{z}}{S})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\sigma_{yz} = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\sigma_{\theta x} = \frac{M_x \bar{x} \bar{y} \bar{z}}{I_0})</td>
</tr>
</tbody>
</table>

Tab. 3.2 – Equations de la mécanique des solides déformables dans le cas d’une modélisation unidimensionnelle.

– Tenseur des contraintes. Il est associé aux contraintes agissant sur chaque facette d’un cube. La facette de normale \vec{x} subit les contraintes $\sigma_{xx}, \sigma_{yx}, \sigma_{zx}$. Nous appellerons E le module de Young du matériau (en Pa). Nous appellerons ν le coefficient de Poisson du matériau (sans unité). Nous appellerons $G = \frac{E}{2(1+\nu)}$ le module de Coulomb du matériau (en Pa). La loi de comportement permettant de passer du tenseur des déformations au tenseur des contraintes est

$$\bar{\varepsilon} = \frac{1}{E} \bar{\varepsilon} - \frac{\nu}{E} \text{trace}(\bar{\sigma}) \bar{I}_d,$$

ou

$$\bar{\sigma} = 2\mu \bar{\varepsilon} + \lambda \text{trace}(\bar{\varepsilon}) \bar{I}_d,$$

avec les deux coefficients de Lamé donnés par,

$$\mu = \frac{E}{2(1+\nu)} = G,$$

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}.$$

<table>
<thead>
<tr>
<th>matériau</th>
<th>Mod. de Young $\times 10^9$ Pa</th>
<th>Coeff. de Poisson ν</th>
<th>lim. élast. trac. $\times 10^6$ Pa</th>
<th>lim. élast. compr. $\times 10^6$ Pa</th>
<th>masse vol. $\times 10^3$ kg/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>acier</td>
<td>210</td>
<td>0.285</td>
<td>200 à 600</td>
<td>1</td>
<td>7800</td>
</tr>
<tr>
<td>aluminium AU4G</td>
<td>75</td>
<td>0.33</td>
<td>300</td>
<td>1</td>
<td>2800</td>
</tr>
<tr>
<td>béton</td>
<td>14 à 21</td>
<td>0.3</td>
<td>300</td>
<td>11</td>
<td>1900</td>
</tr>
<tr>
<td>bronze</td>
<td>100</td>
<td>0.31</td>
<td>24</td>
<td>30</td>
<td>8400</td>
</tr>
<tr>
<td>cuivre</td>
<td>100</td>
<td>0.33</td>
<td>18</td>
<td>13</td>
<td>8900</td>
</tr>
<tr>
<td>fonte</td>
<td>100</td>
<td>0.29</td>
<td>18 à 25</td>
<td>33</td>
<td>7100</td>
</tr>
<tr>
<td>laiton</td>
<td>92</td>
<td>0.33</td>
<td>20</td>
<td>14</td>
<td>7300</td>
</tr>
<tr>
<td>marbre</td>
<td>25</td>
<td>0.3</td>
<td>50</td>
<td>150</td>
<td>2800</td>
</tr>
<tr>
<td>plexiglass</td>
<td>2.9</td>
<td>0.4</td>
<td>8</td>
<td>12</td>
<td>1800</td>
</tr>
<tr>
<td>titane</td>
<td>100</td>
<td>0.34</td>
<td>20 à 47d</td>
<td>10</td>
<td>4510</td>
</tr>
<tr>
<td>verre</td>
<td>60</td>
<td>0.2 à 0.3</td>
<td>3 à 8</td>
<td>100</td>
<td>2530</td>
</tr>
</tbody>
</table>

à l’échelle macroscopique 1D

On doit définir des grandeurs “équivalentes” au point de la section droite appartenant à la fibre moyenne. Nous utiliserons des torseurs : torseur de chargement, de mouvement possible à une liaison, de déplacement, d’inter-effort, de déformation, d’effort intérieur. Un torseur est toujours composé d’un vecteur appelé résultat \vec{R} et d’un pseudo-vecteur appelé moment \vec{M}, et il est exprimé nécessairement en un point A. Pour ceux qui ne se souviennent plus de ce qu’est un pseudo-vecteur, consultez le cours sur les tenseurs de 3A. Dans le cas d’un torseur de chargement, la figure 3.3 illustre que les forces F_i et les couples C_i en un point A ne subissent pas les mêmes transformations par un plan de symétrie : la force est un vecteur, le couple, un pseudo-vecteur.

Pour changer d’un point A à un point B, la formule de changement de point d’un torseur est à connaître, tout comme vous connaissez votre héro de jeunesse “BABAR”.

Pour un torseur de chargement, d’intereffort ou d’effort intérieurs :

$$\{\tau\} = \left\{ \begin{array}{c} \vec{R} \\ \vec{M}_A \end{array} \right\}_A = \left\{ \begin{array}{c} \vec{R} \\ \vec{M}_B \end{array} \right\}_B = \left\{ \begin{array}{c} \vec{R} \\ \vec{M}_A + \vec{R} \wedge \vec{A}\vec{B} \end{array} \right\}_B.$$

Pour un torseur de déplacement :

$$\{U\} = \left\{ \begin{array}{c} \vec{\omega} \\ \vec{u}_A \end{array} \right\}_A = \left\{ \begin{array}{c} \vec{\omega} \\ \vec{u}_B \end{array} \right\}_B = \left\{ \begin{array}{c} \vec{\omega} \\ \vec{u}_A + \vec{\omega} \wedge \vec{A}\vec{B} \end{array} \right\}_B.$$

• Erreur classique : Il ne faut pas oublier de préciser, pour tout torseur, en quel point il est exprimé.
Fig. 3.3 – Un vecteur et un pseudo-vecteur ne sont pas transformés de la même façon par un plan de symétrie.

Complément vidéo Pour un complément d’information, je vous invite à visionner la vidéo faq002 disponible sur http://umtice.univ-lemans.fr/course/view.php?id=850.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir les brevets 078, 031.

Question fréquemment posée La vidéo faq002 de réponse à une question fréquemment posée est disponible sur http://video.univ-lemans.fr/users/jmgenev

3.4.2 Notion de poutre

Nous travaillons ici,
– soit dans dans un repère global associé à l’ensemble de la poutre. Nous noterons les vecteurs de ce repère global $\vec{i}, \vec{j}, \vec{k}$.
– soit dans dans un repère local à un point H. Nous noterons les vecteurs de ce repère local $\vec{x}, \vec{y}, \vec{z}$. Le vecteur \vec{x} sera toujours choisi parallèle à la fibre moyenne. Les vecteurs \vec{y} et \vec{z} orthogonaux à \vec{x}, seront dans les directions principales de la section droite (voir paragraphe 3.4.5).

- **Erreur classique** : Il ne faut pas oublier de préciser, pour tout torseur, dans quel repère il est exprimé.

principes et lois

Nous développerons une théorie linéaire, donc nous vérifierons le principe de superposition : si un chargement 1 implique un champ de torseurs de déplacement 1, un chargement 2 implique une champs de torseurs de déplacement 2, alors appliquer la somme des deux chargements implique un champs de déplacement somme des deux champs précédents.
Le principe de St Venant, exprime que la solution que la théorie des poutres fournie est admissible loin des points de chargement, de liaison, des discontinuité de fibre moyenne et de sa dérivée et des variations brusques de section.
Le mouvement d’un point M de la poutre sera associé au mouvement du point H de la section droite à laquelle il appartient. Il est donc nécessaire de définir le type de lien cinématique entre le point M et le point H. Différentes hypothèses de cinématique de section droite sont possibles :
– de Bernoulli : une section plane reste plane et normale à la fibre moyenne (cinématique numéro 2)
– de Timoshenko : une section plane reste plane
Fig. 3.4 – Les concepts à la description du mouvement de la fibre moyenne.

– de Bernoulli généralisée : une section plane peut se voiler (cinématique numéro 3)
En fonction de la cinématique choisie, la rigidité équivalent de la section droite sera variable.

cinématique d’un point de la fibre moyenne

Ce paragraphe concerne les étapes mises en gras dans le synopsis figure 3.4.
– torseur des déplacements du barycentre d’une section

\[
\{U\} = \begin{Bmatrix} \ddot{\omega} \\ \vec{u} \end{Bmatrix}_H, \quad (3.7)
\]

avec \(\ddot{\omega}\) l’angle dont a tourné la section droite, \(\vec{u}\) le déplacement du point \(H\). Les unités S.I. de \(\omega\) est le radiant donc 1, celles de \(u\) est le m.
– torseur des déformations entre deux sections

Pour caractériser la déformation entre deux points \(H(s)\) et \(H(s+ds)\), le torseur des déformations est défini par :

\[
\{Def\}_H = \lim_{ds \to 0} \frac{1}{ds} \left(\{U\}_{H(s+ds)} - \{U\}_{H(s)} \right). \quad (3.8)
\]

Tout calculs faits (voir figure 3.5), on obtient,

\[
\{Def\}_H = \begin{Bmatrix} \frac{d\ddot{\omega}}{ds} - \ddot{\omega} \wedge \vec{x} \end{Bmatrix}_H. \quad (3.9)
\]

Pour cette démonstration, vous noterez qu’est effectué un développement de Taylor des variables et que seuls les termes d’ordre 2 sont conservés. Si entre deux points \(H\) et \(H’\), le mouvement est celui d’un solide rigide, les deux torseurs sont reliés par la formule de changement de point, alors le torseur des déformations est nul.

Attention ! Dans ce cours,
– \(\vec{\omega}\) désigne un angle de rotation (en rad), et non une vitesse de rotation (dans le torseur cinématique d’un solide, elle était notée \(\vec{\Omega}_{S2/S1}\)).
– \(\vec{u}\) désigne un déplacement (en mètre)
– Ils sont donnés par rapport au repère global \((O,\vec{i},\vec{j},\vec{k})\)

Complément vidéo Pour un complément d’information, je vous invite à visionner la vidéo faq001 disponible sur http://umtice.univ-lemans.fr/course/view.php?id=850
FIG. 3.5 – Démonstration de l’expression du torseur des déformations.
Fig. 3.6 – Les concepts utiles à la détermination du degré d’hyperstatisme et des réactions aux liaisons.

Assimilation Pour vérifier votre assimilation de ce paragraphe, je vous invite à faire le brevet 012.

3.4.3 Liaisons - isostaticité - hyperstaticité

Ce paragraphe concerne les étapes mises en gras dans le synopsis figure 3.6.

liaisons parfaites normalisées - torseur des efforts transmissibles

(voir page suivante)

Dans ce cours, la résultante du torseur des efforts transmissibles sera notée \(\vec{R} \), le moment sera noté \(\vec{M} \). La liaison étant considérée parfaite, la puissance développée dans cette liaison doit être nulle quelles que soient les déplacements et rotations éventuels possibles. Ceci implique que le travail d’une liaison soit nul :

\[
\begin{align*}
\{ \ddot{\omega} \} \underline{\times} \{ \vec{R} \} A & = 0, \\
\{ \ddot{u} \} A & \underline{\times} \{ \vec{M} \} A & = 0,
\end{align*}
\]

qui se développe en

\[
\ddot{\omega}.\vec{M} A + \ddot{u} A.\vec{R} = 0.
\]

Les liaisons associées à un problème tridimensionnel sont normalisées. La symbolique est donc la même que celle que vous utiliserez pendant la formation de Technologie-Mécanique. Utilisez les dessins associés!

- liaison tridimensionnelle encastrement : \(\{ \tau \} A = \left\{ \begin{array}{c} R_i i + R_j j + R_k k \\ C_i i + C_j j + C_k k \end{array} \right\} A \)

- liaison tridimensionnelle pivot d’axe \(A \vec{i} \) : \(\{ \tau \} A = \left\{ \begin{array}{c} R_i i + R_j j + R_k k \\ C_j j + C_k k \end{array} \right\} A \)

- liaison tridimensionnelle glissière d’axe \(A \vec{i} \) : \(\{ \tau \} A = \left\{ \begin{array}{c} R_j j + R_k k \\ C_i i + C_j j + C_k k \end{array} \right\} A \)

- liaison tridimensionnelle hélicoïdale d’axe \(A \vec{i} \) de pas \(p \) : \(\{ \tau \} A = \left\{ \begin{array}{c} \frac{-2\pi C_i i + R_j j + R_k k}{C_i i + C_j j + C_k k} \\ C_j j + C_k k \end{array} \right\} A \)

- liaison tridimensionnelle pivot glissant d’axe \(A \vec{i} \) : \(\{ \tau \} A = \left\{ \begin{array}{c} R_j j + R_k k \\ C_j j + C_k k \end{array} \right\} A \)
Fig. 3.7 – La symbolique des liaisons 2d utilisée dans ce cours (non normalisée).

- liaison tridimensionnelle sphérique à doigt d’axe \(\mathbf{A}_i \) et \(\mathbf{A}_j \) : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{i\mathbf{i}} + R_{j\mathbf{j}} + R_{k\mathbf{k}} \\ C_k\mathbf{k} \end{array} \right\}_A \)

- liaison tridimensionnelle sphérique en \(\mathbf{A} \) : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{i\mathbf{i}} \\ R_{j\mathbf{j}} \\ C_k\mathbf{k} \end{array} \right\}_A \)

- liaison tridimensionnelle appui plan de normale \(\mathbf{A}_i \) : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{i\mathbf{i}} \\ R_{j\mathbf{j}} \\ C_k\mathbf{k} \end{array} \right\}_A \)

- liaison tridimensionnelle linéaire rectiligne de normale \(\mathbf{A}_j \) de direction \(\mathbf{A}_i \) : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{j\mathbf{j}} \\ C_k\mathbf{k} \end{array} \right\}_A \)

- liaison tridimensionnelle linéaire annulaire d’axe \(\mathbf{A}_i \) : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{i\mathbf{i}} \\ 0 \end{array} \right\}_A \)

- liaison tridimensionnelle ponctuelle d’axe \(\mathbf{A}_i \) : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{i\mathbf{i}} \\ 0 \end{array} \right\}_A \)

Les liaisons associées à un problème bidimensionnel ne sont pas normalisées. Faites attention à la signification de chaque symbole en fonction de l’ouvrage. Pour notre part, la symbolique présentée dans la figure 3.7 sera utilisée. Pour un problème dans le plan \((\mathbf{A}, \mathbf{i}, \mathbf{j}) \) :

- liaison bidimensionnelle encastrement : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{i\mathbf{i}} + R_{j\mathbf{j}} \\ C_k\mathbf{k} \end{array} \right\}_A \)

- liaison bidimensionnelle appui simple : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{i\mathbf{i}} + R_{j\mathbf{j}} \\ 0 \mathbf{k} \end{array} \right\}_A \)

- liaison bidimensionnelle appui sur rouleaux de normale \(\mathbf{A}_j \) : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{j\mathbf{j}} \\ 0 \mathbf{k} \end{array} \right\}_A \)

- liaison bidimensionnelle glissière d’axe \(\mathbf{A}_i \) : \(\{\tau\}_A = \left\{ \begin{array}{c} R_{j\mathbf{j}} \\ C_k\mathbf{k} \end{array} \right\}_A \)

Erreur classique: Il ne faut pas, lorsque le problème est bidimensionnel, utiliser les liaisons tridimensionnelles (et inversement).

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir les brevets 037 et 038.

torseurs de chargement

Dans ce cours, la résultante sera notée \(\mathbf{F} \), le moment sera noté \(\mathbf{C} \). Les différents torseurs de chargements sont :

- force concentrée au point \(\mathbf{A} \) de direction \(\mathbf{i} \)

\[
\{\tau_1\} = \left\{ \begin{array}{c} \mathbf{F} \\ 0 \end{array} \right\}_A ,
\]

(3.12)

- couple concentré au point \(\mathbf{A} \) de direction \(\mathbf{i} \)

\[
\{\tau_2\} = \left\{ \begin{array}{c} 0 \\ \mathbf{C} \end{array} \right\}_A ,
\]

(3.13)
- densité linéique de force \vec{p} sur un segment de longueur ds au point P

$$\{d\tau_3\} = \left\{ \begin{array}{c} \vec{p}ds \\ 0 \end{array} \right\}_P, \quad (3.14)$$

- densité linéique de couple \vec{c} sur un segment de longeur ds au point P

$$\{d\tau_4\} = \left\{ \begin{array}{c} 0 \\ \vec{c}ds \end{array} \right\}_P, \quad (3.15)$$

- torseur équivalent exprimé au point C, d’un chargement linéique sur un segment AB :

$$\{\tau_5\} = \int_A^B \left\{ \begin{array}{c} \vec{p}ds \\ \vec{c}ds \end{array} \right\}_P = \int_A^B \left\{ \begin{array}{c} \vec{p}ds \\ \vec{c}ds + \vec{p}ds \wedge P\vec{C} \end{array} \right\}_C = \left\{ \begin{array}{c} \int_A^B \vec{p}ds \\ \int_A^B (\vec{c} + \vec{p} \wedge P\vec{C})ds \end{array} \right\}_C. \quad (3.16)$$

Attention dans la dernière égalité ci-dessus d’avoir exprimé \vec{p} et \vec{c} dans une base fixe qui ne dépend pas de l’abscisse curviligne.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 039.

isostaticité - hyperstaticité

Avant de rechercher les efforts intérieurs à une poutre, il est parfois nécessaire de calculer les réactions qui transitent par les liaisons qui maintiennent cette poutre en contact avec les autres solides voisins.

démarche La procédure suivante est à suivre

1. isolement du solide : Pour ce faire :
 - vous définissez le solide ou l’ensemble de solides que vous souhaitez isoler (pour nous ce sera la poutre considérée),
 - par la pensée, vous entourez ce domaine isolé par une fine peau,
 - à chaque endroit où cette fine peau intersecte une liaison, ou un chargement, un torseur doit être écrit

2. bilan des actions : en chaque point où doit être écrit un torseur, vous écrivez : le point, le type de liaison (éventuellement précisez de quel axe), le torseur (d’effort transmissible ou de chargement). Vous rajoutez à cette liste les torseurs de chargement à distance (pesanteur, forces électromagnétiques...)

3. principe fondamental de la statique : Si le domaine isolé est en équilibre, la somme de ces torseurs est nulle. En présence d’un chargement linéique ou surfacique, l’écriture de l’équilibre doit faire apparaître l’intégration de ce torseur sur le domaine d’intégration (intégrale simple ou double).

4. écriture du système d’équations : dans le cas d’un problème tridimensionnel, l’équilibre se traduit par l’écriture de 6 équations (trois de résultante, trois de moment). Dans le cas d’un problème bidimensionnel, l’équilibre se traduit par l’écriture de 3 équations (deux de résultante, une de moment autour d’un axe perpendiculaire au plan du problème).

5. détermination du nombre d’inconnues hyperstatiques : le calcul (nombre d’inconnues - nombre d’équations = degré d’hyperstatisme) est faux ! En effet, tout dépend comment les inconnues sont positionnées dans les équations. La méthode est la suivante :
 - vous entourez en rouge les chargements. Ce sont les données du problème.
 - Parmi les réactions aux liaisons (les inconnues), vous entourez en bleu celles qui peuvent être déterminées en fonction des chargements.
 - Si toutes les inconnues sont déterminées : le système est dit isostatique
– Si toutes les inconnues ne peuvent pas être déterminées (deux inconnues sur une même équation, et qui n’apparaissent pas ailleurs par exemple), le système est hyperstatique vis-à-vis de ce degré de liberté. Vous choisissez l’une de ces inconnues que nous appellerons *inconnue hyperstatique*, vous l’encadrez en vert, et vous la supposerez connue (au même titre que les chargements en rouge) pour rechercher toutes les inconnues qui peuvent de ce fait être maintenant déterminées (vous les entourez en bleu). Vous pouvez être amené à choisir plusieurs inconnues hyperstatiques.

 – *Le degré d’hyperstatisme est le nombre minimal d’inconnues (entourées en vert) qui ont dû être choisies comme hyperstatiques.*

6. Vous écrivez l’expression de chaque inconnue déterminée (en bleu), en fonction du chargement (en rouge) et des inconnues hyperstatiques (en vert). Dans la suite du problème, chaque fois qu’une inconnue bleue apparaît, elle sera remplacée par son expression rouge et verte.

exemples L’exemple de détermination du degré d’hyperstatisme d’un système tridimensionnel est présenté figure 3.8.

L’exemple de détermination du degré d’hyperstatisme d’un système bidimensionnel est présenté figure 3.9. On remarquera que l’équilibre est écrit au point D, mais qu’il aurait pu être écrit en un autre point, les équations qui auraient alors été obtenues seraient une combinaison linéaire des équations présentée dans l’exemple. L’inconnue hyperstatique choisie est l’inconnue R_2. Il aurait été possible de choisir R_3 ou C_2. Quelque soit ce choix, le nombre d’inconnues hyperstatique reste de 1.

système isostatique associé On appelle système isostatique associé, le système identique géométriquement, mais dont les liaisons aux points où des inconnues hyperstatiques ont été choisies, doivent être modifiées :

1. si l’inconnue hyperstatique est une force dans la direction \vec{i}, le degré de liberté associé, la translation dans la direction \vec{i}, est libérée. La liaison est donc remplacée par la liaison qui bloque les mêmes degrés de liberté sauf ce degré de liberté. Par exemple, si le problème est tridimensionnel, une liaison encastrement, sera transformée en une liaison pivot d’axe \vec{i}.

2. si l’inconnue hyperstatique est un couple dans la direction \vec{i}, le degré de liberté associé, la rotation dans la direction \vec{i}, est libérée. La liaison est donc remplacée par la liaison qui bloque les mêmes degrés de liberté sauf ce degré de liberté. Par exemple, si le problème est tridimensionnel, une liaison encastrement, sera transformée en une liaison pivot d’axe \vec{i}.

Ce système isostatique associé est considéré comme chargé par

1. le même chargement extérieur que le système initial,

2. auquel on ajoute les inconnues hyperstatiques, qui sont alors considérées comme un chargement connu.

equation associée à une inconnue hyperstatique Le problème isostatique associé peut donc être résolu complètement en fonction des données de chargement et des inconnues hyperstatiques. Appelons cette solution *solution 1*.

Pour retrouver le problème initial, l’inconnue hyperstatique assurait que le déplacement associé à celle-ci était nul. Il faut donc rajouter une équation cinématique par inconnue hyperstatique :

1. si l’inconnue hyperstatique est une force $R\vec{i}$ au point B, le déplacement dans cette direction en ce point doit être nul : $\vec{u}_B.\vec{i} = 0$.

2. si l’inconnue hyperstatique est un couple $C\vec{i}$ au point B, la rotation dans cette direction en ce point doit être nul : $\vec{\omega}_B.\vec{i} = 0$.

Ces équations supplémentaires, fournissent des relations entre les inconnues hyperstatiques et les chargements. Elle permettent donc de déterminer les inconnues hyperstatiques en fonction du chargement.
Fig. 3.8 – Détermination du degré d’hyperstatisme pour un système 3D.

bilan des actions

- liaison glissière 3D d’axe A: \(\{G_A\} = \{R_{x3} + R_{y3} \} \)

- changement en B (domaine du pb):
 \(\{G_B\} = \{F_1 + F_2 + F_3 \} \)

- liaison sphérique en D:
 \(\{G_D\} = \{R_{x3} + R_{y3} + R_{z3} \} \)

Equilibre

La somme des forces doit être nulle:

\[
\begin{bmatrix}
\mathbf{F}_1 \\
\mathbf{F}_2 \\
\mathbf{F}_3
\end{bmatrix} + \begin{bmatrix}
\mathbf{R}_{x3} \\
\mathbf{R}_{y3} \\
\mathbf{R}_{z3}
\end{bmatrix} = \mathbf{0}
\]

avec

- \(\mathbf{R}_3 \) déterminable
- \(\mathbf{R}_2 \) déterminée
- \(\mathbf{R}_1 \) indéterminé, hyperstatique de degré 2

\[
\begin{align*}
R_3 & = -F_2 \\
R_2 + R_3 & = -F_3 \\
C_4 & = -C_5 \\
C_6 & = -C_6
\end{align*}
\]
Fig. 3.9 – Détermination du degré d’hyperstatisme pour un système 2D.
La solution complète du problème qui vérifie les conditions aux limites du problème de départ, exprimé en fonction uniquement du chargement du problème de départ, est alors connue en remplaçant les inconnues hyperstatiques par leur expression en fonction du chargement dans la solution 1.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir les brevets 013, 014, 015 et 016.

Statique des poutres

De la ceinture jaune
...
à la ceinture orange.
3.4.4 Efforts intérieurs

calcul du torseur des efforts intérieurs

Ce paragraphe concerne les étapes mises en gras dans le synopsis figure 3.10.
Dans ce cours, la résultante sera notée \vec{R}_{int}, le moment sera noté \vec{M}_{int}.

On oriente la poutre. Soit le point H d’abscisse s. On notera seg^+ la demi poutre dont les abscisses sont supérieures à s. On notera seg^- la demi poutre dont les abscisses sont inférieures à s.

Prenons comme définition que le torseur des efforts intérieur représente les actions de la partie seg^+ sur la partie seg^- (voir figure 3.11).
Si l’on isole le segment seg^-, celui-ci est sollicité par des torseurs extérieurs (de chargement ou de liaison) sur le segment seg^- et par le torseur des efforts intérieurs. Ce segment étant à l’équilibre, la somme des torseurs doit être nul, donc on obtient l’égalité,

$$\{\tau_{eff\cdot int.}\} = - \sum_{\text{seg}^-} \{\tau_{ext\rightarrow\text{seg}^-}\}. \quad (3.17)$$

Nous aurions aussi pu isoler le segment seg^+. Celui-ci est sollicité par des torseurs extérieurs (de chargement ou de liaison) sur le segment seg^+ et par un torseur qui est l’opposé du torseur des efforts intérieurs par le principe d’action et de réaction. Nous faisons ici l’hypothèse qu’au point de coupure H il n’y a pas de force concentrée. Ce segment étant à l’équilibre, la somme des torseurs doit être nul, donc on obtient l’égalité,
On note donc que nous disposons à chaque fois de deux manières de calculer le torseur des efforts intérieurs, en utilisant soit la partie seg+ soit la partie seg-. Les deux méthodes donnent le même résultat, car la poutre, dans sa globalité seg+ U seg- est en équilibre. C'est à vous de choisir le segment qui implique le moins de calcul. Par exemple, si sur l’un des segments il y a des liaisons et des chargements, et sur l’autre que des chargements (par définition connus), c'est ce dernier segment qu’il faut utiliser car cela vous évite d’avoir à calculer les inconnues aux liaisons, et donc de faire l’équilibre global de la structure, déterminer son degré d’hyperstatisme, and so on....

En général, la connaissance du torseur des efforts intérieurs est nécessaire sur l’ensemble de la poutre. Plusieurs cas doivent être étudiés en faisant varier le point \(H \), car lorsque \(s \) crît, à chaque passage d’un chargement, le torseur de chargement passe du segment seg+ au segment seg-.

exemple Dans le premier exemple (figure 3.12, le calcul du torseur des efforts intérieurs ne nécessite pas la détermination des inconnues aux liaisons. On remarquera dans cet exemple que deux cas sont à étudier en fonction de la position du point \(H \).

composantes du torseur des efforts intérieurs La détermination du torseur des efforts intérieurs en un point \(H \) est généralement faite dans le repère global \((O,\vec{i},\vec{j},\vec{k})\). Son expression peut même être donnée en un point différent de \(H \). Néanmoins, si le type de sollicitation vous est demandé, et c’est toujours le cas, il est nécessaire

1. d’exprimer ce torseur au point \(H \)
2. de l’exprimer dans le repère local au point \(H \) qui prend en compte l’orientation locale de la poutre et de la forme de sa section droite.

En effet, si par exemple le torseur des efforts intérieur comporte une force \(F\vec{j} \) la réponse en déformation de la poutre sera différente si la direction \(\vec{j} \) est parallèle à la fibre moyenne ou perpendiculaire.

Soit \((H,\vec{x},\vec{y},\vec{z})\) le repère local tel que,
- \(H\vec{x} \) tangent à la fibre moyenne
- \(H\vec{y} \) et \(H\vec{z} \) axes principaux de la section droite

\[
\{\tau_{H}\} = \left\{ \begin{array}{c} \overrightarrow{R} \\ N \end{array} \right\} = \left\{ \begin{array}{c} N\vec{x} + T_{y}\vec{y} + T_{z}\vec{z} \\ M_{x}\vec{x} + M_{f}\vec{y} + M_{f}\vec{z} \end{array} \right\}_{H},
\]

avec,
- \(N \) : effort normal,
- \(T_{y} \) : effort tranchant suivant la direction \(\vec{y} \),
- \(T_{z} \) : effort tranchant suivant la direction \(\vec{z} \),
- \(M_{x} \) : moment de torsion,
- \(M_{f}\) : moment fléchissant autour de l’axe \(H\vec{y} \),
- \(M_{f}\) : moment fléchissant autour de l’axe \(H\vec{z} \).

On écrira donc le torseur des efforts intérieur, au point \(H \) et dans ce repère local, afin de pouvoir identifier les types de sollicitation que la poutre subit.

exemple Si l’on reprend le cas tridimensionnel précédemment traité, la détermination des composantes en un point

- **Erreur classique** : Pour déterminer les composantes d’un torseur des efforts intérieurs, il ne faut pas oublier avant identification, d’exprimer ce torseur dans le repère local au point \(H \).

- **Erreur classique** : Il ne faut pas confondre le moment \(M \) à une liaison, et un moment fléchissant \(M_{f} \) ou de torsion \(M_{x} \) : l’un traduit les efforts et moments transmissibles (qui peuvent
Fig. 3.12 – Exemple de détermination du torseur des efforts intérieurs pour un système 2D.
être exprimés dans n’importe quel repère), l’autre des efforts et moments à l’intérieur de la poutre
(qui ne peuvent être exprimés que dans le repère local au point H de cette poutre.)

- **Erreur classique**: Les composantes du torseur des efforts intérieur doivent être exprimées
 en fonction des chargements et des inconnues hyperstatiques. Si vous les laissez en fonction des
 inconnues aux liaisons, vous ne trouverez pas les contraintes, déplacements et rotations en fonction
du chargement.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir les
brevets 002, 005, 018.

Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont

équations d’équilibre

Elles ne sont pas vues dans ce cours bien que figurant dans le second tableau du paragraphe
3.4.1. Elles ne sont pas indispensables à la résolution de problème. Référez-vous à la bibliographie.
Statique des poutres

De la ceinture orange...

... aux ceintures verte et bleue.
Fig. 3.13 – Les concepts utiles à la détermination à venir de la loi de comportement de la fibre moyenne.

3.4.5 Description de la section droite

Ce paragraphe concerne les étapes mises en gras dans le synopsis figure 3.10.

La théorie des poutres n’utilisant que la fibre moyenne, il est nécessaire d’associé à cette fibre moyenne des grandeurs écrivant la section droite.

- **Erreur classique** : Attention aux unités ! Les intégrales sont effectuées sur des surfaces et non des volumes (comme dans le cas du cours de mécanique générale), et la masse volumique n’apparaît pas (comme dans le cas du cours de mécanique générale).

moment statique d’une aire plane

Si la section droite est notée S, et δ la distance entre un point M de cette section droite et une droite Δ appartenant au plan de la section droite,

$$m_\Delta = \int \int_S \delta \, dS.$$ \hspace{1cm} (3.20)

Le moment statique est homogène à une longueur3.

Un exemple de calcul de moment statique est fait figure 3.14.

Complément vidéo Pour un complément d’information, je vous invite à visionner la vidéofaq005 disponible sur http://umtice.univ-lemans.fr/course/view.php?id=850.

barycentre

Si d_H est la distance entre le barycentre de la section droite et la droite Δ appartenant au plan de la section droite, et S l’aire de la section droite, alors :

$$d_H = \frac{m_\Delta}{S}.$$ \hspace{1cm} (3.21)

Le distance est homogène à une longueur (Si ! Si ! N’est-ce pas formidable ?).

Un exemple de calcul du barycentre est fait figure 3.15.

- **Erreur classique** : Ne pas confondre le barycentre H d’une section avec le centre de gravité G de la poutre complète. Ils ne sont pas confondus pour une poutre faite en deux matériaux de masse volumique différentes dans l’épaisseur (par exemple un bilame).
Fig. 3.14 – Exemple de détermination du moment statique d’une section droite triangulaire.

Fig. 3.15 – Exemple de détermination du barycentre d’une section droite triangulaire.
moment quadratique - rayon de giration - produit quadratique d’une aire plane

Le moment quadratique par rapport à une droite \(\Delta \) appartenant au plan de la section droite

\[
I_\Delta = \int \int_S \delta^2 dS,
\]

(3.22)
est homogène à une longueur\(^4\). Ce terme apparaîtra dans la loi de comportement en flexion : plus le point est éloigné de la fibre moyenne, plus il sera sollicité (proportionalité à \(\delta \)) et plus sa sollicitation créera un moment (à nouveau proportionalité à \(\delta \)) : d’où le terme en \(\delta^2 \). A Aire de section droite \(S \) constante, plus la matière est loin de la fibre moyenne, plus le moment quadratique est grand.

Si la section droite est notée \(S \), \(\delta \) la distance entre un point \(M \) de cette section droite et une droite \(\Delta \) appartenant au plan de la section droite, et \(\delta' \) la distance entre un point \(M \) de cette section droite et une droite \(\Delta' \) appartenant au plan de la section droite, le produit quadratique

\[
I_{\Delta \Delta'} = - \int \int_S \delta \delta' dS,
\]

(3.23)
est homogène à une longueur\(^4\).

A l’aide de ces grandeurs, on peut construire le tenseur quadratique de la section droite, par exemple, par rapport aux deux droites \(H\overrightarrow{y}_1 \) et \(H\overrightarrow{z}_1 \) avec \(\overrightarrow{y}_1 \) et \(\overrightarrow{z}_1 \) deux directions orthogonales entre elles, on obtient,

\[
\bar{I}_H = \begin{bmatrix}
I_{H,y_1} & I_{H,y_1,z_1} \\
I_{H,y_1,z_1} & I_{H,z_1}
\end{bmatrix} \otimes (\overrightarrow{y}_1, \overrightarrow{z}_1).
\]

(3.24)

Les axes principaux d’une section droite, sont les deux axes \(H\overrightarrow{y} \) et \(H\overrightarrow{z} \) tels que les termes hors diagonale de ce tenseur sont nuls :

\[
\bar{I}_H = \begin{bmatrix}
0 & 0 \\
0 & I_{H,z}
\end{bmatrix} \otimes (\overrightarrow{y}, \overrightarrow{z}).
\]

(3.25)

Pour la diagonalisation d’une matrice, veuillez consulter vos cours de math.

Si l’on prend comme dimensions de la section triangulaire \(a = 3 \) et \(b = 2 \), le programme scilab (demo09.sce) suivant donne \(A \) la matrice associée au tenseur d’inertie dans la base \((\overrightarrow{y}_1, \overrightarrow{z}_1) \otimes (\overrightarrow{y}_1, \overrightarrow{z}_1) \), \(A2 \) la matrice associée au tenseur d’inertie dans la base \((\overrightarrow{y}, \overrightarrow{z}) \otimes (\overrightarrow{y}, \overrightarrow{z}) \) et \(X \) les vecteurs directeurs (en colonne) des deux directions principales.

```
//demo09.sce avec scilab
a=3;b=2;
iyy=a*b^3/36;izz=b*a^3/36;iyz=a^2*b^2/72;izy=iyz;
A=[iyy,iyz;izy,izz];
A
[A2,X]=bdiag(A);
A2
X
```

Ceci fournit les résultats :

\[
\bar{I}_H = \begin{bmatrix}
0.67 & 0.5 \\
0.5 & 1.5
\end{bmatrix} \otimes (\overrightarrow{y}_1, \overrightarrow{z}_1).
\]

(3.26)

\[
\bar{I}_H = \begin{bmatrix}
0.43 & 0 \\
0 & 1.73
\end{bmatrix} \otimes (\overrightarrow{y}, \overrightarrow{z}).
\]

(3.27)
Fig. 3.16 – Exemple de détermination d’un moment quadratique d’une section droite triangulaire.

Fig. 3.17 – Exemple de détermination d’un produit quadratique d’une section droite triangulaire.
Les deux vecteurs sont bien de norme 1. On remarquera dans ce cas que les direction principales ne sont pas parallèles à l'un des bords de la surface considérée. Les valeurs de moments quadratiques autour des deux axes principaux d'inertie sont les deux valeurs extrêmes (minimale et maximale) lorsque la base d'expression du tenseur d'inertie tourne autour de l’axe $H_\vec{x}$.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir la partie du brevet 006 associée au moment quadratique.

moment polaire

Si la section droite est notée S, la normale à cette section \vec{x} (tangent à la fibre moyenne), et δ la distance entre un point M de cette section droite et la droite $H_\vec{x}$, alors le moment polaire par rapport à l’axe $H_\vec{x}$

$$I_0 = \int \int_S \delta^2 \, dS.$$

a la dimension d’une longueur4.

exemple Le calcul du moment polaire d’une section circulaire est détaillé figure 3.18.

- **Erreur classique** : Ne pas confondre moment quadratique et moment d'inertie. Ils ne sont pas homogènes entre eux !

- **Erreur classique** : Ne pas confondre produit quadratique et produit d’inertie. Ils ne sont pas homogènes entre eux !

Complément vidéo Pour un complément d’information, je vous invite à visionner la vidéo faq007 disponible sur http://umtice.univ-lemans.fr/course/view.php?id=850.
Un exemple de caractéristiques d'une section droite.

Tableau des caractéristiques

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Caractéristique 1</th>
<th>Caractéristique 2</th>
<th>Caractéristique 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>123</td>
<td>456</td>
<td>789</td>
</tr>
<tr>
<td>001</td>
<td>321</td>
<td>654</td>
<td>987</td>
</tr>
<tr>
<td>002</td>
<td>543</td>
<td>876</td>
<td>213</td>
</tr>
</tbody>
</table>

Diagramme

![Diagramme de portées IPE](image)

Fig. 3.19
3.4.6 Annexe 1
Assimilation Pour vérifier que vous avez assimilé ce paragraphe, nous vous invitons à obtenir le brevet 040.

3.5 Lois de comportement de la poutre

Ce paragraphe concerne les étapes mises en gras dans le synopsis figure 3.20.

3.5.1 Objectif
En l’état actuel, vous savez calculer le torseur des efforts intérieurs en tout point d’une poutre en fonction du chargement et d’éventuelles inconnues hyperstatiques. Deux types de démarche peuvent alors vous être demandées :
1. calculer les déplacements et rotations de sections droite en certains points de la poutre
2. calculer les contraintes maximales dans la poutre pour déterminer si les limites d’élasticité du matériau constitutif de la poutre ne sont pas dépassées.
La première démarche nécessite à partir des torseurs d’efforts intérieurs, de calculer les torseurs de déformation, puis le champs de déplacement et de rotation des points de la fibre moyenne. Ces calculs peuvent être fait en restant dans une description 1D si l’on connaît la relation entre les composantes du torseur des déformations et les composantes du torseur des efforts intérieurs. Pour démontrer ces relations il faut passer (voir figure 3.20) par une description locale 3D des déformations et contraintes engendrées en un point P de la section droite distant du point H de la fibre moyenne par un vecteur tel que $\overrightarrow{HP} = \overrightarrow{yy} + \overrightarrow{zz}$. Ces relations appelées loi de comportement de la poutre dépendent des hypothèses de cinématique prises dans la section droite. C’est pourquoi, nous étudierons 3 cas. Ces trois cas sont illustrés sur une poutre en flexion représentée figure 3.21.

3.5.2 1ère cinématique
description de la cinématique
Le plan normal suit le torseur en H' sans se déformer dans le plan. On peut alors calculer le déplacement du point P' par rapport au point P (voir figure 3.22). On considère le torseur des
déformations connu. La section droite passant par H' subit un mouvement de corps solide, donc les torseurs de déplacement sont les mêmes pour tous les points de la section droite.

déformations

On calcule le tenseur des déformations du parallélépipède entre P et P' de cotés $d\bar{y}$, $d\bar{z}$, ds (voir figure 3.23). On évalue dans un premier temps le gradient de \vec{u}, en notant que $dx = ds$, $dy = d\bar{y}$ et $dz = d\bar{z}$.

contraintes

On calcule le tenseur des contraintes nécessaire à l’obtention de ce tenseur des déformations (voir figure 3.24). On utilise pour cela la loi de comportement de l’élasticité tridimensionnelle, qui utilise les coefficients de Lamé μ et λ.

torseur des efforts intérieurs

L’ensemble des contraintes sur les facettes de normale \vec{x} aux points P' de la section droite passant par H', en se cumulant, réalisent les actions du segment seg+ sur le segment seg-. Elles doivent donc être équivalentes au torseur des efforts intérieurs. Il faut donc faire des intégrales sur la section droite (voir figure 3.25). Comme le point H' est le barycentre de la section droite, les moments statiques sur l’ensemble de la section sont nuls : ceci fait disparaître quelques intégrales. D’autre part, ds pouvant être pris infiniment petit, d’autres intégrales sont négligeables. Pour les termes de moment, apparaissent les moments quadratiques, le moment polaire et les produits quadratiques de la section droite. Ces derniers sont nuls si les axes \vec{y} et \vec{z} sont les directions principales de la sections droite : c’est ce qui est choisi.

écriture matricielle

Les 6 équations précédentes peuvent être écrites sous forme matricielles en faisant apparaître le module de Young E et le coefficient de poisson ν, grâce aux relations 3.3 les liants aux coefficients
Fig. 3.22 – Calcul du déplacement relatif du point P' par rapport au point P.

\[\begin{align*}
\vec{PP'} &= \hat{e}_x \cdot \Delta x + \hat{e}_y \cdot \Delta y + \hat{e}_z \cdot \Delta z \\
\hat{e}_x &= \frac{\Delta x}{\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}} \\
\hat{e}_y &= \frac{\Delta y}{\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}} \\
\hat{e}_z &= \frac{\Delta z}{\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}}
\end{align*} \]
Fig. 3.23 – Calcul du tenseur des déformations pour la cinématique 1.

\[
\varepsilon = \begin{bmatrix}
\varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\
\varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\
\varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz}
\end{bmatrix}
\]

Fig. 3.24 – Calcul du tenseur des contraintes pour la cinématique 1.

\[
\sigma = 2 \mu \varepsilon + \lambda \text{tr} \varepsilon \varepsilon
\]
Fig. 3.25 – Calcul du composantes du torseur des efforts intérieurs la cinématique 1.
Cette cinématique implique que les contraintes σ_{yy} et σ_{zz} ne sont pas nulles dans la section droite, donc à fortiori sur les surfaces latérales de la poutre. Or, sur ces surfaces non chargées, les contraintes exercées par l'air sur la poutre sont nulles. Il y a donc contradiction entre la réalité et le modèle associé à la cinématique 1. Prenons l'exemple d'un tenseur des déformations ne comportant que le terme ϵ_x. Tous les petits parrallélépipèdes entre les points P et P' s'allongent de la valeur $\epsilon_x ds$. De part l'effet Poisson, ils souhaitent se contracter dans les directions \vec{y} et \vec{z}. Or la cinématique 1 choisie, d'un mouvement en bloc rigide d'une section droite les en empêche. Cette cinématique n’est pas réaliste pour une poutre non bloquée sur toutes ses surfaces latérales.

Il nous faut chercher une cinématique telles que sur les surfaces latérales les contraintes σ_{yy} et σ_{zz} soient nulles. C’est l’objet de la seconde cinématique.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 041.

3.5.3 2nd cinématique

Le plan normal peut se déformer dans le plan tel que σ_{yy} et σ_{zz} restent nuls.

description de la cinématique

Le tenseur des déformations est choisi identique à celui de la cinématique 1, mais un mouvement du point P' dans le plan $\tilde{u}_y(\tilde{y}, \tilde{z}) \tilde{y} + \tilde{u}_z(\tilde{y}, \tilde{z}) \tilde{z}$, mouvement pour l’instant inconnu, est rajouté (voir figure 3.26).

déformations

Le tenseur des déformations est aussi modifié par la présence de ces deux fonctions (voir figure 3.27).

contraintes

On peut donc en déduire par la loi de l’élasticité, le tenseur des contraintes (voir figure 3.28). Si la poutre n’est pas chargée sur ses faces de normale \vec{y} et \vec{z}, les σ_{yy}, σ_{zz}, et σ_{yz} doivent être nulles sur ces faces. Recherchons une solution telles qu’elle soient nulles dans toute la poutre, cela impose...
une relation sur les fonction inconnues. Si l’on réécrit ces conditions en terme de déformation, le coefficient de poisson ν entre les déformations apparaît (voir figure 3.29). On peut alors en déduire les champs de déplacement complémentaires pour assurer que les contraintes soient nulles sur les faces latérales de la poutre. On remarquera que cela implique en tout point de la section droite, que les contraintes σ_{yy}, σ_{zz}, et σ_{yz} sont toutes nulles.

torseur des efforts intérieurs

Par la même démarche que pour la cinématique 1, il faut donc faire des intégrales sur la section droite (voir figure 3.30) pour obtenir les composantes du torseur des efforts intérieurs. Dans les calculs présentés la nullité des moments statiques par rapport à H est utilisée.

écriture matricielle

Les 6 équations précédentes peuvent être écrites sous forme matricielles.

\[
\begin{bmatrix}
N \\
T_y \\
T_z \\
M_x \\
M_{fy} \\
M_{fz}
\end{bmatrix}
= \begin{bmatrix}
ES & 0 & 0 & 0 & 0 & 0 \\
0 & GS & 0 & 0 & 0 & 0 \\
0 & 0 & GS & 0 & 0 & 0 \\
0 & 0 & 0 & GI_0 & 0 & 0 \\
0 & 0 & 0 & 0 & EI_{Hy} & 0 \\
0 & 0 & 0 & 0 & 0 & EI_{Hz}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\gamma_y \\
\gamma_z \\
\alpha_x \\
\alpha_y \\
\alpha_z
\end{bmatrix},
\]

(3.33)

incompatibilité

Cette cinématique implique que les contraintes σ_{yx} et σ_{zx} sont constantes dans l’épaisseur de la poutre, donc sur les surfaces extérieures latérales. Du fait de la symétrie du tenseur des contraintes, cela implique sur la surface de normale y que la contrainte σ_{yx} soit non nulle. Or elle doit être égale à la contrainte exercée par l’extérieur sur cette surface. Si cette surface est libre, cette contrainte extérieure est nulle. Il y a donc contradiction entre la réalité et le modèle.

Il nous faut chercher une cinématique telles que la répartition des contraintes σ_{yx} et σ_{zx} soient des fonctions de y et z et nulles sur les bords de la section droite. C’est l’objet de la troisième cinématique qui implique un voilement de la section en présence d’un effort tranchant.
Fig. 3.28 – Calcul du tenseur des contraintes pour la cinématique 2 et des conditions de surfaces libres de contrainte.

\[
\begin{align*}
\sigma &= 2\mu \epsilon + d(\kappa \epsilon) \mathbb{I} + d(\kappa \epsilon) \mathbb{I} + d(\kappa \epsilon) \mathbb{I} \\
\sigma_{11} &= (2\mu + d)(\epsilon_{11} + \kappa \epsilon_{22}) + d(\epsilon_{11} + \kappa \epsilon_{22}) \\
\sigma_{22} &= (2\mu + d)(\epsilon_{22} + \kappa \epsilon_{11}) + d(\epsilon_{22} + \kappa \epsilon_{11}) \\
\sigma_{33} &= (2\mu + d)(\epsilon_{33} + \kappa \epsilon_{33}) + d(\epsilon_{33} + \kappa \epsilon_{33}) \\
\sigma_{ij} &= \mu \left(\gamma_{ij} - \kappa \left(\gamma_{ii} - \gamma_{jj} \right) \right) \\
\sigma_{ij} &= \mu \left(\gamma_{ij} + \kappa \gamma_{ij} \right) \\
\sigma_{ij} &= \mu \left(\gamma_{ij} + \frac{1}{3} \gamma_{ij} \right)
\end{align*}
\]

\[
\begin{align*}
\sigma_{yy} &= 0 \\
\sigma_{zz} &= 0 \\
\sigma_{xy} &= 0 \\
\sigma_{yz} &= 0
\end{align*}
\]

\[
\begin{align*}
(2\mu + d) \epsilon_{yy} + d \epsilon_{yy} &= -d \epsilon_{yy} \\
\epsilon_{yy} + (2\mu + d) \epsilon_{yy} &= -d \epsilon_{yy} \\
\epsilon_{yy} + \epsilon_{yy} &= 0
\end{align*}
\]

\[
\begin{align*}
\epsilon_{yy} &= \epsilon_{yy} \\
\epsilon_{yy} &= -\frac{d}{2(\mu + d)} \epsilon_{yy} \\
\epsilon_{yy} &= 0 \\
\epsilon_{yy} &= 0 \quad \text{cas } \epsilon \text{ isotrope}
\end{align*}
\]

\[
\begin{align*}
G &= \frac{d}{2(\mu + d)} = -\gamma \\
\gamma_{yy} &= -\gamma \epsilon_{yy} \\
\gamma_{yy} &= -\gamma \epsilon_{yy} \\
\gamma_{yy} &= 0 \\
\gamma_{yy} &= 0 \\
\gamma_{yy} &= -\gamma \epsilon_{yy} + a_0 \\
\gamma_{yy} &= -\gamma \epsilon_{yy} + b_0
\end{align*}
\]

Pour \((\gamma_{yy}, \gamma_{yy}) = (a_0, b_0)\) on choisit sans perte de généralité \((\gamma_{yy}, \gamma_{yy}) = (0, 0)\) soit \(a_0 = 0\) et \(b_0 = 0\).

Fig. 3.29 – Relation entre les déformations pour la cinématique 2 et les champs de déplacement complémentaires.
Fig. 3.30 – Expression des composantes du torseur des efforts intérieurs pour la cinématique 2.
Fig. 3.31 – Répartition des contraintes de cisaillement dues à une sollicitation de torsion, en fonction de la forme de la section droite et de la cinématique choisie.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 042.

3.5.4 3ième cinématique

Le plan normal se déforme dans le plan tel que σ_{yy} et σ_{zz} restent nuls, et tel que les contraintes σ_{yx} et σ_{zx} soient nulles sur les bords de la section droite. Cette cinématique (Fig. 3.21) sera étudiée plus avant dans le cours de modélisation [?]. Nous y obtiendrons des facteurs correctifs du moment polaire et des sections équivalentes sous effort tranchant. Ces facteurs correctifs sont détaillés dans les tableaux des figures 3.32 et 3.33. Il en est de même pour la sollicitation de torsion pour laquelle la proportionnalité de la contrainte de cisaillement avec l distance au point H n’est vérifiée que dans le cas d’une poutre de section droite circulaire (Fig. 3.31).

$$
\begin{bmatrix}
N \\
T_y \\
T_z \\
M_x \\
M_{fy} \\
M_{fz}
\end{bmatrix}
=
\begin{bmatrix}
ES & 0 & 0 & 0 & 0 & 0 \\
0 & GS_y & 0 & 0 & 0 & 0 \\
0 & 0 & GS_z & 0 & 0 & 0 \\
0 & 0 & 0 & GI_0 & 0 & 0 \\
0 & 0 & 0 & 0 & EI_{Hy} & 0 \\
0 & 0 & 0 & 0 & 0 & EI_{Hz}
\end{bmatrix}
\begin{bmatrix}
\epsilon_x \\
\gamma_y \\
\gamma_z \\
\alpha_x \\
\alpha_y \\
\alpha_z
\end{bmatrix},
$$

(3.34)

On rappelle ci-dessous la loi de comportement pour la cinématique 2, qui ne diffère de la loi de comportement de la cinématique 3 que par trois termes, sur les lignes 2, 3 et 4 :

$$
\begin{bmatrix}
N \\
T_y \\
T_z \\
M_x \\
M_{fy} \\
M_{fz}
\end{bmatrix}
=
\begin{bmatrix}
ES & 0 & 0 & 0 & 0 & 0 \\
0 & GS & 0 & 0 & 0 & 0 \\
0 & 0 & GS & 0 & 0 & 0 \\
0 & 0 & 0 & GI_0 & 0 & 0 \\
0 & 0 & 0 & 0 & EI_{Hy} & 0 \\
0 & 0 & 0 & 0 & 0 & EI_{Hz}
\end{bmatrix}
\begin{bmatrix}
\epsilon_x \\
\gamma_y \\
\gamma_z \\
\alpha_x \\
\alpha_y \\
\alpha_z
\end{bmatrix},
$$

(3.35)

• Erreur classique : Ne pas confondre dans la notation ci-dessus, G le module de Coulomb exprimé en Pa, le centre de gravité de l’ensemble de la poutre G (c’est un point, cela n’a pas d’unité), et le barycentre d’une section droite H (c’est un point, cela n’a pas d’unité).

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 049.
TABLEAU II. — EFFORT TRANCHE - CONTRAINTES DE CISAILLEMENT

Les formules approchées, donnant pour les sections usuelles les valeurs des contraintes de cisaillement et la valeur de la section résistante, ont été déterminées à partir des hypothèses mentionnées dans le tableau II.1 et des hypothèses supplémentaires suivantes :

a) Cas des sections fluides.

Le long d'une ligne parallèle à l'axe d'inclinaison Gg d'ordonnée y, rencontrant le contour de la section aux deux points a et b :
1. Les contraintes de cisaillement t, passent toutes par le point de concours des deux tangentes en a et b au contour de la section.
2. La composante t y suivant Gg des contraintes de cisaillement t est constante.

<table>
<thead>
<tr>
<th>MÉTHODE</th>
<th>CROISÉS</th>
<th>CONTRAINTE DE CISAILLEMENT</th>
<th>DEFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HYPOTHESES</td>
<td>VALEUR GÉNÉRALE</td>
<td>CONTREINTES MAXIMALES</td>
</tr>
<tr>
<td></td>
<td>Triangle isocèle</td>
<td>t_y = b \frac{1}{2} \left(\frac{2}{3} \frac{b}{a} - 1 \right)</td>
<td>t_y = 1,5 \frac{V}{h}</td>
</tr>
<tr>
<td></td>
<td>rectangle</td>
<td>t_y = \frac{1}{3} \frac{y}{S} \left(1 - \frac{\frac{a}{b}}{S} \right)</td>
<td>t_y = \frac{1}{3} \frac{V}{h}</td>
</tr>
<tr>
<td></td>
<td>losange</td>
<td>t_y = \frac{1}{S} \left(\frac{b}{a} + \frac{\frac{a}{b}}{S} \right) + \frac{2}{3} \frac{b}{a}</td>
<td>t_y = \frac{9}{8} \frac{1}{S}</td>
</tr>
<tr>
<td></td>
<td>cœur ouvert</td>
<td>t_y = \frac{2}{a} \left(\frac{b}{a} + \frac{2}{a} \right)</td>
<td>t_y = \frac{3}{2} \frac{b}{S} + \frac{2}{a} \left(\frac{b}{a} + \frac{2}{a} \right)</td>
</tr>
</tbody>
</table>

Fig. 3.32 – Effet du cisaillement p1
Tableau 11.2 — Sections utilisées - Contraintes de cisaillement et déformation dues à l'effort tranchant - Formules approchées (suite)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>CROQUIS</th>
<th>CONTRAINTES DE CISAILLEMENT</th>
<th>DEFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypothèses</td>
<td>Valeur générale</td>
<td>Contrainte maximale</td>
</tr>
<tr>
<td>Hémisphère</td>
<td>$t_y = \frac{T}{2h} \left(\frac{y}{h} \right) \left(\frac{y^2}{h^2} + \frac{2y}{h} - 1 \right)$</td>
<td>$t_y = 1,66 \frac{T}{S}$</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>$S = 2h \times h^3$</td>
<td>point A</td>
<td>direction AB</td>
</tr>
<tr>
<td>Cercle</td>
<td>$t_y = \frac{4T}{3S} \left(\frac{1 - \frac{y}{h}}{\sqrt{1 - \left(\frac{y}{h} \right)^2}} \right)$</td>
<td>$t_y = \frac{4T}{3S}$</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>$S = 2 \times h \times h^2 \times (1 - \frac{y}{h})^2$</td>
<td>le long de CD</td>
<td></td>
</tr>
<tr>
<td>Ellipse</td>
<td>$t_y = \frac{4T}{3S} \left(\frac{1 - \frac{y}{h}}{\sqrt{1 - \left(\frac{y}{h} \right)^2}} \right)$</td>
<td>$t_y = \frac{4T}{3S}$</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>$S = 4ab$</td>
<td>le long de CD</td>
<td></td>
</tr>
<tr>
<td>Section en 'I'</td>
<td>$t_y = \frac{6T \epsilon}{(b - a) (b - c) \epsilon_0}$</td>
<td>$t_y = t_y (b / \epsilon_0)$</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>$t_y = \frac{3T}{2b} \left(\frac{b - 1 - \epsilon}{1 - \frac{b - 1}{2}} \right)^2$</td>
<td>$t_y = t_y (b / \epsilon_0)$</td>
<td>G</td>
</tr>
<tr>
<td>Section circulaire</td>
<td>$t_y = \frac{2T}{3} \cos \phi$</td>
<td>$t_y = t_y (b / \epsilon_0)$</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>$S = 2 \times \pi r^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prélèvement en 'I'</td>
<td>$t_y = \frac{2T}{3} \left(\frac{b - 1}{1 - \frac{b - 1}{2}} \right)^2$</td>
<td>$t_y = t_y (b / \epsilon_0)$</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>$S = \pi r^2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3.33 — Effet du cisaillement p2
Fig. 3.34 – Les concepts utiles au passage direct du torseur des efforts intérieurs au torseur de déplacement.

3.5.5 Formules de Bresse

Ce paragraphe concerne les étapes mises en gras dans le synopsis figure 3.34.

Utilité : L'utilisation des Formules de Bresse, permet de résoudre des problèmes :
- dans l'espace tridimensionnel,
- pour des poutres dont la ligne moyenne n’est pas rectiligne.

C'est leur généralité qui leur donne toute leur force, et sont donc étudiées dans ce cours.

- **Erreur classique** : Certains d'entre vous ont utilisés les années précédentes des formules du type $EI\frac{d^2y}{dx^2} = M_z$. Ces formules ne sont pas valables dans les deux cas ci-dessus.

Elles peuvent être construite par approche successive. Soit une poutre reliant un point A à un point B, orientée de A vers B, le point courant étant noté H.

- Supposons que cette poutre est infiniment rigide. Si le point A subit un torseur de déplacement composé d’un angle de rotation $\vec{\omega}_A$ et d’une translation \vec{u}_A, alors le torseur de déplacement au point B est obtenu par la formule de changement de point.

\[
\vec{\omega}_B = \vec{\omega}_A, \quad (3.36)
\]

\[
\vec{u}_B = \vec{u}_A + \vec{\omega}_A \wedge \vec{AB}. \quad (3.37)
\]

- Supposons cette fois que le point A est immobile mais que seul se déforme un petit tronçon HH de longueur ds à partir du point H. Le torseur de déplacement de H' est composé de $\vec{\omega}_{H'} = (\alpha_x \vec{x} + \alpha_y \vec{y} + \alpha_z \vec{z})ds$ et d’une translation $\vec{u}_{H'} = (\epsilon_x \vec{x} + \gamma_y \vec{y} + \gamma_z \vec{z})ds$. La déformation de ce petit segment implique un torseur de déplacement au point B :

\[
\vec{\omega}_B = (\alpha_x \vec{x} + \alpha_y \vec{y} + \alpha_z \vec{z})ds, \quad (3.38)
\]

\[
\vec{u}_B = (\epsilon_x \vec{x} + \gamma_y \vec{y} + \gamma_z \vec{z})ds + (\alpha_x \vec{x} + \alpha_y \vec{y} + \alpha_z \vec{z})ds \wedge \vec{H'B}. \quad (3.39)
\]

- Supposons cette fois que le point A est mobile et que toute la poutre se déforme. Il suffit de faire la somme des torseurs : du premier et du second que l’on aura intégré le long de toute la poutre AB. On obtient les formules de Bresse ci-dessous.

Soit une poutre dont l’orientation de la fibre moyenne est de P_{deb} à P_{fin}, si le torseur des déformations est noté,

\[
\{Def_H\} = \left\{ \frac{\alpha_x \vec{x} + \alpha_y \vec{y} + \alpha_z \vec{z}}{\epsilon_x \vec{x} + \gamma_y \vec{y} + \gamma_z \vec{z}} \right\} = \left\{ \frac{M_x/GI_y \vec{x} + M_f y/EI_{Hy} \vec{y} + M_f z/EI_{Hz} \vec{z}}{N/ES \vec{x} + T_y/SG_y \vec{y} + T_z/SG_z \vec{z}} \right\}_H, \quad (3.40)
\]
alors le torseur de déplacement au point \(P_{fin} \) par rapport au torseur de déplacement du point \(P_{deb} \) est,

\[
\{ U_{P_{fin}} \} = \begin{cases}
\dot{\omega}_{P_{fin}} \\
\tilde{u}_{P_{fin}}
\end{cases} \}_{P_{fin}}
\]

\[
= \begin{cases}
\dot{\omega}_{P_{deb}} + \int_{s_{P_{deb}}}^{s_{P_{fin}}} (\alpha_x \ddot{x} + \alpha_y \ddot{y} + \alpha_z \ddot{z}) \, ds \\
\tilde{u}_{P_{deb}} + \omega_{P_{deb}} \wedge P_{deb} \tilde{P}_{fin} + \int_{s_{P_{deb}}}^{s_{P_{fin}}} (\varepsilon_x \ddot{x} + \gamma_y \ddot{y} + \gamma_z \ddot{z}) \, ds \\
+ \int_{s_{P_{deb}}}^{s_{P_{fin}}} (\alpha_x \ddot{x} + \alpha_y \ddot{y} + \alpha_z \ddot{z}) \wedge \bar{H}P_{fin} \, ds
\end{cases} \}_{P_{fin}}
\]

\[
= \begin{cases}
\dot{\omega}_{P_{deb}} + \int_{s_{P_{deb}}}^{s_{P_{fin}}} (\frac{M_x}{G I_0} \ddot{x} + M f_y / E I_{H_y} \ddot{y} + M f_z / E I_{H_z} \ddot{z}) \, ds \\
\tilde{u}_{P_{deb}} + \omega_{P_{deb}} \wedge P_{deb} \tilde{P}_{fin} + \int_{s_{P_{deb}}}^{s_{P_{fin}}} (N / E S \ddot{x} + T_y / G S_y \ddot{y} + T_z / G S_z \ddot{z}) \, ds \\
+ \int_{s_{P_{deb}}}^{s_{P_{fin}}} (\frac{M_x}{G I_0} \ddot{x} + M f_y / E I_{H_y} \ddot{y} + M f_z / E I_{H_z} \ddot{z}) \wedge \bar{H}P_{fin} \, ds
\end{cases} \}_{P_{fin}} \tag{3.41}
\]

Les formules de Bresse ci-dessus sont relatifs à la cinématique 3. Nous rappelons ci-dessous, les formules de Bresse pour la cinématique 2, qui ne diffèrent que par 3 termes :

\[
\{ U_{P_{fin}} \} = \begin{cases}
\dot{\omega}_{P_{fin}} \\
\tilde{u}_{P_{fin}}
\end{cases} \}_{P_{fin}}
\]

\[
= \begin{cases}
\dot{\omega}_{P_{deb}} + \int_{s_{P_{deb}}}^{s_{P_{fin}}} (\frac{M_x}{G I_0} \ddot{x} + M f_y / E I_{H_y} \ddot{y} + M f_z / E I_{H_z} \ddot{z}) \, ds \\
\tilde{u}_{P_{deb}} + \omega_{P_{deb}} \wedge P_{deb} \tilde{P}_{fin} + \int_{s_{P_{deb}}}^{s_{P_{fin}}} (N / E S \ddot{x} + T_y / G S_y \ddot{y} + T_z / G S_z \ddot{z}) \, ds \\
+ \int_{s_{P_{deb}}}^{s_{P_{fin}}} (\frac{M_x}{G I_0} \ddot{x} + M f_y / E I_{H_y} \ddot{y} + M f_z / E I_{H_z} \ddot{z}) \wedge \bar{H}P_{fin} \, ds
\end{cases} \}_{P_{fin}} \tag{3.42}
\]

- **Erreur classique** : Une fois les formules de Bresse utilisées, votre résultat ne doit plus faire apparaître les coordonnées du point \(H \). Si c’est le cas, c’est que vous n’avez pas effectué l’intégration entre les abscisses \(s_{P_{deb}} \) et \(s_{P_{fin}} \).

- **Erreur classique** : Si dans un problème donné, le déplacement en \(P_{fin} \) et connu et que vous recherchez le déplacement en \(P_{deb} \), écrivez la formule de Bresse comme ci-dessus, puis passer les termes complémentaires à \(\tilde{u}_{P_{fin}} \) de l’autre coté de l’égalité.

- **Erreur classique** : Si vous utilisez les formules de Bresse entre un point \(s_{P_{deb}} \) et \(s_{P_{fin}} \) et que vous devez couper l’intégrale en deux en passant par un point \(s_{P_{int}} \) (comme ”intermédiaire”, la formule de bresse en déplacement s’écrit :

\[
\tilde{u}_{P_{fin}} = \tilde{u}_{P_{deb}} + \dot{\omega}_{P_{deb}} \wedge P_{deb} \tilde{P}_{fin} + \int_{s_{P_{deb}}}^{s_{P_{fin}}} (N / E S \ddot{x} + T_y / G S_y \ddot{y} + T_z / G S_z \ddot{z}) \, ds \\
+ \int_{s_{P_{deb}}}^{s_{P_{int}}} (M_x / G I_0 \ddot{x} + M f_y / E I_{H_y} \ddot{y} + M f_z / E I_{H_z} \ddot{z}) \wedge \bar{H}P_{fin} \, ds \\
+ \int_{s_{P_{int}}}^{s_{P_{fin}}} (N / E S \ddot{x} + T_y / G S_y \ddot{y} + T_z / G S_z \ddot{z}) \, ds \\
+ \int_{s_{P_{int}}}^{s_{P_{fin}}} (M_x / G I_0 \ddot{x} + M f_y / E I_{H_y} \ddot{y} + M f_z / E I_{H_z} \ddot{z}) \wedge \bar{H}P_{fin} \, ds. \tag{3.43}
\]

Vous noterez bien que le vecteur après le produit vectoriel reste \(\bar{H}P_{fin} \) dans les deux intégrales.

3.5.6 exemple d’utilisation : sollicitation de traction

Pour une poutre sollicitée en traction-compression, seul l’effort normal \(N \) est différent de 0. La loi de comportement de la fibre moyenne 3.34 fournie donc,

\[
\begin{bmatrix}
\epsilon_x \\
\gamma_y \\
\gamma_z \\
\alpha_x \\
\alpha_y \\
\alpha_z
\end{bmatrix} =
\begin{bmatrix}
N/ES \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}.
\] (3.44)

Les composantes du tenseur des déformations \(\vec{\epsilon} \) en un point \(P \) à la distance \(y_1 \) et \(z_1 \) de la fibre moyenne, sont alors données par,

\[
\begin{align*}
\epsilon_{xx} &= N/ES, \\
\epsilon_{yy} &= -\nu\epsilon_{xx}, \\
\epsilon_{zz} &= -\nu\epsilon_{xx}, \\
\epsilon_{xy} &= 0, \\
\epsilon_{yz} &= 0, \\
\epsilon_{zx} &= 0.
\end{align*}
\] (3.45)

Les composantes du tenseur des contraintes \(\vec{\sigma} \) sont alors données par,

\[
\begin{align*}
\sigma_{xx} &= N/S, \\
\sigma_{yy} &= 0, \\
\sigma_{zz} &= 0, \\
\sigma_{xy} &= 0, \\
\sigma_{yz} &= 0, \\
\sigma_{zx} &= 0.
\end{align*}
\] (3.46)

On note dans ce cas particulier que les tenseurs des contraintes et des déformations ne dépendent pas de la position du point \(P \) par rapport au point \(H \).

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir les brevets 050, 054 et 089.

3.5.7 flexion simple autour de l’axe \(H\vec{z} \)

Une poutre est sollicitée en flexion simple autour de l’axe \(H\vec{z} \) lorsque \(M_{fz} \) et \(T_y \) sont différents de 0. La loi de comportement de la fibre moyenne 3.34 fournie donc,

\[
\begin{bmatrix}
\epsilon_x \\
\gamma_y \\
\gamma_z \\
\alpha_x \\
\alpha_y \\
\alpha_z
\end{bmatrix} =
\begin{bmatrix}
0 \\
T_y/\dot{G}_y \\
0 \\
0 \\
0 \\
M_{fz}/\dot{E}_Hz
\end{bmatrix}.
\] (3.47)

Les composantes du tenseur des déformations \(\vec{\epsilon} \) en un point \(P \) à la distance \(y_1 \) et \(z_1 \) de la fibre
moyenne, sont alors données par,

\begin{align*}
\varepsilon_{xx}(y_1, z_1) &= -\frac{M_f}{EI_H} y_1, \\
\varepsilon_{yy}(y_1, z_1) &= -\nu \varepsilon_{xx}, \\
\varepsilon_{zz}(y_1, z_1) &= -\nu \varepsilon_{xx}, \\
\varepsilon_{xy}(y_1, z_1) &= \frac{T_y}{G_S} g(y_1), \\
\varepsilon_{yz} &= 0, \\
\varepsilon_{zx} &= 0.
\end{align*}

(3.48)

La répartition des déformations dans l’épaisseur de la poutre n’est pas constante (cinématique 3). La fonction \(g(y_1) \) peut être calculée (voir cours de 2ième année à venir). C’est la raison pour laquelle il faut corriger la section en cisaillement \((S_y) \) dans la loi de comportement. Des exemples de ces fonctions sont fournies dans les tableaux joints (figures 3.32 3.33).

Les composantes du tenseur des contraintes \(\bar{\sigma} \) sont alors données par,

\begin{align*}
\sigma_{xx}(y_1, z_1) &= -\frac{M_f}{EI_H} y_1, \\
\sigma_{yy} &= 0, \\
\sigma_{zz} &= 0, \\
\sigma_{xy}(y_1, z_1) &= \frac{T_y}{G_S} g(y_1), \\
\sigma_{yz} &= 0, \\
\sigma_{zx} &= 0.
\end{align*}

(3.49)

On note dans ce cas particulier que les tenseurs des contraintes et des déformations dépendent de la position du point \(P \) par rapport au point \(H \).

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 051, 052, 053 et 055.

Statique des poutres

De la ceinture verte
...
à la ceinture marron.
3.6 Résolutions de problèmes

Si l’objectif est de calculer un déplacement (ou une rotation) d’un point de la poutre, il faut :
– choisir un point de départ où le déplacement et/ou la rotation est connue
– orienter la poutre du point de départ au point où s’effectue la recherche de déplacement
– écrire la ou les formules de Bresse nécessaires
– identifier les composantes du torseur des efforts intérieurs qui doivent être calculées, et sur quel segment,
– calculer ces composantes en fonction du chargement (et des éventuelles inconnues hyperstatiques (en vert)). Le choix judicieux du secteur aval ou amont peut parfois permettre d’éviter de calculer les réactions aux liaisons.
– deux cas sont possibles :
 – le système est hypertatique
 – il faut écrire une équation supplémentaire : elle concerne le degré de liberté dual de l’inconnue hyperstatique (en vert).
 – Si c’est une force dans une direction, c’est le déplacement dans cette direction. Si c’est un moment autour d’un axe, c’est la rotation autour de cet axe.
 – Calculer (comme ci-dessus par les formules de Bresse ou une méthode énergétique) le déplacement recherché (ou la rotation recherchée). Ceci vous donne une équation supplémentaire qui lie l’inconnue hyperstatique (en vert) aux chargements (en rouge).
 – Remplacer dans les expressions des composantes d’effort intérieur, l’inconnue hyperstatique (en vert) par son expression en fonction du chargement,
 – si le système est isostatique, les composantes du torseur des efforts intérieurs sont alors connues en fonction uniquement des chargements (en rouge).
 – injecter ces expressions dans les formules de Bresse,
 – faire les intégrales

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir les brevets 075 et 077.

3.6.1 Résolution par superposition

hypothèses

Pour que le principe de superposition soit valide, il faut que la loi de comportement du matériau utilisé soit linéaire, et que les déplacements soient petits devant les dimensions de la structure. Cette deuxième condition d’exprime plus précisément par le fait qu’il faut que le torseur des efforts intérieurs ne varie que de façon négligeable s’il est calculé pour la poutre dans sa configuration initiale et s’il est calculé dans sa configuration déformée.

énoncé

Soit une structure élastique linéaire, sous un ensemble de chargements \(\{ \tau_1 \} \) cette structure subit un champs de déplacement \(\{ U_1 \} \), sous un ensemble de chargements \(\{ \tau_2 \} \) cette structure subit un champs de déplacement \(\{ U_2 \} \), alors si elle est chargée simultanément par \(\{ \tau_1 \} + \{ \tau_2 \} \), son champs de déplacement est \(\{ U_1 \} + \{ U_2 \} \).

exemple

Soit une poutre droite de longueur \(l = 1 \) m, de moment quadratique \(I_{Hz} = 1 \times 10^{-8} \) m\(^4\) autour de l’axe \(H_x \), reliant les points A et B, tel que \(\overrightarrow{AP} = \vec{i} \) et que le point A est encastré.
– Cette poutre sous une charge en B \(\overrightarrow{F} = 100 \vec{j} \) N, subit un déplacement en B qui vaut \(\vec{u}_B = 0.0159 \vec{j} \) m.
– Cette poutre sous un couple \(\overrightarrow{C} = 100 \vec{k} \) Nm en D, milieu de [AB], subit un déplacement en B qui vaut \(\vec{u}_B = 0.0179 \vec{j} \) m.
Sous les deux chargements, le déplacement du point B vaut $\vec{u}_B = 0.0337\vec{j}$.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir les brevets 056 074.

3.6.2 Méthodes énergétiques

Les formules de Bresse nécessitent des calculs dans des espaces vectoriels, alors que bien souvent, c'est un déplacement dans une direction, une rotation autour d'un axe ou un état de déformation qui est cherché. Ce sont des grandeurs scalaires (des tenseurs d’ordre 0). Il est donc intéressant de mettre en place une méthode de résolution qui utilise une grandeur scalaire : l’énergie.

Energie de Déformation

Par définition l’énergie de déformation dans une structure composée de poutres est :

$$W_{int} = \frac{1}{2} \int_{structure} \left(\frac{N^2}{ES} + \frac{T_y^2}{GS_y} + \frac{T_z^2}{GS_z} + \frac{M_x^2}{EI_x} + \frac{M_y^2}{EI_y} + \frac{M_z^2}{EI_z} \right) ds. \quad (3.50)$$

Elle correspond à la somme sur toute la poutre de l’énergie de déformation dans une section droite. Cette dernière est le comoment du torseur des déformations de la section droite et du torseur des efforts intérieurs. Le fait que la structure soit élastique, fait apparaître le coefficient 1/2 de part la proportionnalité de ces deux torseurs. En utilisant la loi de comportement de la cinématique 3, on peut remplacer le torseur des déformations par son expression du torseur des efforts intérieurs. On obtient ainsi la formule 3.50.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 057.

travail des chargements extérieurs

Les chargements extérieurs sont de deux types :
- les réactions aux liaisons
- les chargements imposés

Supposons que pour une poutre, un unique chargement soit imposé en un point B et que celui-ci soit représenté par un torseur $\{\tau_B\}$ dont les deux composantes \vec{F} et \vec{C} croissent proportionellement. Sous l’effet de ce chargement le point B subit un champs de déplacement représenté par le torseur $\{U_B\}$ composé d’une résultante $\vec{\omega}$ et d’un moment \vec{u}_B. Le travail de ce torseur de chargement entre l’état repos et l’état chargé est la moitié du comoment des torseurs de chargement et de déplacement :

$$W_{ext} = \frac{1}{2} \left(\vec{F}.\vec{u}_B + \vec{C}.\vec{\omega} \right). \quad (3.51)$$

Les réactions aux liaisons, si elles sont parfaites, ne travaillent pas. En effet, soit la composante de déplacement ou de rotation est nulle alors qu’une réaction est présente, soit la composante de déplacement ou de rotation n’est pas nulle, mais la composante de force ou de couple est nulle.

travail d’un chargement constant lors d’un mouvement dû à une autre charge

Supposons qu’un torseur de chargement $\{\tau_A\}$ soit appliqué à un point A et que ce point A subisse un torseur de déplacement $\{U_A\}$ dû à un autre chargement. Le travail de $\{\tau_A\}$ dans le mouvement $\{U_A\}$ est,

$$W_{ext} = \left(\vec{F}.\vec{u}_A + \vec{C}.\vec{\omega} \right), \quad (3.52)$$

qui diffère de l’équation 3.51 simplement par l’absence du coefficient $\frac{1}{2}$.

56
théorème de réciprocity de Maxwell-Betti

Supposons maintenant qu’un système subisse :
- un premier chargement \(\{ \tau_1 \} \) en un point A qui implique un champ de déplacement \(\{ u_1 \} \) en tout point de la poutre. Ce premier chargement est suivi d’un second \(\{ \tau_2 \} \) en un point B, qui implique un champs de déplacement supplémentaire \(\{ u_2 \} \). Dans la première phase, le travail extérieur est \(W_{11} = \frac{1}{2} \left(\vec{F}_A \cdot \vec{u}_1 + \vec{C}_A \cdot \vec{\omega}_1 \right) \). Dans la seconde phase il est \(W_{12} + W_{22} = \left(\vec{F}_B \cdot \vec{u}_2 + \vec{C}_B \cdot \vec{\omega}_2 \right) \);
- un premier chargement \(\{ \tau_2 \} \) en un point B qui implique un champs de déplacement \(\{ u_2 \} \) en tout point de la poutre. Ce premier chargement est suivi d’un second \(\{ \tau_1 \} \) en un point A, qui implique un champs de déplacement supplémentaire \(\{ u_1 \} \). Dans la première phase, le travail extérieur est \(W_{22} = \frac{1}{2} \left(\vec{F}_B \cdot \vec{u}_2 + \vec{C}_B \cdot \vec{\omega}_2 \right) \). Dans la seconde phase il est \(W_{21} + W_{11} = \left(\vec{F}_A \cdot \vec{u}_1 + \vec{C}_A \cdot \vec{\omega}_1 \right) \).

Le champ de déplacement total ne dépend pas de l’ordre dans lequel les chargements ont été appliqués. Le travail des forces extérieures n’en dépend donc pas. Égaler ces travaux amène à l’égalité \(W_{12} = W_{21} : le travail du chargement 1 dans le déplacement 2 est égal au travail du chargement 2 dans le déplacement 1 \).

A titre d’illustration, si le chargement 1 est une force \(\vec{F}_{1A} \) en A qui implique un déplacement \(\vec{u}_{1B} \) en B, le chargement 2 est une force \(\vec{F}_{2B} \) en B qui implique un déplacement \(\vec{u}_{2A} \) en A, alors,
\[\vec{F}_{1A} \cdot \vec{u}_{2A} = \vec{F}_{2B} \cdot \vec{u}_{1B}. \]

(3.53)

Si les modules des forces et leurs directions sont les mêmes, et que les déplacements sont mesurés dans les directions de ces forces,
\[u_{2A} = u_{1B}. \]

(3.54)

Si l’on appelle \(c_{12} = \frac{\Delta u}{\Delta \vec{F}_{1A}} \), le coefficient d’influence d’une force en A sur le déplacement en B, on a alors l’égalité des coefficients d’influence,
\[c_{12} = c_{21}. \]

(3.55)

Le coefficient d’influence n’est rien d’autre que la fonction de réponse en fréquence entre le point A et le point B à fréquence nulle.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 058.

théorème de Castigliano

Sur l’exemple du ressort de raideur \(k \), montrons que le déplacement \(u \) et relié à la force \(F \) par
\[u = \frac{\partial W_{ext}}{\partial F} \cdot W_{ext} = \frac{1}{2} u F, \]
\(u = F/k \), donc \(W_{ext} = \frac{1}{2} F^2/k \), d’où \(\frac{\partial W_{ext}}{\partial F} = F/k \) et \(\frac{\partial W_{ext}}{\partial F} = u. \)

Si le système est conservatif, le travail des chargements extérieurs est stoqué sous la forme d’énergie interne. On a donc l’égalité \(W_{int} = W_{ext}. \)

On peut donc énoncer de façon plus générale, le théorème de Castigliano comme : Pour un effort \(F \vec{u} \) en un point A,
\[\vec{u}_A \cdot \vec{n} = \frac{\partial W_{int}}{\partial F}. \]

(3.56)

Pour un couple \(C \vec{u} \) en un point A,
\[\vec{\omega}_A \cdot \vec{n} = \frac{\partial W_{int}}{\partial C}. \]

(3.57)

- Erreur classique : Il ne faut pas calculer l’intégrale de l’énergie de déformation, avant de faire la dérivation par rapport au paramètre \(q \), mais échanger les signes intégration et dérivation.
pour faire la dérivation en premier. En effet, si une composante ne dépend pas du paramètre de dérivation (par exemple N), le terme $2N \frac{\partial N}{\partial q} = 0$, cela n’aurait servi à rien de calculer $\frac{1}{2} \int_{poutre} N^2$.

- utilisation en un point non chargé : Ajout au chargement réel d’un chargement fictif dual du déplacement recherché, puis utilisation du théorème de Castigliano, pour enfin annuler le chargement fictif.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 059.

3.6.3 résolution de systèmes hyperstatiques extérieurement

Dans le paragraphe 3.4.3, vous avez déterminé si le système étudié était isostatique ou hyperstatique par rapport aux liaisons avec le monde extérieur. Pour chaque inconnue hyperstatique, vous avez écrit, paragraphe 3.4.3, l’équation cinématicque associée permettant d’obtenir une équation supplémentaire. le calcul de la valeur du degré de liberté associé peut être faite :

- par les formules de Bresse, appliquées au système isostatique associé.
- par Castigliano.
Statique des poutres

De la ceinture marron

... aux ceintures noire et noire 1ière dan.
Fig. 3.35 – Un système hyperstatique intérieurement nécessite d’effectuer une coupure en un point arbitraire C.

intérieurement

Un système est hyperstatique intérieurement, lorsque pour la fibre moyenne est fermée.
En effet, si l’on effectue une étude du torseur des efforts intérieurs en un point H, il est nécessaire de définir les segments seg+ et seg -. Or, ces segments sont reliés entre eux par la fibre moyenne sans passer par H, car cette fibre moyenne est fermée. Il est alors impossible de définir le torseur des efforts intérieurs.

Le déroulement à suivre est donc la suivante :
- on choisit un point de coupure C sur la fibre moyenne fermé.
- on coupe par la pensée la fibre moyenne en C
- on charge les deux faces de la coupure avec deux torseurs \(\{\tau_1\} \) et \(\{\tau_2\} \) sont les 6 composantes sont inconnues. Nous avons donc à priori 12 inconnues hyperstatiques. Dans le cas d’un problème plan, les deux torseurs n’auront que 3 inconnues chacun : deux de résultantes et une de moment.
- Des relations existent entre ces 12 composantes. Pour les trouver, on isole un petit tronçon de fibre moyenne de longueur \(2ds \) autour du point C ce qui définit les point C’ et C”, puis on écrit l’équilibre de ce petit tronçon qui est chargé par \(-\{\tau_1\}_C' \), \(-\{\tau_2\}_C' \) et éventuellement un chargement concentré connu en C \(\{\tau_C\} \). L’équilibre fournit 6 équations reliant les composantes de \(\{\tau_2\} \) à celles de \(\{\tau_1\} \) et \(\{\tau_C\} \). On fera tendre \(ds \) vers 0, afin de simplifier les relations.
- La fibre moyenne de la structure n’est alors plus fermée, le torseur des efforts intérieurs en un point H peut être calculé classiquement en fonction des chargements extérieurs et des composantes de \(\{\tau_1\} \)
- pour déterminer les valeurs des inconnues hyperstatiques, on agira classiquement en utilisant Castigliano : ceci traduit que les déplacements et rotations relatifs de C’ et C” sont nuls.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 077.
Fig. 3.36 – Les concepts utiles au passage direct du torseur des efforts intérieurs au torseur de déplacement.

3.6.4 Systèmes articulé

Si la barre est droite, articulée et non chargée sur sa longueur alors,

\[
\{\tau_H\} = \begin{bmatrix} N_0^\uparrow \\ 0 \end{bmatrix}_H,
\]

(3.58)

avec \(i\) direction de la barre.

treillis hyperstatique plan

3.7 Une cinématique mieux adaptée

3.7.1 Cisaillement

exemple

contraintes dans la section droite
cas d’un effort tranchant constant \(\sigma_{xy} = \frac{T_{ymy}}{I_{z b}}\)
cas d’un effort tranchant variable ; charge répartie ; poids propre
déformations
calcul de la section corrigée

\[
\text{section corrigée} : \text{section rectangulaire } S_y = \frac{5}{6} S \text{ autres section : (voir tableau en fin de chapitre)}
\]

négligence

3.7.2 Torsion

3.8 Dimensionnement

Ce paragraphe concerne les étapes mises en gras dans le synopsis figure 3.36.
3.8.1 Cercle de Mohr des contraintes

Voir le cours de Mécanique des solides déformables.

rappel : plan de Mohr
quelques sollicitations simples pour une poutre
expérience de traction
expérience de compression
expérience de torsion d’un arbre
expérience de traction biaxe cylindrique
expérience de traction triaxiale

3.8.2 Critères de limite d’élasticité

rappels
– contraintes principales

\[
\overline{\sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix},
\]

(3.59)

– invariants
\[
I_1(s) = \text{trace} \sigma = \sigma_1 + \sigma_2 + \sigma_3,
\]

(3.60)

\[
I_2(s) = (\text{trace} \sigma)^2 + \text{trace} \sigma^2 = +\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1,
\]

(3.61)

\[
I_3(s) = \text{det} (s) = \sigma_1 \sigma_2 \sigma_3.
\]

(3.62)

– parties sphérique et déviatorique

Critère de Von-Mises

\[-I_2(d) < \eta^2 \leftrightarrow (\sigma_{xx} - \sigma_{yy})^2 + (\sigma_{yy} - \sigma_{zz})^2 + (\sigma_{zz} - \sigma_{xx})^2 + 6(\sigma_{xy} + \sigma_{yz} + \sigma_{zx})^2 < \eta^2. \]

(3.63)

Critère de Tresca

Le vecteur contrainte tangentielle a un module inférieur à une valeur \(\tau \)

Représentations
quelques matériaux usuels

3.8.3 Méthode de calcul

Lors des travaux pratiques, les charges maximales à appliquer à la structure doivent absolument être calculée avant de faire les essais. L’enseignant, ne vous donnera l’autorisation de charger cette structure que lorsque vous lui aurez fourni les valeurs que vous ne dépasserez pas.

La démarche à suivre est la suivante :
– bilan des actions
– calcul du torseur des efforts intérieurs
– détermination des évolutions de ses composantes le long de la poutre (avec l’abscisse curviligne \(s \)) :
– effort normal : \(N(s) = \)
effort tranchant dans la direction \vec{y} : $T_y(s) =$

effort tranchant dans la direction \vec{z} : $T_z(s) =$

moment de torsion : $M_x(s) =$

moment de flexion autour de l’axe $H\vec{y}$: $M_{fy}(s) =$

moment de flexion autour de l’axe $H\vec{z}$: $M_{fz}(s) =$

recherche du point le plus sollicité : Les critères de limite d’élasticité s’écrivant en élasticité, il faudrait calculer le tenseur des contraintes en tout point P et lui appliquer un critère (par exemple de Von Mises pour de l’acier). Nous garderons cette démarche pour la deuxième année. On peut simplifier le critère dans quelques cas particuliers :

si la poutre est soumise à de la flexion M_{fz}, de l’effort tranchant T_y et de l’effort normal N, la contrainte en un point P de la section droite tel que $\vec{H}P = \hat{y}\vec{y} + \hat{z}\vec{z}$ est donnée par :

$$
\sigma_{xx}(s, \hat{y}) = \frac{N(s)}{S(s)} - \frac{M_{fz}(s)\hat{y}}{I_{Hz}(s)}.
$$

(3.64)

Il faut rechercher le maximum et le minimum de σ_{xx}. On considérera donc les demi-épaisseurs de la poutre $\hat{y}_{maxi} = h(s)/2$ ou $\hat{y}_{maxi} = -h(s)/2$. On se limitera :

- pour de l’acier à $-240 \text{ MPa} < \sigma_{xx} < 240 \text{ MPa}$,
- pour de l’aluminium et ses alliages à $-30 \text{ MPa} < \sigma_{xx} < 30 \text{ MPa}$,
- pour du bois sollicité dans le sens des fibres (longitudinalement) à $-20 \text{ MPa} < \sigma_{xx} < 50 \text{ MPa}$.

Pour les autres matériaux, consultez les tableaux affichés en salle tp.

si la poutre est soumise à de la torsion pure M_x, et que la section est circulaire de rayon $r(s)$, alors la contrainte est une contrainte de cisaillement. Elle est donnée en un point P de la section droite tel que $\vec{H}P = \hat{r}\vec{r}$ par,

$$
\sigma_{x\theta}(s, \hat{r}) = \frac{M_x(s)\hat{r}}{I_0(s)}.
$$

(3.65)

Sa valeur maximale est donnée pour $\hat{r} = r(s)$. On se limitera :

- pour de l’acier à $-240/2 \text{ MPa} < \sigma_{x\theta} < 240/2 \text{ MPa}$,
- pour de l’aluminium et ses alliages $-30/2 \text{ MPa} < \sigma_{x\theta} < 30/2 \text{ MPa}$

Pour les autres matériaux, consultez les tableaux affichés en salle tp.

dans le cas où en un point est présent une contrainte normale σ_{xx} et une contrainte de cisaillement $\sigma_{x\theta}$, alors on calculera une contrainte équivalente (de Tresca),

$$
\sigma_{equiv} = \sqrt{\sigma_{xx}^2 + 4\sigma_{x\theta}^2}.
$$

(3.66)

Sa valeur doit être comprise :

- pour de l’acier entre $-240 \text{ MPa} < \sigma_{equiv} < 240 \text{ MPa}$,
- pour de l’aluminium et ses alliages entre $-30 \text{ MPa} < \sigma_{equiv} < 30 \text{ MPa}$

3.8.4 Exemple de calcul

Soit une poutre droite $AB = l\vec{i}$ (avec $l = 0.2m$), encastrée au point A et chargée par un effort $F\vec{j}$ en B, de section circulaire de rayon $r = 0.005m$, en acier. Calculez la force F maximale admissible par la structure.
bilan des actions :
- une liaison encastrément en A \(\{ \vec{R}_1, \vec{M}_1 \} \) en A ;
- un torseur de chargement \(\{ F_j, 0 \} \) en B ;
- calcul du torseur des efforts intérieurs : on oriente la poutre de A vers B. Le torseur des efforts intérieurs en \(H(s) \) tel que \(\vec{AH} = s \hat{\vec{i}} \), se calcule en fonction de la partie aval :

\[
\{ \tau_H \} = \left\{ \begin{array}{c} F_j \\ 0 \end{array} \right\}_B = \left\{ \begin{array}{c} F_j \\ F(l - s) \hat{k} \end{array} \right\}_H = \left\{ \begin{array}{c} F \hat{y} \\ F(l - s) \hat{z} \end{array} \right\}_H,
\]

(3.67)

avec \((H, \vec{x}, \vec{y}, \vec{z})\) le repère local en \(H\).

- détermination des évolutions de ses composantes le long de la poutre (avec l’abscisse \(s\)) :
 - effort normal : \(N(s) = 0\)
 - effort tranchant dans la direction \(\vec{y} : T_y(s) = F\)
 - effort tranchant dans la direction \(\vec{z} : T_z(s) = 0\)
 - moment de torsion : \(M_x(s) = 0\)
 - moment de flexion autour de l’axe \(H\vec{y} : M_{fy}(s) = 0\)
 - moment de flexion autour de l’axe \(H\vec{z} : M_{fz}(s) = F(l - s)\)

- recherche du point le plus sollicité :
 La poutre est soumise à de la flexion \(M_{fz}\) de l’effort tranchant \(T_y\), la contrainte en un point \(P\) de la section droite tel que \(\vec{HP} = \hat{y}\hat{y} + \hat{z}\hat{z}\) est donnée par :

\[
\sigma_{xx}(s, \hat{y}) = -\frac{F(l - s)\hat{y}}{\pi r^4/4}.
\]

(3.68)

Il faut rechercher le maximum et le minimum de \(\sigma_{xx}\). On considérera donc les demi-épaisseurs de la poutre \(\hat{y}_{maxi} = r\) ou \(\hat{y}_{maxi} = -r\). On obtient donc :

\[
\sigma_{xx}(0, -r) = \frac{Flr}{\pi r^4/4} = \frac{4Fl}{\pi r^3},
\]

(3.69)

d’où,

\[
F < \frac{24010^6\pi r^3}{4l},
\]

(3.70)

Soit pour une poutre de rayon \(r = 0.005m\) et une longueur de \(l = 0.2m\), une force maximale admissible de \(F = 118\) N.

Assimilation Pour vérifier que vous avez assimilé ce paragraphe, je vous invite à obtenir le brevet 076.

3.9 Non linéarités géométriques (grands déplacements)

3.9.1 Exemple
3.9.2 équation
3.9.3 méthode incrémentale
3.9.4 flambement

3.10 Formulation variationnelle

3.10.1 Principe des travaux virtuels
\[W^* = \]

3.10.2 Equation d’équilibre
\[W^* = \]

3.10.3 Modèle variationnel en déplacement
\[W^* = \]

3.10.4 Modèle variationnel mixte
\[W^* = \]