, Other GPR variants Universal kriging: account for trend parameters in the GPR equations. Cf

. Garland, Multiple outputs: cokriging. Cf, 2013.

. Pelamatti, Discrete x variables: Cf, 2019.

L. Riche, &. Durrande-gp-regression, and . Sept, , vol.68, p.74, 2019.

, Other names, (almost) same equations m(x) = k(x, X )k(X , X ) ?1 F is ubiquitous Bayesian linear regression: the posterior distribution is identical to the GPR equations under conditions on the kernel, cf, vol.35

, Kalman filter, see slide 21 of

, LS-SVR: same functional form of predictor (sum of kernels centered), but explicit regularization control (C , whereas GPR is implicit in likelihood)

. Rbf,

L. Riche, &. Durrande-gp-regression, and . Sept, , vol.69, p.74, 2019.

D. S. References-i-broomhead and D. Lowe, , 1988.

, Radial basis functions, multi-variable functional interpolation and adaptive networks, Royal Signals and Radar Establishment Malvern

N. Durrande and R. Le-riche, Introduction to Gaussian Process Surrogate Models. Lecture at 4th MDIS form@ter workshop, 2017.
URL : https://hal.archives-ouvertes.fr/cel-01618068

T. E. Fricker, J. E. Oakley, and N. M. Urban, , 2013.

.. Lmc, Multivariate gaussian process emulators with nonseparable covariance structures, Technometrics, vol.55, issue.1, pp.47-56

N. Garland, R. Le-riche, Y. Richet, and N. Durrande, , 2019.

, Aerospace System Analysis and Optimization in uncertainty, chapter Cokriging for multifidelity analysis and optimization

. References and D. Ginsbourger, , 2009.

, Multiples métamodèles pour l'approximation et l'optimisation de fonctions numériques multivariables

J. Hensman, N. Fusi, and N. D. Lawrence, Gaussian processes for big data, 2013.

D. G. Krige, , 1951.

, A statistical approach to some basic mine valuation problems on the witwatersrand, Journal of the Southern African Institute of Mining and Metallurgy, vol.52, issue.6, pp.119-139

L. Laurent, R. Le-riche, B. Soulier, and P. Boucard, An overview of gradient-enhanced metamodels with applications, Archives of Computational Methods in Engineering, vol.26, issue.1, pp.61-106, 2019.
URL : https://hal.archives-ouvertes.fr/emse-01525674

R. Le-riche, Introduction to Kriging. Lecture at mnmuq2014 summer school, 2014.
URL : https://hal.archives-ouvertes.fr/cel-01081304

R. References-iii-le-riche, H. Mohammadi, N. Durrande, E. Touboul, and X. Bay, A Comparison of Regularization Methods for Gaussian Processes. slides of talk at siam conference on optimization op17 and accompanying technical report hal-01264192, 2017.

A. F. López-lopera, F. Bachoc, N. Durrande, and O. Roustant, , 2018.

, Finite-dimensional gaussian approximation with linear inequality constraints, SIAM/ASA Journal on Uncertainty Quantification, vol.6, issue.3, pp.1224-1255

G. Matheron, Principles of geostatistics, Economic geology, vol.58, issue.8, pp.1246-1266, 1963.

J. Pelamatti, L. Brevault, M. Balesdent, E. Talbi, and Y. Guerin, Efficient global optimization of constrained mixed variable problems, Journal of Global Optimization, vol.73, issue.3, pp.583-613, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01942439

C. E. Rasmussen and C. K. Williams, , 2006.

, Gaussian Processes for Machine Learning

B. References-iv-rosi?, Inverse problems. slides of the MNMUQ2019 course. presented at the French-German summer school Modeling and Numerical Methods for Uncertainty Quantification, 2019.

O. Roustant, D. Ginsbourger, and Y. Deville, , 2012.

. Dicekriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization, Journal of Statistical Software, issue.1, p.51

O. Roustant, E. Padonou, Y. Deville, A. Clément, G. Perrin et al., , 2019.

, Group kernels for gaussian process metamodels with categorical inputs, SIAM/ASA Journal on Uncertainty Quantification

D. Rullière, N. Durrande, F. Bachoc, C. , and C. , , 2018.

, Nested kriging predictions for datasets with a large number of observations, Statistics and Computing, vol.28, issue.4, pp.849-867

B. Schölkopf, R. Herbrich, and A. J. Smola, A generalized representer theorem, 2001.

, International conference on computational learning theory, pp.416-426