R. Courant, Bulletin of the American Mathematical Society, vol.49, 1943.

P. A. Raviart, J. M. Thomas, ;. J. Nédélec, ;. Brezzi, J. Douglas et al., Mathematics of Computation, vol.606, 1977.

. R. Kirby, Automated Solution of Differential Equations by the Finite Element Method, ACM Transactions on Mathematical Software, vol.30, 2004.

M. Alnaes, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions on Mathematical Software, vol.40, 2014.

. Books, . Memoirs, R. Chapters, V. Papers, P. Girault et al.,

, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer series in Computational Mathematics, vol.5, 1986.

P. Monk, R. HIPTMAIR. Finite elements in computational electromagnetism, Acta Numerica, pp.237-339, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01707577

M. Costabel, M. N. Dauge.-;-d, R. S. Arnold, and R. W. Falk, Computation of resonance frequencies for Maxwell equations in non-smooth domains, Lect. Notes Comput. Sci. Eng, vol.31, pp.1-155, 2003.

D. Boffi, Finite element approximation of eigenvalue problems

, Acta Numerica, vol.19, pp.1-120, 2010.

D. N. Arnold, Finite Element Exterior Calculus, CBMS-NSF Regional Conf. Series in Applied Math. SIAM, 2018.

, References: Articles in journals

F. Assous, P. Ciarlet, E. Sonnendr¨uckersonnendr¨, and . Sonnendr¨ucker,

I. Babu?kababu?babu?ka and J. E. Osborn,

, Finite element-Galerkin approximation of the eigenvalues [...] selfadjoint problems, Math. Comp, vol.52, issue.186, pp.275-297, 1989.

M. Birman and M. Solomyak,

, L 2 -theory of the Maxwell operator in arbitrary domains

, Russ. Math. Surv, vol.42, issue.6, pp.75-96, 1987.

D. Boffi,

, Fortin operator and discrete compactness for edge elements, Numer. Math, vol.87, issue.2, pp.229-246, 2000.

D. Boffi, M. Costabel, M. Dauge, L. Demkowicz, and A. R. Hiptmair, Discrete compactness for the p-version of discrete differential forms, SIAM J. Numer. Anal, vol.49, issue.1, pp.135-158, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00420150

D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia, Computational models of electromagnetic resonators: analysis of edge element, SIAM J. Numer. Anal, vol.36, pp.1264-1290, 1999.

A. Bonnet-ben-dhia, C. Hazard, and S. Lohrengel,

, A singular field method for the solution of Maxwell's equations in polyhedral domains, SIAM J. Appl. Math, vol.59, issue.6, pp.2028-2044, 1999.

A. Bonito and J. Guermond,

, Maxwell system by continuous Lagrange finite elements, Math. Comp, vol.80, issue.276, pp.1887-1910, 2011.

A. Buffa, P. Ciarlet, J. R. , and E. Jamelot,

, Solving electromagnetic eigenvalue problems, Numer. Math, vol.113, issue.4, pp.497-518, 2009.

S. Caorsi, P. Fernandes, and M. Raffetto,

, Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec, M2AN Math. Model. Numer. Anal, vol.35, issue.2, pp.331-354, 2001.

M. Costabel,

, A coercive bilinear form for Maxwell's equations

, J. Math. Anal. Appl, vol.157, issue.2, pp.527-541, 1991.

M. Costabel and M. Dauge,

L. Maxwell, . Eigenvalues-on, and . Polyhedra, Math. Meth. Appl. Sci, vol.22, 1999.

, References: Articles in journals

M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch. Rational Mech. Anal, vol.151, issue.3, pp.221-276, 2000.

M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math, vol.93, issue.2, pp.239-277, 2002.

M. Costabel, M. Dauge, and S. N. , Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal, vol.33, issue.3, pp.627-649, 1999.

M. Costabel, M. Dauge, and C. Schwab, Exponential convergence of the hp-FEM for the weighted regularization of Maxwell equations in polygonal domains, Math. Models Methods Appl. Sci, vol.15, issue.4, p.575622, 2005.

J. Descloux, N. Nassif, and J. Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. NumérNum´Numér, vol.12, issue.2, pp.97-112, 1978.

, References: Articles in journals

C. Hazard and S. Lohrengel,

, A singular field method for Maxwell's equations: Numerical aspects in two dimensions, SIAM J. Numer. Anal, 2002.

F. Kikuchi, On a discrete compactness property for the N ´ edéleced´edélec finite elements

, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.36, issue.3, pp.479-490, 1989.

V. A. Kondrat'ev,

, Boundary-value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc, vol.16, pp.227-313, 1967.

J. Edélec,