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1 Introduction

2 An introduction to probability theory

2.1 Some examples

The object of probability theory is to investigate the phenomena which resort to chance.
We will study random dynamical systems in that course: for such systems (see Exam-
ples 1 and 2 below), the intuition is that understanding the state at time n is more
and more difficult as n increases. Probability theory will show, in part, that it is not
the case. Random experiments, and possibly their repetitions, are not an indistinct
chaos. The central notion in a scientific approach to random phenomena will be the
notion of law : prescribing the law of chance of random events (or random variables)
does not limit their uncertainty, but bound them to a well-defined mathematical object.
See Section 2.3. The notion of independence is also prominent in probability theory (see
Example 3 below) and will be introduced in Section 2.5.

Example 2.1 (Coin tossing). Consider the repeated tossing of an unbiased coin. When
N of these experiments have been realized, what can we say? Certainly, what we do not
know is the specific value of the list R1, . . . , RN of the results, from step 1 to step N (Ri
is head or tail according to the result obtained at the i-th tossing). We know however,
among several possible things, and intuitively perhaps, that

1. the probability that (R1, . . . , RN ) is equal to a given element of {head, tail}N is
2−N ,

2. the result of the i-th tossing is independent of the result of the j-th tossing (1 ≤
i < j ≤ N),

3. for large N the number of outcome of head should be similar to the number of
outcome of tail, and thus similar to N

2 .
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Example 2.2 (Random walk). Consider a random walk on Z, a process described by the
following iteration: given the position XN ∈ Z reached at time N , draw, independently
on X0, . . . , XN , a random variable ZN+1 taking the values +1 or−1 with equi-probability
and set

XN+1 = XN + ZN+1.

The initial position is taken at the origin in general: X0 = 0. Once again, we do not
know the position at time N or the trajectory (X0, . . . , XN ) up to time N . However,
here is a list of some facts we know:

1. (for symmetry reasons) the probability that XN > 0 is equal to the probability
that XN < 0,

2. on average, the position of XN is zero,

3. XN has the same parity as N ,

4. on average, |XN |2 = N .

Here are some remarks on these results, and some arguments for the point 4. Note first
that 3. is a deterministic statement: this is true whatever the outcomes may be. The
other statements have a probabilistic nature (we speak of the probability of an event, or
of some results on average). Item 2. is a consequence of 1. The arguments for the point
4. are the following ones: by developing the square, we have

|XN+1|2 = |XN |2 + 2XNZN+1 + |ZN+1|2 = |XN |2 + 2XNZN+1 + 1. (2.1)

Indeed, |ZN+1| always takes the value 1. On average, XNZN+1 = 0 and thus, on average,
|XN+1|2 = |XN |2 + 1, which gives the result by iteration. The rigorous version of this
computation will be given once the notion of independence and expectancy have been
introduced, see 2.29. As a final remark, consider the following question: what is, on
average, the distance of XN to its starting point after N steps? Item 4. gives the upper
bound

√
N since E|XN | ≤ [E|XN |2]1/2 by the Cauchy-Schwarz Inequality. The notation

E for the expectancy operator is introduced in Section 2.7.

Example 2.3 (Numbers). Draw two numbers a and b in [0, 1]. What is the probability
that a ≥ b? The answer one-half comes to mind since the probability that a ≥ b seems
to equal the probability that b ≥ a. To be true, however, this explanation requires a and
b to be drawn according to the same (continuous) law, and to be independent on each
other. Here we meet again these two notions, that we will introduce in Section 2.3 and
Section 2.5 respectively.

2.2 Probability space, random variable

Definition 2.1 (Probability space). A probability space (Ω,F ,P) is a measure space
where the measure has total mass 1: F is a σ-algebra on Ω, a non-empty set, and P
a measure on (Ω,F) such that P(Ω) = 1. This space is said to be complete when F
contains all the negligible sets (definition: a subset A of Ω is said to be negligible if it is
contained in a set Ã ∈ F such that P(Ã) = 0). The elements of F are called events.
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Exercise 2.2. Find the experiment corresponding to each of the following probability
spaces and give the characterization of the event A in terms of this experiment.

1. Ω = {1, . . . , 6}, P({i}) = 1
6 , A = {2, 4, 6}.

2. Ω = {H,T}2, P({ω}) = 1
4 for each ω ∈ Ω, A = {(H,T ), (H,H)}.

3. Ω = {γ ∈ C([0, T ];R2); γ(0) = 0}, P =“to be seen later”,

A = {γ ∈ Ω;∃t ∈ [0, T ], γ(t) ∈ D},

where D is a closed subset of R2 (e.g. D is the closed disk of radius 1 and center
(2, 0)).

Note: what may be F in the last example?

The solution to Exercise 2.2 is here.

Definition 2.3 (Random variable). Let (Ω,F ,P) be a probability space and (E, E) a
measurable space. A map X : Ω → E is said to be a random variable on E if it is
measurable: for all B ∈ E , X−1(B) ∈ F .

It is actually in terms of a random variable that the outcomes of random experiments
are expressed.

Exercise 2.4. Come back to Exercise 2.2. In each case, introduce a natural random
variable X and write the event A in terms of X.

The solution to Exercise 2.4 is here.

In general, E is a topological space and E the σ-algebra of the Borelians. All the events
characterized by a random variable X form the following sub-σ-algebra of F :

σ(X) = {X−1(B);B ∈ E}.

If Φ: (E, E)→ (Ẽ, Ẽ) is a measurable application between two measurable spaces, then
Y := Φ ◦X is σ(X)-measurable. Indeed, for all B̃ ∈ Ẽ , we have

Y −1(B̃) = X−1(Φ−1(B̃)) ∈ σ(X).

Conversely, we have the following result.

Theorem 2.1. Let E and Ẽ be two separable Banach spaces endowed respectively with
the σ-algebra E and Ẽ of Borelians. Let

X : (Ω,F)→ (E, E), Y : (Ω,F)→ (Ẽ, Ẽ)

be two random variables. If Y is σ(X)-measurable, then there exists Φ: (E, E)→ (Ẽ, Ẽ)
measurable such that Y = Φ ◦X.
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To prove Theorem 2.1, we will use the following result of approximation by simple
functions.

Definition 2.5 (Simple function). Let E be a separable Banach space endowed with the
Borel σ-algebra E . A random variable X : Ω→ E is said to be simple if, almost-surely,
it takes a finite number of values. Equivalently, X if simple if it can be written as

X =
∑
i∈I

xi1Ai ,

where I is a finite set, xi ∈ E, Ai ∈ F and 1A is the characteristic function of the set A.

In Definition 2.5, we have used for the first time the term “almost-surely”. Here is the
definition

Definition 2.6 (Almost-sure). An event A ∈ F is said to be almost-sure, or to be
realized almost-surely, if P(A) = 1.

The result of approximation by simple functions can now be stated as follows.

Proposition 2.2 (Approximation by simple functions). Let E be a separable Banach
space endowed with the Borel σ-algebra E. If X : Ω→ E is a random variable, then there
exists a sequence of simple functions (Xn) which converges almost-surely to X and such
that ‖Xn‖E ≤ 2‖X‖E.

Proof of Proposition 2.2. Let E∞ = {xk; k ∈ N} be a dense countable subset of E. We
assume x0 = 0. The random variables X takes values in the adherence of E∞, which is
E, hence X is not far from taking its values in E∞, which itself is not far from being
finite. To construct the sequence (Xn) properly, set En = {xk; 0 ≤ k ≤ n} and define
the projection pn : E → En by associating to x ∈ E the closest element y(x) of En. Such
a y(x) is well defined if

d(x,En) = min{‖x− y‖E ; y ∈ En}

is realized for a single y ∈ En. If there are several points y ∈ En for which the minimum
is reached, we define pn(x) as the point xk with lower index k ∈ {0, . . . , n}. The set
p−1
n ({xk}) is therefore[

n⋂
l=k

{x ∈ E; ‖x− xk‖E ≤ ‖x− xl‖E}

]⋂[
k−1⋂
l=0

{x ∈ E; ‖x− xk‖E < ‖x− xl‖E}

]
.

In particular, the projection pn is measurable and Xn := pn ◦ X is a simple function.
Let us prove that (Xn) converges almost-surely to X. Actually, Xn(ω) → X(ω) for all
ω ∈ Ω. Indeed, given ε > 0, there exists n ≥ 0 such that ‖X(ω) − xn‖E < ε. Then
‖Xm(ω) − X(ω)‖E < ε for all m ≥ n by construction. Note that ‖x − pn(x)‖E ≤ ‖x‖
since 0 = x0 ∈ En. By the triangular inequality, we deduce ‖pn(x)‖E ≤ 2‖x‖E : this
gives the bound ‖Xn‖E ≤ 2‖X‖E .
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Proof of Theorem 2.1. Assume first that Y is simple, then

Y =
∑
i∈I

yi1Ai ,

where I is a finite set, yi ∈ Ẽ and Ai ∈ σ(X). By definition, Ai = X−1(Bi), where
Bi ∈ E . Define Φ =

∑
i∈I yi1Bi . Then Φ: E → Ẽ is measurable, and Y = Φ ◦ X. In

the general case, consider a sequence (Yn) of simple random variables which converges
to Y . We apply Proposition 2.2 with the σ-algebra F = σ(X). Then each Yn is σ(X)-
measurable and, for each n, there exists Φn : E → Ẽ measurable such that Yn = Φn ◦X.
Introduce the Borel set B of the points of convergence of the sequence (Φn). We can use
a Cauchy criterion to characterize B and show that it is indeed a Borel set:

B =
⋂
k≥1

⋃
n≥1

⋂
p,q≥n

{
x ∈ E; ‖Φp(x)− Φq(x)‖Ẽ < k−1

}
.

Define Φ(x) = limn→+∞Φn(x) if x ∈ B, Φ(x) = 0 otherwise. Then Φ: E → Ẽ is
measurable and Y = Φ ◦X. Indeed, for all ω ∈ Ω, X(ω) ∈ B since Φn(X(ω)) = Yn(ω)
converges to Y (ω). This concludes the proof.

2.3 The law of a random variable – I

Definition 2.7. Let E be a separable Banach space endowed with the Borel σ-algebra
E . Let X : Ω → E be a random variable. The law of X is the measure µX on (E, E)
defined by

µX(B) := P(X−1(B)) = P(X ∈ B), (2.2)

for all B ∈ E .

Note the use of the probabilistic notation P(X ∈ B) in (2.2). In measure theory, µX is
the image measure of P by X, or push-forward of P by X (notation X∗P or X]P). This
is a probability measure on (E, E). Here are some examples of laws.

2.3.1 Bernoulli’s law.

This is the law of a random variable X taking values in a set E = {x1, x2} with two
elements, according to the probabilities

P(X = x1) = p, P(X = x2) = 1− p, (2.3)

where p ∈ [0, 1] is given. Otherwise speaking, this is the measure

pδx1 + (1− p)δx2 .

Note that x1 and x2 are generic here. The generic notation of the Bernoulli’s law is b(p).
We write X ∼ b(p) if X satisfies (2.3) for some set {x1, x2}.
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2.3.2 Exponential law.

This is the law of a random variable X taking values in [0,+∞) with probabilities

P(X ≥ t) = e−λt, (2.4)

for all t ≥ 0, where λ is a given positive parameter. Since

P(X ≥ t) = e−λt =

∫ +∞

t
λe−λsds,

and since the sets [t,+∞) for t ≥ 0 form a π-system which generates the Borel σ-algebra
of [0,+∞), we see (cf. [Bil95, Theorem 3.3]) that the exponential law is the measure of
density t 7→ λe−λt with respect to the Lebesgue measure on [0,+∞). It is denoted by
E(λ).

2.3.3 Binomial law.

This is the law, denoted B(n, p), of a random variable X taking values in E = {0, . . . , n}
according to the probabilities

P(X = k) =

(
n

k

)
pk(1− p)n−k, (2.5)

where n ∈ N∗ and p ∈ [0, 1].

Remark 2.4 (Vocabulary). Instead of law, one also speaks of distribution (Bernoulli’s
distribution, exponential distribution, and, see below, binomial distribution, Poisson
distribution, normal distribution, etc.) Indeed, knowing the law of X is knowing how
are distributed the possible values of X. The following exercise (which requires the
notion of independence) is an illustration of this notion.

Exercise 2.8 (Invariant measure). Let X0, X1, . . . be the sequence of random variables
on R defined as follows: X0 is chosen at random, according to a law µ0, then, XN being
known, a random variable ZN+1 taking the values +1 or −1 with equi-probability is
drawn independently on X0, . . . , XN and XN+1 given by

XN+1 =
1

2
XN + ZN+1.

1. What means µ0 = δ0? What are then the law µ1, µ2 of X1 and X2 respectively?

2. Consider the case µ0 = 1
2δ−2 + 1

2δ+2. Compute µ1, µ2, µ3. Can you guess a general
formula for µN?

3. Find the way to choose µ0 which ensures that µN , the law of XN , is equal to µ0

for all N ≥ 0.

The solution to Exercise 2.8 is here.
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Remark 2.5 (Important). Consider the statement “Let X be a random variable of law
b(p)” or “Let Y be a random variable of law E(λ)”. In such statements, the nature of
the probability space (Ω,F ,P) is not specified. Is it problematic? Actually not, since
the specification of the probability space is not relevant (illustration in the following
exercise) and since the existence of a probability space and of such a random variable
is ensured. To justify this last assertion, note that, if µ is a probability measure on a
measure space (E, E), and if

(Ω,F ,P) = (E, E , µ), (2.6)

then the identity on E is a random variable of law µ.

Exercise 2.9. Let X : Ω→ E be a random variable. Show that, from the knowledge of
the law µX of X follows the knowledge of all the probabilities P(A) for A ∈ σ(X).

The solution to Exercise 2.9 is here.

We will give the relation between the Binomial law B(n, p) and the Bernoulli’s law b(p).
We will also introduce some other laws (Poisson, Normal). To do this in a consistent
way, we need to introduce first the notions of conditional probability and independence.

2.4 Conditional probability

An example. Two balls are drawn out successively from a box containing four balls
initially: two red balls and two blue balls. What is the probability that the two balls
drawn out from the box have the same color?

There are many ways to answer to this question (at least one combinatoric way and one
probabilistic way). One can draw the following tree to conclude that the probability
that the two balls have the same color is 1

3 .

Four balls
in the box

Red ball
drawn out,
p = 1

2 Red ball
drawn out,
p = 1

3

Blue ball
drawn out,
p = 2

3

Blue ball
drawn out,
p = 1

2 Red ball
drawn out,
p = 2

3

Blue ball
drawn out,
p = 1

3

This corresponds to the following equalities, where A is the event “the two balls have
the same color” and B is the event “the first ball drawn out has the color red”:

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc) (2.7)

=
1

3
× 1

2
+

1

3
× 1

2
=

1

3
.
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In (2.7), P(A|B) is the “probability of A knowing B”, or, more precisely, the “probability
of A knowing that B has been realized”.

Definition 2.10 (Conditional probability). Let (Ω,F ,P) be a probability space. Let
A,B be two events with P(B) > 0. The probability of A conditionally to B is defined as

P(A|B) =
P(A ∩B)

P(B)
. (2.8)

Equation (2.7) is an instance of the formula of total probability.

Exercise 2.11. Let (Ω,F ,P) be a probability space. Prove the following formula of
total probability: if A1, . . . , An are disjoint events whose union has probability one and
A an event, then

P(A) =

n∑
i=1

P(A|Ai)P(Ai) (2.9)

The solution to Exercise 2.11 is here.

2.5 Independence

Definition 2.12 (Independence). Let (Ω,F ,P) be a probability space. Two events A
and B ∈ F are said to be independent if

P(A ∩B) = P(A)P(B). (2.10)

Equivalently to (2.10), if P(B) > 0, one has P(A|B) = P(A): the knowledge of B has no
influence on the realization of A. To test the definition of independence through (2.10),
consider the basic example of one card drawn from a pack of 52 cards and the events
A =“this is an ace”, B =“this is a heart”. We have the respective probabilities

P(A) =
4

52
=

1

13
, P(B) =

13

52
=

1

4
, P(A ∩B) =

1

52
= P(A)P(B).

The events A and B are independent.

Beware of intuition in matter of independence. Consider for example the following
experiment: one rolls two dices. The respective results are denoted X1 and X2. Consider
the events

A1 = {X1 +X2 = 6}, A2{X1 +X2 = 7}, B = {X1 = 4}.

Then A1, the event that the sum of the dices is 6, and B, the event that the first dice
gives 4, are not independent (as expected intuitively), but A2 and B are independent.

Exercise 2.13. Justify the assertion above.

The solution to Exercise 2.13 is here.
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The definition of independence for several events A1, . . . , An and for random variables
X1, . . . , Xm is based on (2.10).

Definition 2.14 (Independence). Let (Ω,F ,P) be a probability space.

1. The events {Ai; i ∈ I} are said to be independent if, for all finite subset J ⊂ I,
one has

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai).

2. The sub σ-algebras Fi ⊂ F for i ∈ I are said to be independent if, for all Ai ∈ Fi,
the {Ai; i ∈ I} are independent.

3. The random variables {Xi; i ∈ I} are independent if the σ-algebra σ(Xi) for i ∈ I
are independent.

The following exercise illustrates a situation where this is not the independence of two
random variables, but on the contrary a particular dependence between them (this is
called a coupling), which is sought. The solution uses independence though.

Exercise 2.15 (Maximal coupling). Let X and Y be two random variables uniformly
distributed on [0, 1] and [0, 1/2] respectively:

P(X ∈ A) = |A ∩ [0, 1]|, P(Y ∈ A) = 2|A ∩ [0, 1/2]|,

for all Borel subset A of R, where |A| is the Lebesgue measure of A. Find a way to
draw X and Y maximizing the probability that X = Y , i.e. explain how to draw two
random variables X̂ and Ŷ having same laws as X and Y respectively, which maximize
P(X̂ = Ŷ ) among such random variables.

The solution to Exercise 2.15 is here.

This second exercise uses the notion of independence, and the probabilistic framework,
to build an example of a sequence converging in L1 but not a.e.

Exercise 2.16. Let (Xn) be a sequence of independent random variables on a probability
space (Ω,F ,P) of respective law b( 1

n):

P(Xn = 1) =
1

n
, P(Xn = 0) = 1− 1

n
.

Show that Xn → 0 in L1(Ω,P) and that (Xn) does not converge to zero almost-surely.

The solution to Exercise 2.16 is here.

A fundamental example of independence is the case of a random variable X on Rn whose
coordinates X1, . . . , Xn constitute independent random variables on R. The law of X is
then the product (in the sense of measures) of the laws of the coordinates.
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Theorem 2.3. Let X1, . . . , Xn be independent random variables on R. Then the law of
the Rn-valued random variable (X1, . . . , Xn) is the product of the laws:

µ(X1,...,Xn) = µX1 × · · · × µXn . (2.11)

Proof of Theorem 2.3. Let X = (X1, . . . , Xn). Let Rn denote the class of measurable
rectangles: this is the class of all Borel subsets of Rn of the form

A = A1 × · · · ×An,

where A1, . . . , An are Borel subset of R. By independence, we have

P(X1 ∈ A1 & X2 ∈ A2 & . . . & Xn ∈ An) = P(X1 ∈ A1) · · ·P(Xn ∈ An). (2.12)

The left-hand side of (2.12) is P(X ∈ A), the right-hand side is µX1 × · · · × µXn(A).
Since Rn is a π-system, the probability measures µX and µX1 × · · · × µXn coincide on
the σ-algebra generated by Rn, [Bil95, Theorem 3.3]. This latter is the whole class of
the Borelians on Rn [Bil95, Example 18.1].

Exercise 2.17. Generalize Theorem 2.3 to the case of Banach-valued random variables.
Let E1, . . . , En be some separable Banach spaces. LetX1, . . . , Xn be independent random
variables, Xi being a random variable on Ei. Then the law of the E1 × · · ·En-valued
random variable (X1, . . . , Xn) is the product of the laws: (2.11) is satisfied.

The solution to Exercise 2.17 is here.

An important application of Theorem 2.3 is the computation of the law of the sum of
two independent random variables. We give the statement for two random variables, but
it can be generalized to any finite number of independent random variables by iteration.

Theorem 2.4 (Sum of independent random variables). Let X, Y be two independent
random variables on R. Then the law of X + Y is the convolution product µX ∗ µY .
In particular, if µX has density fX with respect to the Lebesgue measure on R and µY
has density fY with respect to the Lebesgue measure on R, then µX+Y is the measure of
density

fX+Y = fX ∗ fY
with respect to the Lebesgue measure on R.

Recall that the convolution product of two integrable functions f, g ∈ L1(R) is defined
by

f ∗ g(x) =

∫
R
f(y)g(x− y)dy.

In particular, if h ∈ Cb(R) (continuous bounded function), then, using Fubini’s Theorem
and a change of variable, we have∫

R
h(x)f ∗ g(x)dx =

∫
R

∫
R
h(x+ y)f(x)dxg(y)dy.

12



This formula is then generalized into a definition of the convolution product of two Borel
finite measures µ and ν:∫

R
h(x)dµ ∗ ν(x) :=

∫
R

∫
R
h(x+ y)dµ(x)dν(y), (2.13)

for all h ∈ Cb(R). If we introduce the function sum σ : R2 → R defined by σ(x, y) = x+y,
then (2.13) takes the more concise form

µ ∗ ν = σ](µ× ν). (2.14)

The convolution µ ∗ ν is the push-forward of the product measure µ× ν by σ.

Proof of Theorem 2.4. The law of X + Y is the push-forward of µ(X,Y ) by σ. Indeed, if
A is a Borel subset of R, then P(X + Y ∈ A) is equal to

P((X,Y ) ∈ σ−1(A)) = µ(X,Y )(σ
−1(A)) = σ]µ(X,Y )(A).

By independence and (2.11) and Formula (2.14) for the convolution product, we obtain
the result.

Let us illustrate the application of Theorem 2.4 by two examples. Consider first some
independent variables X1, . . . , Xn, of Bernoulli’s law b(p):

P(Xi = 1) = p, P(Xi = 0) = 1− p.

The law of Xi is µ = pδ1 + (1− p)δ0. The law of X1 +X2 is given by∫
R
hdµX1+X2 =

∫
R

∫
R
h(x+ y)dµ(x)dµ(y)

=

∫
R
ph(1 + y) + (1− p)h(y)dµ(y)

= p2h(2) + 2p(1− p)h(1) + (1− p)2h(0).

Two sum up, µX1+X2 = p2δ2 + 2p(1− p)δ1 + (1− p)2δ0. This is a Binomial law B(2, p).
The generalization to n terms is given as an exercise.

Exercise 2.18. Let X1, . . . , Xn be some independent variables of Bernoulli’s law b(p):

P(Xi = 1) = p, P(Xi = 0) = 1− p.

Show that X1 + · · ·+Xn follows the Binomial law B(n, p).

The solution to Exercise 2.18 is here.
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2.6 The law of a random variable – II

2.6.1 Binomial law.

We come back to the Binomial law, introduced in paragraph 2.3.3. Consider the following
experiment: repeat n times, successively and in an independent manner, a trial where
each outcome has probability p of success, 1− p of failure. Such an experiment is called
a Bernoulli’s test. To such a test, we associate the following question: for k ∈ {0, . . . , n},
what is the probability to get k success precisely? The answer is the following one: define
Xi for 1 ≤ i ≤ n, by Xi = 1 if success occurs, Xi = 0 otherwise. Then

X := X1 + · · ·+Xn

is the total number of success after n repetition of the experiment. The random variable
{Xi; 1 ≤ i ≤ n} are independent Bernoulli’s b(p). By Exercise 2.18, X follows a Binomial
law B(n, p).

A classical example where Binomial law applies is the following one: consider a produc-
tion’s line in a factory. Each object released at the end of the line has a probability
0.01 to have a defect. In a set of 100 objects released, what is the probability to find at
least one object which has a defect? The answer is certainly not 100 × 0, 01 = 1 (what
if the question was about 1,000 objects?). The answer is P(X ≥ 1), were, assuming
independence in the production of the objects, X is a random variable following the
Binomial law B(n, p) with n = 100 and p = 0.01. We obtain

P(X ≥ 1) = 1− P(X = 0) = 1− 0.99100 ' 0.63.

There are other examples, where knowing the result given by the theory of probability
may be more crucial. Consider for example the Russian roulette. What is the probability
to be alive after three shots ? Consider also, – this time a realistic and psychologically
painful situation –, the case of candidates to assisted procreation by in vitro fertilization.
Considering that four attempts are reimbursed by the health insurance (in France), that
the probability of success of each attempt is 20% and that (a disputable hypothesis)
there is independence between each attempts, what is the probability to have a baby
before being left on its own by the health insurance system? The answer is P(X ≥ 1)
where X follows a Binomial B(n, p) with n = 4 and p = 0.2. We compute

P(X ≥ 1) = 1− P(X = 0) = 1− 0.84 ' 0.60,

which, one may think, is not that high.

2.6.2 Poisson’s law.

Come back to the example of the production line in the previous paragraph about the
Binomial law. In that example, n is large and p small, in such proportions that np ∼ 1.
This is also the case in the following cases:

14



– X= number of misprints in a book, the number of pages being n = 300 and the
probability of a misprint in a page being p = 0.01 (assuming independence of
misprints pages per pages),

– X=number of centenarian people in the French population divided by 104, the
population being of n.104 people, the individual probability of being centenarian
being p = 3.10−4. 2016’s data give n = 6600 then.

For such cases, is there a way to compute quite simply the probability P(X = k)? The
answer is given in Proposition 2.5.

Definition 2.19 (Poisson’s law). The Poisson’s law is the law of a random variable X
with values in N, given by

P(X = k) = e−λ
λk

k!
, (2.15)

where λ > 0 is a parameter. The Poisson’s law of parameter λ is denoted by P(λ).

Proposition 2.5 (Convergence Binomial to Poisson’s). For λ > 0, n ∈ N∗ with n > λ,
let Xn be a random variable of Binomial law B(n, λn). Then we have the convergence

lim
n→+∞

P(Xn = k) = e−λ
λk

k!
, (2.16)

for each k ∈ N.

Note that, in (2.16), we should write Pn(Xn = k), instead of P(Xn = k): the random
variable Xn is defined on a probability space (Ωn,Fn,Pn) and there is no reason to
have the same probabilistic spaces for different indices. At the same time, it is also
possible, by forming a countable product, to see all the random variables Xn defined
on the same probability space. It is characteristic of a result of convergence in law
that the probability space does not matter (see Section 2.8). The limit given in (2.16)
is an instance of convergence in law : it says that the Binomial law B(n, λn) can be
approximated by P(λ) when n→ +∞.

Proof of Proposition 2.5. We have

P(Xn = k) =
n!

(n− k)! k!

(
λ

n

)k (
1− λ

n

)n−k
=
n(n− 1) · · · (n− k + 1)

nk
λk

k!

(
1− λ

n

)n (
1− λ

n

)−k
.

The last term converges to e−λ λ
k

k! since two of the factors converges to 1 and (1 − λ
n)n

converges to e−λ.
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Exercise 2.20 (Large Deviations). This exercise is about the limit (in law) of the
Binomial law in the regime “n → +∞, p fixed”. If Xn ∼ B(n, p), then we expect (see
the Law of large numbers, Section 2.11) that Xn ∼ np for large n. Show that, for all
x ∈ (0, 1),

P(Xn = [xn]) = e−n[H(x;p)+o(1)], (2.17)

when [n → +∞], where H(x; p) satisfies H(x; p) > 0 if x 6= p, H(p; p) = 0 (give the
explicit expression of H(x; p)). In (2.17), [y] is the integer part of y: the only integer
m ∈ N such that m ≤ y < m+ 1.

The solution to Exercise 2.20 is here.

2.6.3 Normal law.

For Xn ∼ B(n, p), Exercise 2.20 shows that P(Xn = [xn]) is exponentially small when
x 6= p. This is a result on large deviations (“on the large deviations of Xn from its
average pn”, to state the sentence entirely). The following theorem is an instance of the
Central Limit Theorem. It gives the asymptotic behaviour of the rescaled variable

Zn =

√
n√

p(1− p)

(
Xn

n
− p
)

=
1√

np(1− p)
(Xn − pn). (2.18)

Definition 2.21 (Normal law). Let σ > 0, µ ∈ R. A real-valued random variable X is
said to follow the normal law N (µ, σ2) if

P(a ≤ X ≤ b) =

∫ b

a

1√
2πσ

e−
|y−µ|2

2σ2 dy, (2.19)

for all a < b ∈ R.

Theorem 2.6 (Laplace – de Moivre’s Theorem). Let Xn ∼ B(n, p). Then the rescaled
random variable Zn defined by (2.18) converges in law to the normal law N (0, 1):

P(a < Zn < b)→
∫ b

a

1√
2π
e−y

2/2dy,

for all a < b ∈ R, as n→ +∞.

A proof of Theorem 2.6 is given in Section 2.10.2.

2.7 Expectancy

2.7.1 Integration of Banach-valued random variables

Let E be a separable Banach space endowed with the Borel σ-algebra E . Let X : Ω→ E
be a random variable. To define the integral

E(X) =

∫
Ω
X(ω)dP(ω),
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we can apply Proposition 2.2: it gives the existence of a sequence (Xn) of simple functions
which converges almost surely to X in E. Each integral E(Xn) is defined as the finite
sum ∑

y∈Xn(Ω)

P(X−1
n ({y})) y.

With this definition, and by the triangle inequality for finite sums, we have

‖E(Y )‖E ≤ E(‖Y ‖E) (2.20)

for all Y simple. Assume
E(‖X‖E) < +∞. (2.21)

If (2.21) is realized, we say that X is integrable. When X is integrable, as ‖Xn−X‖E → 0
almost surely and ‖Xn −X‖E ≤ 3‖X‖E (this is due to the control of ‖Xn‖E by 2‖X‖E
in Proposition 2.2), E(‖Xn−X‖E) tends to 0 by the Dominated Convergence Theorem.
Using (2.20) with Y = Xn −Xm, we deduce that

‖E(Xn)− E(Xm)‖E ≤ E(‖Xn −X‖E) + E(‖Xm −X‖E).

Therefore the sequence (E(Xn)) is Cauchy in E and convergent to an element called
E(X). If (X̃n) is an other sequence of simple functions which converges almost surely to
X in E and satisfies a uniform bound ‖X̃n‖E ≤ C‖X‖E , we obtain a second candidate

Ẽ(X) for the integral of X with respect to P, but E(X) = Ẽ(X) since, by (2.20),

‖E(X)− Ẽ(X)‖E = lim
n→+∞

‖E(Xn)− E(X̃n)‖E ≤ lim sup
n→+∞

E(‖Xn − X̃n‖E) = 0.

The integral E(X), called expectancy of X, is independent of the sequence of simple
function which is used. Besides, the triangular inequality (2.20) is satisfied for Y = X.

Remark 2.6. For more details about the integration of Banach space valued functions
(in the case where E is not separable in particular), see [Yos80, p. 130] or [Eva10,
Appendix E].

Let us sum up some of the notions introduced here in the following definition.

Definition 2.22 (Integrable random variable). Let E be a separable Banach space
endowed with the Borel σ-algebra. Let X : Ω → E be a random variable. We say that
X is integrable if ‖X‖ is. We denote by L1(Ω;E) the set of integrable random variables
Ω→ E modulo almost-sure equality.

Note also that we will keep the usual notation L1(Ω) for L1(Ω;R).
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2.7.2 Expectancy, variance, independence

Definition 2.23 (Variance). Let E be a separable Banach space endowed with the Borel
σ-algebra E . Let X : Ω→ E be a random variable such that

E(‖X‖2E) < +∞. (2.22)

The variance of X is defined by Var(X) = E‖X − E(X)‖2E .

If X has the Binomial distribution B(n, p), then

EX = np, Var(X) = np(1− p). (2.23)

The identities in (2.23) can be computed directly (X is a simple random variable, indeed),
using (2.5), the formula

EX =
n∑
k=0

kP(X = k), Var(X) =
n∑
k=0

|k − np|2P(X = k)

and some variations (obtained by differentiation with respect to x) on the Binomial
formula

n∑
k=0

(
n

k

)
xk = (1 + x)n.

However, it is much easier to compute (2.23) by using the decomposition

X = X1 + · · ·+Xn,

where X1, . . . Xn are independent identically distributed Bernoulli random variables,
with P(Xi = 1) = p, P(Xi = 0) = 1− p. We have indeed EXi = p, Var(Xi) = p(1− p),
hence

EX =
n∑
i=1

EXi = np (2.24)

and

Var(X) =

n∑
i=1

Var(Xi) = np(1− p). (2.25)

The commutation between E and
∑n

i=1 in (2.24) is a consequence of the linearity of E.
The commutation between Var and

∑n
i=1 in (2.25) is false in general for the simple reason

that X 7→ Var(X) is quadratic. It is however true if we consider a sum of independent
random variables. Indeed, we have, more generally, the following proposition.

Proposition 2.7 (E and independence). Let Ei, for i = 1, . . . , n, be some separable
Banach space endowed with the Borel σ-algebra Ei. Let Xi : Ω → Ei be some random
variables and let φi : Ei → R be some measurable functions such that E|φi(Xi)| < +∞
for every i. Assume that (Xi)1,n is independent. Then

E(φ1(X1) · · ·φn(Xn)) = E(φ1(X1)) · · ·E(φn(Xn)). (2.26)
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Proof of Proposition 2.7. We may reduce everything to the case Ei = R, φi = IdR be
considering Yi = φi(Xi). However, the identity (2.26) is more suggestive for the proof.
Indeed, it is equivalent to∫

E1×···×En
fdµ(X1,...,Xn) =

∫
E1×···×En

fdµX1 · · · dµXn),

for
f(x1, . . . , xn) = φ1(x1) · · ·φn(xn).

Hence (2.26) follows from Theorem 2.3 and an argument of approximation for f .

Recall in particular the formula

E(XY ) = E(X)E(Y ) (2.27)

if X,Y are independent real-valued integrable random variable. The statement about
the variance which we left aside is let as an exercise.

Exercise 2.24 (Linearity of the variance for independent random variables). Let H be
a separable Hilbert space endowed with the Borel σ-algebra. Let X1, . . . , Xn : Ω→ H be
some independent random variables satisfying the integrability condition (2.22) of order
2. Show that

Var(X1 + . . .+Xn) = Var(X1) + . . .+ Var(Xn) (2.28)

The solution to Exercise 2.24 is here.

Note that (2.27) is the identity that was lacking to complete the argument in the intro-
ductory paragraph Section 1. Indeed, taking expectation in (2.1), we obtain E|XN+1|2 =
E|XN |2 + 1 since

E [XNZN+1] = E[XN ]E[ZN+1] = 0 (2.29)

by independence.

Note also the following fundamental identity, which occurred already in Proposition 2.7:
if ϕ : E → R is continuous and bounded (or more generally measurable and bounded),
then

Eϕ(X) =

∫
E
ϕ(x)dµX(x) = 〈µX , ϕ〉. (2.30)

Indeed, (2.30) is true when ϕ = 1B, B being a Borel subset of E. The general case
follows by approximation.

2.8 Convergence in law

We have already encountered some examples of convergence in law (cf. Proposition 2.5
for example). We will be more specific about it in this paragraph. Our reference is
Convergence of probability measures, by P. Billingsley, [Bil99].
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Definition 2.25 (Weak convergence of probability measures). Let E be a separable
Banach space endowed with the Borel σ-algebra. Let µn, n = 1, 2, . . . be some Borel
probability measures over E and let µ be a Borel measure on E. We say that (µn)
converges weakly to µ (denoted µn ⇒ µ) if

〈ϕ, µn〉 =

∫
E
ϕdµn → 〈ϕ, µ〉 =

∫
E
ϕdµ, (2.31)

for all continuous bounded function ϕ : E → R.

Note that the limit µ is then also a probability measure. This is a consequence of (2.31)
with ϕ ≡ 1. Beware also that µn ⇒ µ does not imply µn(A)→ µ(A) for all Borel set A.
The convergence µn(A)→ µ(A) is true only if the limit measure µ does not charge the
topological boundary ∂A, i.e. µ(∂A) = 0. In general, µn ⇒ µ is equivalent to

lim sup
n→+∞

µn(F ) ≤ µ(F ), for all closed set F, (2.32)

and also equivalent to

lim inf
n→+∞

µn(G) ≥ µ(G), for all open set G. (2.33)

All the assertions above are part of the Portmanteau Theorem, [Bil99, Theorem 2.1].
There may be strict inequality in (2.32) and (2.33). This can be seen by considering
µn = δxn , where (xn) is a sequence of points in E converging to an element x ∈ ∂A
(A = F or G, depending on the characterization which is considered).

Definition 2.26 (Convergence in law). Let E be a separable Banach space endowed
with the Borel σ-algebra. Let

Xn : (Ωn,Fn,Pn)→ E, X : (Ω,F ,P)→ E

be some random variables. We say that (Xn) converges in law to X (denoted Xn ⇒ X),
if there is weak convergence of the laws: µXn ⇒ µX . This means:

Enϕ(Xn)→ Eϕ(X), (2.34)

for every continuous and bounded function ϕ : E → R.

Remark 2.7. The random variable X in Definition 2.26 is, in a way, superfluous. In
essence, saying that (Xn) is converging in law means that there exists a Borel probability
measure µ on E such that (µXn) is converging weakly to µ. However, we can always find
a probability space (Ω,F ,P) and a random variable X such that µ = µX . We simply
consider

(Ω,F ,P) = (E,B(E), µ), X = IdE . (2.35)

Nevertheless, we will often have the following situation: the random variables Xn are
defined on the same probability space (Ω∗,F∗,P∗) and the sequence (µXn) is converging
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weakly to a Borel probability measure µ on E. In that case, we would like to find a
random variable X defined on (Ω∗,F∗,P∗) of law µ (this allows to write P∗(Xn ∈ A)→
P∗(X ∈ A) for example, provided P∗(X ∈ ∂A) = 0). Can we find such an X? It is not
really necessary to answer to that question. To have a unique probability space, what
we do instead is that we keep (2.35) and consider the the probability space

(Ω̃, F̃ , P̃) = (Ω∗ × Ω,F∗ ×F ,P∗ × P).

Then we define X̃n(ω∗, ω) = Xn(ω∗), X̃(ω∗, ω) = X(ω). Then µX̃n = µXn and µX̃ =
µX = µ.

Remark 2.8. Let us insist on the fact that only the laws of the random variables matter
when considering convergence in law. For example, if X has the Bernoulli distribution
b(1/2), P(X = 0) = P(X = 1) = 1

2 then Y = 1 − X also. The sequence (Xn) defined
by X2n = X, X2n+1 = Y is stationary (hence convergent) in law, but not convergent
almost surely since it has two almost-sure convergent subsequences with distinct limits.
We can modify the random variables, without affecting their distributions, to ensure
convergence almost-sure, simply by setting X̃n = X for all n. This is an instance
of the Skorohod representation theorem (Theorem 2.14 below) to which we will arrive
ultimately in this Section 2.8. The following exercise provides an other instance of the
Skorohod representation theorem.

Exercise 2.27. Let (Xn) be the sequence defined in Exercise 2.16.

1. Show that (Xn) is converging in law to a limit X.

2. Build a probability space (Ω̃, F̃ , P̃) and some random variables X̃n, X̃ on Ω̃ such
that

• for all n ∈ N∗, the random variables X̃n and Xn have the same law; X̃ and
X have the same law,

• (X̃n) is converging to X̃ P̃-almost-surely.

The solution to Exercise 2.27 is here.

Proposition 2.8. Let E be a separable Banach space endowed with the Borel σ-algebra.
Let µn, n = 1, 2, . . . be some Borel probability measures over E and let µ be a Borel
probability measure on E. For the weak convergence of (µn) to µ it is sufficient that
〈µn, ϕ〉 → 〈µ, ϕ〉 for all uniformly continuous and bounded function ϕ on E.

Proof of Proposition 2.8. We use the criterion (2.32). Let F ⊂ E be a closed set. Let
d be the metric1 induced by the norm on E and let d(x, F ) = infy∈E d(x, y) denote the
distance to E. The sequence of functions

ϕk : x 7→ (1− kd(x, F ))+ (2.36)

1actually, in all this paragraph, we may have assumed E to be a metric space, see [Bil99]
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is increasing and tends to 1F . The function ϕk is also uniformly continuous (it is even
k-Lipschitz continuous). If 〈µn, ϕk〉 → 〈µ, ϕk〉 for each k, we have therefore

µn(F ) ≤ 〈µn, ϕk〉 → 〈µ, ϕk〉

and thus lim supn→+∞ µn(F ) ≤ 〈µ, ϕk〉. At the limit k → +∞, we obtain (2.32).

Remark 2.9. The function ϕk in (2.36) can also be defined as

ϕk(x) = sup
y∈E

[ϕ(y)− k‖x− y‖E ] , ϕ(x) = 1F (x). (2.37)

Formula (2.37) defines the sup-convolution of the function ϕ.

In the proof of Proposition 2.8, two elements appear, in a more or less transparent way:

• the regularisation of functions in infinite dimension, as already emphasized in Re-
mark 2.9,

• the fact that Cb(E) is a separating class.

These two elements are explained in more details in Proposition 2.9 and Proposition 2.10
below.

Proposition 2.9. Let E be a separable Banach space. Let ϕ be a continuous, bounded
function on E. There is a sequence (ϕn) of Lipschitz continuous bounded functions on
E such that

sup
n

sup
x∈E
|ϕn(x)| ≤ sup

x∈E
|ϕ(x)|, ϕn(x)→ ϕ(x), (2.38)

for all x ∈ E.

Proof of Proposition 2.9. Let ϕ ∈ Cb(E) (continuous, bounded function). Without loss
of generality, we assume 0 ≤ ϕ ≤ 1. For n ∈ N, we consider the inf-convolution ϕn of ϕ
defined by

ϕn(x) = inf
y∈E

[ϕ(y) + n‖x− y‖E ] . (2.39)

Taking y = x in (2.39), we see that 0 ≤ ϕn(x) ≤ ϕ(x) ≤ 1. From the triangular
inequality, one deduces that ϕn is n-Lipschitz continuous. Let ε > 0, and let yn,ε ∈ E
be such that

ϕn(x)− ε ≤ ϕ(yn,ε) + n‖x− yn,ε‖E ≤ ϕn(x) + ε.

We have then

n‖x− yn,ε‖E ≤ ϕ(yn,ε) + n‖x− yn,ε‖E ≤ ϕn(x) + ε ≤ 1 + ε.

Therefore yn,ε → x when n→ +∞. For n large enough we have therefore, by continuity
of ϕ (lower semi-continuity is sufficient actually),

ϕ(x) ≤ ϕ(yn,ε) + ε ≤ ϕ(yn,ε) + n‖x− yn,ε‖E + ε ≤ ϕn(x) + 2ε.

Eventually, we obtain ϕ(x)− 2ε ≤ ϕn(x) ≤ ϕ(x). This shows that ϕn(x)→ ϕ(x).
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We denote by Cb(E) the set of continuous, bounded functions on E and by Lip∩Cb(E)
the subset of Lipschitz continuous, bounded functions.

Definition 2.28. Let E be a separable Banach space. A subset X of the set of bounded
measurable functions E → R is said to be a separating class if two Borel probability
measures that coincide on X are equal.

Proposition 2.10. Let E be a separable Banach space. Then Lip∩Cb(E) is a separating
class.

Proof of Proposition 2.10. Let µ and ν be some Borel probability measures on E such
that 〈ϕ, µ〉 = 〈ϕ, ν〉 for all ϕ ∈ Lip ∩ Cb(E). We want to show that µ(A) = ν(A) for
all Borel subset A of E. The measures µ and ν are inner regular, [Bil99, Theorem 1.1]:
µ(A) = supµ(F ), where the sup is taken over closed subsets F of A. Consequently, it
is sufficient to consider the case A closed. We have shown (Remark 2.9) that 1A is the
simple limit of a sequence of Lipschitz bounded functions ϕn. By dominated convergence
(or monotone convergence, since n 7→ ϕn is monotone), we have

µ(A) = 〈1A, µ〉 = lim
n→+∞

〈ϕn, µ〉 = lim
n→+∞

〈ϕn, ν〉 = ν(A).

This gives the result.

2.8.1 Convergence in probability

Definition 2.29 (Convergence in probability). Let E be a separable Banach space
endowed with the Borel σ-algebra. A sequence (Xn) of random variables on E is said to
converge in probability to a random variable X if, for all δ > 0,

P(‖Xn −X‖E > δ)→ 0, (2.40)

when n→ +∞.

Note that (2.40) can also be written

E1‖Xn−X‖E>δ → 0, (2.41)

when n → +∞. Since 1‖Xn−X‖E>δ is bounded by the constant, integrable function 1,
almost-sure convergence implies convergence in probability by the Dominated conver-
gence theorem. Convergence in probability implies convergence in law.

Proposition 2.11. Let E be a separable Banach space endowed with the Borel σ-algebra.
Let (Xn) be a sequence of random variables on E which converges in probability to a
random variable X. Then (Xn) is converging in law to X.

Proof of Proposition 2.11. By Proposition 2.8, it is sufficient to show that Eϕ(Xn) →
Eϕ(X) for ϕ ∈ Cb(E) uniformly continuous. If ϕ is uniformly continuous, with a modulus
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of continuity denoted by ωϕ, then the conclusion comes from the following estimate: we
bound the difference |Eϕ(Xn)− Eϕ(X)| by the sum of the two terms

E
[
|ϕ(Xn)− ϕ(X)|1‖Xn−X‖E>δ

]
+ E

[
|ϕ(Xn)− ϕ(X)|1‖Xn−X‖E≤δ

]
≤ ‖ϕ‖Cb(E)P(‖Xn −X‖E > δ) + ωϕ(δ),

where ‖ϕ‖Cb(E) = supx∈E |ϕ(x)|. The right-hand side can be made arbitrary small by
choosing first δ small, then n large.

Lemma 2.12. Let E be a separable Banach space endowed with the Borel σ-algebra.
Let (Xn), (Yn) be some sequences of random variables on E such that (Xn) converges
in law to a random variable X and Xn − Yn converges to 0 in probability. Then (Yn) is
converging in law to X.

Exercise 2.30. Give the proof of Lemma 2.12.
The solution to Exercise 2.30 is here.

Proof of Lemma 2.12. we use the characterization (2.32) of convergence in law. Let
F be a closed subset of E. Let ε > 0 and δ > 0. There exists an n0 such that

P(‖Xn − Yn‖E > δ) < ε for all n ≥ n0. We have then P(Yn ∈ F ) < ε + P(Xn ∈ F
δ
),

where F
δ

denotes the δ-neighbourhood of F :

F
δ

= {x ∈ E; d(x, F ) ≤ δ} , d(x, F ) = min
y∈F
‖x− y‖E .

Since F
δ

is closed, we obtain

lim sup
n→+∞

P(Yn ∈ F ) ≤ ε+ µX(F
δ
).

Since (F
δ
) ↓ F when δ ↓ 0 (because F is closed), we obtain lim supn→+∞ P(Yn ∈ F ) ≤

ε+ µX(F ) at the limit δ → 0. Since ε is arbitrary, this gives the result.

Exercise 2.31. Let (Xn) be a sequence of random variables and X, Y random variables
such that (Xn, X) converges in law to (Y, Y ) (i.e. µ(Xn,X) is converging weakly to
a probability measure concentrated on the diagonal of E × E). Show that (Xn) is
converging in probability to X.
The solution to Exercise 2.31 is here.

2.8.2 Prohorov’s theorem and Skorohod’s representation theorem

Definition 2.32 (Tightness). Let E be a separable Banach space endowed with the
Borel σ-algebra. A family P of Borel probability measures over E is said to be tight if,
for every ε > 0, there exists a compact K ⊂ E such that

µ(K) ≥ 1− ε,

for all µ ∈ P.
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Exercise 2.33. Show that the following families are tight.

1. P = {µ} (a single element), E = R,

2. P = {µ}, E σ-compact,

3. P = {µ}, E a separable Banach space,

4. E = L2(Td) (Td is the d-dimensional torus), P = {µn;n ∈ N}, where µn is the law
of a random variable Xn satisfying the estimate

sup
n∈N

E‖Xn‖H1(Td) < +∞, (2.42)

where H1(Td) is the Sobolev space H1 over Td.

5. Generalize the preceding example to separable Banach spaces E,F with compact
injection of F into E.

6. (Reflected random walk) Consider the reflected random walk defined on Figure 1.
Let Xn be the position at time n. We assume X0 = 0 (the choice of X0 is not

Figure 1: Reflected random walk; p+ q = 1

relevant here). Show that the family {µXn ;n ∈ N} is tight if, and only if, p < 1
2 .

The solution to Exercise 2.33 is here.

Theorem 2.13 (Prohorov’s theorem). Let E be a separable Banach space endowed with
the Borel σ-algebra. Let µn, n = 1, 2, . . . be some Borel probability measures over E.
Then there is equivalence between:

1. each subsequence of (µn) admits a subsequence converging weakly,

2. the family {µn;n ∈ N} is tight.

There are different ways to put a metric on the set P1(E) of Borel probability measures
on E, which turn P1(E) into a separable, complete metric space in which convergent
sequences are sequences converging weakly (see, for instance [Bil99, page 72] on the
Prohorov metric). In that context, the Prohorov theorem may be rephrased as follows:
a set P of Borel probability measures on E is relatively compact if, and only if, it is
tight.
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Theorem 2.14 (Skorohod’s representation theorem). Let E be a separable Banach space
endowed with the Borel σ-algebra. Let (Xn) be a sequence of random variables which
converges in law to a random variable X. Then there exists a probability space (Ω̃, F̃ , P̃)
and some random variables X̃n, X̃ on Ω̃ such that

1. for all n ∈ N∗, the random variables X̃n and Xn have the same law; X̃ and X have
the same law,

2. (X̃n) is converging to X̃, P̃-almost-surely.

See [Bil99, p. 60] for the proof of the Prohorov theorem and [Bil99, p. 70] for the proof
of the Skorohod theorem.

2.9 Conditional expectancy

Theorem-Definition 2.15 (Conditional expectancy). Let E be a separable Banach
space endowed with the Borel σ-algebra E. Let X : (Ω,F)→ (E, E) be a random variable.
Assume X to be integrable and let G be a sub-σ-algebra of F . Then there exists a
unique G-measurable random variable in L1(Ω,G;E, E), denoted E(X|G) and called the
conditional expectancy of X knowing G, such that

E [1AX] = E [1AE(X|G)] , (2.43)

for all A ∈ G.

The random variable E(X|G) should be understood as the average of X with respect to
“all that is not G”. This principle is illustrated by the following examples.

Example 2.10. Take G = {∅,Ω}. Then E(X|G) = E(X) a.s.

Example 2.11. Take G = {∅, B,Bc,Ω} where B ∈ F . Then

E(X|G) =
E(1BX)

P(B)
1B +

E(1BcX)

P(Bc)
1Bc a.s.

Example 2.12. If H is a sub-σ-algebra of G, then

E(E(X|H)|G) = E(X|G) a.s. (2.44)

Example 2.13. One has
E(E(X|G)) = E(X). (2.45)

Example 2.14. Let X and Y be some independent random variables, Φ: E × E → R
continuous and bounded. Then

E(Φ(X,Y )|σ(X)) = f(X) a.s., f(x) := EΦ(x, Y ). (2.46)

Exercise 2.34 (Examples of conditional expectancies). Prove the assertions in Example
2.10 to 2.14.

The solution to Exercise 2.34 is here.
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The identities (2.45) and (2.46) are fundamental (see the treatment of Example 1 page 52
in particular). For example, let us prove that the random walk (Xn) defined in Section 1
is a Markov chain. This means, roughly speaking that, conditionally to the knowledge
of the past up to time n, it is actually sufficient to know the present state at time n to
determine the state at time n + 1. The exact mathematical condition is the following
one.

Definition 2.35 (Markov chain). Let E be a separable Banach space endowed with
the Borel σ-algebra. A sequence of random variables X0, X1, . . . over E is said to be a
Markov chain if, for all n ≥ 0,

E(φ(Xn+1)|Fn) = E(φ(Xn+1)|σ(Xn)) a.s., (2.47)

for all continuous and bounded φ : E → R, where Fn = σ(X0, X1, . . . , Xn) is the σ-
algebra of “the past up to time n” and σ(Xn) is the σ-algebra of “the present state at
time n”.

To prove (2.47) for the random walk (Xn), apply (2.46) first, to obtain

E(φ(Xn+1)|σ(Xn)) = E(φ(Xn + Zn+1)|σ(Xn)) =
1

2
(φ(Xn − 1) + φ(Xn + 1)) a.s.

Apply then (2.46) again to Φ: (z, y) 7→ φ(z · 1 + y), where z = (zi)1,n, 1 is the vector in
Rn with all components 1. We take also Y = Zn+1 and note that Fn = σ(Z1, . . . , Zn)
to get

E(φ(Xn+1)|Fn) =
1

2
(φ(Xn − 1) + φ(Xn + 1)) a.s.

Exercise 2.36 (Example of Markov chain). Let E, F be some separable Banach spaces,
let f be a measurable bounded application E×F → E. Let (Yn) be independent random
variables in F and (Xn) the sequence defined by X0 = x ∈ E, Xn+1 = f(Xn, Yn). Show
that (Xn) is a Markov chain, i.e. satisfies (2.47).

The solution to Exercise 2.36 is here.

The property (2.46) is also the central argument to prove that the transition operator
(homogeneous case) is a semi-group (see the treatment of Example 1 page 52 again, for
example).

2.10 Quantitative convergence in law: Stein’s method

We have seen in Proposition 2.5 an example of convergence in law “Binomial⇒Poisson”.
Theorem 2.6 is an instance of the Central Limit Theorem and gives a result of conver-
gence in law “Binomial⇒Normal”.

Exercise 2.37 (Laplace - de Moivre’s Theorem). Justify that Theorem 2.6 is indeed a
result of convergence in law (you may use the characterization (2.33) for example).

The solution to Exercise 2.37 is here.
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We will now give quantitative versions of those results. The general idea of Stein’s
method [Ste72], that we put quite informally here, is the following one. Let µ and ν
be some Borel probability measures on a separable Banach space E and let X and Y
be some random variables of law µ and ν respectively. Let L be an operator acting on
functions such that

〈ν, Lϕ〉 = 0 for all ϕ ⇐⇒ ν = µ. (2.48)

In (2.48), ϕ is a function E → R with a certain regularity which we do not specify at the
moment. If we define the operator L∗ by duality, 〈L∗ν, ϕ〉 := 〈ν, Lϕ〉, then (2.48) can be
written more concisely as Ker(L∗) = {µ}. For a given function ψ, we expect2 then the
equation

Lϕ = ψ − 〈µ, ψ〉 (2.49)

to be solvable, and the solution ϕ to be estimated by ψ (one has to specify the norms
at that point). We apply ν to both members of (2.49) then and obtain

〈ν, ψ〉 − 〈µ, ψ〉 = 〈ν, Lϕ〉. (2.50)

An estimate on 〈ν, Lϕ〉 will indicate how close 〈ν, ψ〉 is from 〈µ, ψ〉.

The method was originally developed by Stein for the approximation of Gaussian random
variable, [Ste72]. It was adapted by Chen in 1975, [Che75], to estimate the approximation
of Poisson’s distribution. This is the example we will treat first.

2.10.1 Convergence to the Poisson distribution

Let Y1, Y2, . . . be some independent random variables of Bernoulli’s law b(p1), b(p2), . . .:
P(Yi = 1) = pi = 1− P(Yi = 0). Let

Xn = Y1 + · · ·+ Yn

and let X be a random variable of Poisson’s distribution of parameter λ. We have seen
in Proposition 2.5 that Xn ⇒ X if pi = λ

n . More generally, we have the following result.

Theorem 2.16 (Convergence Binomial to Poisson’s). Let Y1, Y2, . . . be some independent
random variables of Bernoulli’s law b(p1), b(p2), . . .: P(Yi = 1) = pi = 1−P(Yi = 0). Let

Xn = Y1 + · · ·+ Yn,

and let X be a random variable of Poisson’s distribution of parameter

λ =

n∑
i=1

pi. (2.51)

2By analogy with the Fredholm’s alternative, cf. [Eva10, Th. 4 p. 321] in the context of elliptic
equations, which may be summed up as Im(L) ' Ker(L∗)⊥
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We have the estimate in total variation distance

dTV(µXn , µX) ≤ C
(

1 ∧ 1

λ

) n∑
i=1

p2
i , (2.52)

where the total variation distance between two probability measures µ and ν on R is
defined as the supremum of |µ(A)− ν(A)| over Borel sets A in R.

In the case pi = λ
n , Xn has the distribution B(n, λn−1) and (2.52) reads

dTV(µXn , µX) ≤ Cλ (1 ∧ λ)
1

n
.

We obtain the convergence µXn ⇒ µX stated in Proposition 2.5, together with an
estimate of the distance of µXn to µX .

Proof of Theorem 2.16. A probability measure ν over N has the decomposition

ν =
∑
x∈N

νxδx, νx := ν({x}).

What characterizes the Poisson’s law µ = P(λ) is the relation µx = λ
xµx−1 for x ≥ 1

(other recurrence relations, possibly more elaborate ones, are possible of course). Using
the constraint ∑

x∈N
µx = 1,

we have Ker(L∗) = {µ}, where (L∗ν)x = λνx−1−xνx for x ≥ 1, (L∗ν)0 = 0. We compute
then

Lψ(x) = λψ(x+ 1)− xψ(x). (2.53)

For ψ : N → R bounded, set ψ̄(x) = ψ(x) − 〈µX , ψ〉 and let ϕ solve (2.49). One can
compute

ϕ(x+ 1) = λ−x−1x!

x∑
y=0

λy

y!
ψ̄(y) = −λ−x−1x!

∞∑
y=x+1

λy

y!
ψ̄(y),

for x ≥ 0 (note that the value ϕ(0) is irrelevant here). We will admit the following
(non-trivial) result [BE83]:

‖ϕ‖∞ ≤
[
1 ∧ 1.4

λ

]
‖ψ‖∞, ‖∆ϕ‖∞ ≤

[
1 ∧ 1

λ

]
‖ψ‖∞, (2.54)

where ‖ϕ‖∞ = supx∈N |ϕ(x)|, ∆ϕ(x) = ϕ(x+ 1)− ϕ(x).

We use (2.54) as follows: let ψ be the characteristic function of a set A ∈ N. By (2.50),
we have

µXn(A)− µX(A) = 〈µXn , Lϕ〉 = E [λϕ(Xn + 1)−Xnϕ(Xn)] .
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Using the definition (2.51) of λ gives us

µXn(A)− µX(A) =
n∑
i=1

E [piϕ(Xn + 1)− Yiϕ(Xn)] ,

since Xn = Y1 + · · ·+ Yn. Set

X(i)
n = Y1 + ·+ Ŷi + · · ·+ Yn = Xn − Yi.

Note that X
(i)
n is independent on Yi. Conditioning on Yi, we have therefore

µXn(A)− µX(A) =
n∑
i=1

E
[
pi(1− pi)ϕ(X(i)

n + 1) + pi(piϕ(X(i)
n + 2)− ϕ(Xi

n + 1))
]

(2.55)

=

n∑
i=1

p2
iE∆ϕ(X(i)

n + 1).

By (2.54), we obtain (2.52).

Exercise 2.38 (End of the proof). Justify (2.55).

The solution to Exercise 2.38 is here.

2.10.2 Quantitative CLT

Definition 2.39 (Monge-Kantorovitch distance W1). Let P1(R) be the set of Borel
probability measures ν on R having finite first moment:∫

R
|x|dν(x) < +∞.

The Monge-Kantorovitch distance W1(µ, ν) of two probability measures µ, ν ∈ P1(R) is
defined as the supremum of

〈µ− ν, ψ〉 =

∫
R
ψdµ−

∫
R
ψdν

over all 1-Lipschitz continuous functions ψ : R→ R.

Any ψ : R → R which is 1-Lipschitz continuous is also sub-linear: |ψ(x)| ≤ |x|+ |ψ(0)|.
This shows that 〈ψ, ν〉 is well defined for ν ∈ P1(R). Actually, rewriting

〈µ− ν, ψ〉 =

∫
R

∫
R

(ψ(x)− ψ(y))dµ(x)dν(y),

we obtain the following bound

|〈µ− ν, ψ〉| ≤
∫
R
|x|dµ(x) +

∫
R
|x|dν(x),

which is independent on ψ.

30



Theorem 2.17 (Quantitative CLT). Let X1, X2, . . . be some independent, identically
distributed random variables on R satisfying

E|Xn|3 < +∞, EXn = 0, Var(Xn) = 1. (2.56)

Define the renormalized sum

Zn =
X1 + · · ·+Xn√

n
. (2.57)

Then

W1(µZn , µ) ≤ 3E|X1|3√
n

, (2.58)

where µ is the normal law N (0, 1).

In (2.56), only the hypothesis on the third moment matters. If the Xn’s are not centred
and reduced, say

EXn = µ, Var(Xn) = σ2 > 0,

then the result applies with the renormalized random variable

Zn =
X1 + · · ·+Xn − nµ

σ
√
n

. (2.59)

Indeed, the rescaling of the sum X1 + · · ·+Xn in Zn is such that EZn = 0 (by linearity
of the operator E) and Var(Zn) = 1 (by linearity of Var on sums of independent random
variables and the property Var(αX) = α2Var(X)).

Proof of Theorem 2.17. Let µ denote the normal law N (0, 1): µ has the density

γ(z) =
1√
2π
e−z

2/2

with respect to the Lebesgue measure on R. Let Lϕ be defined by

Lϕ(z) = ϕ′(z)− zϕ(z). (2.60)

Integration by parts shows that 〈µ,Lϕ〉 = 0 for all ϕ ∈ C1
b (R) (C1 functions R → R,

bounded with bounded first derivative).

Let ψ ∈ C1
b (R) (C1 functions R → R, bounded with bounded first derivative), and

ψ̄(z) := ψ(z)− 〈µ, ψ〉 then

ϕ(z) = ez
2/2

∫ z

−∞
e−r

2/2ψ̄(r)dr (2.61)

= −ez2/2
∫ +∞

z
e−r

2/2ψ̄(r)dr (2.62)

(the identity (2.61)=(2.62) is due to 〈µ, ψ̄〉 = 0) is in C2(R) and satisfies the equation
Lϕ = ψ̄. Admit for a moment the following result
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Lemma 2.18. The function ϕ defined by (2.61) is in C2
b (R) and satisfies the bounds

‖ϕ‖∞ ≤ ‖ψ′‖∞, ‖ϕ′‖∞ ≤ 4‖ψ‖∞, ‖ϕ′′‖∞ ≤ 4‖ψ′‖∞, (2.63)

where ‖ · ‖∞ is the sup-norm: ‖ϕ‖∞ = supz∈R |ϕ(z)|.

In virtue of Lemma 2.18, a measure ν ∈ P1(R) satisfying 〈ν, Lϕ〉 = 0 for all ϕ ∈ C1
b (R)

is equal to µ, i.e. Ker(L∗) = {µ}. Indeed, taking ϕ solution to Lϕ = ψ̄, we obtain

0 = 〈ν, Lϕ〉 = 〈ν, ψ〉 − 〈µ, ψ〉〈ν,1〉 = 〈ν, ψ〉 − 〈µ, ψ〉,

for all ψ ∈ C1
b (R), and this yields ν = µ. Therefore L is a good operator for Stein’s

method. Let us now complete the proof of Theorem 2.17. Let X̄i = 1√
n
Xi. Let

Z(i)
n = X̄1 + · · ·+ ̂̄Xi + · · ·+ X̄n = Zn − X̄i.

We decompose

ELϕ(Zn) =
n∑
i=1

E
[
EX̄i

2
ϕ′(Z(i)

n + X̄i)− X̄iϕ(Z(i)
n + X̄i)

]
.

Conditioning on σ(X̄i), we obtain (cf. (2.46)) ELϕ(Zn) =
∑n

i=1 Eϕi(X̄i), where

ϕi(x) = EX̄i
2Eϕ′(Z(i)

n + x)− xEϕ(Z(i)
n + x).

We use the Taylor formula

ϕ(Z(i)
n + x) = ϕ(Z(i)

n ) + xϕ′(Z(i)
n ) +

x2

2
ϕ′′(·), ϕ′(Z(i)

n + x) = ϕ′(Z(i)
n ) + xϕ′′(·),

to obtain

ϕi(X̄i) =(EX̄i
2 − X̄i

2
)Eϕ′(Z(i)

n )− X̄iEϕ(Z(i)
n ) (2.64)

+ X̄iEX̄i
2Eϕ′′(·)− X̄i

3

2
Eϕ′′(·).

Taking expectation, the first line (2.64) vanishes. Since E|X̄i|EX̄i
2 ≤ E|X̄i|3 by the

Hölder inequality, we obtain

|Eϕi(X̄i)| ≤
3

2
E|X̄i|3‖ϕ′′‖∞

and thus

|ELϕ(Zn)| ≤ 3n

2
E|X̄i|3‖ϕ′′‖∞ =

3

2
√
n
E|Xi|3‖ϕ′′‖∞.

We use the last inequality in (2.63) to conclude.
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Proof of Lemma 2.18. For z ≤ 0, (2.61) gives

|zϕ(z)| ≤ ez2/2
∫ z

−∞
|r|e−r2/2dr‖ψ̄‖∞ = ‖ψ̄‖∞ ≤ 2‖ψ‖∞. (2.65)

We obtain the same bound for z ≥ 0 thanks to (2.62). Using the equation Lϕ = ψ̄, we
deduce ‖ϕ′‖∞ ≤ 4‖ψ‖∞. Note that the estimate can be improved and that

‖ϕ′‖∞ ≤ 2‖ψ‖∞ if 〈ψ, µ〉 = 0. (2.66)

Let us now prove that
〈ψ′ + ϕ, µ〉 = 0. (2.67)

To obtain (2.67), we do an explicit computation: by (2.61)-(2.62), we have∫
R
ϕ(z)dµ(z) =

∫ 0

−∞

∫ z

−∞
ψ̄(r)γ(r)drdz −

∫ +∞

0

∫ +∞

z
ψ̄(r)γ(r)drdz

= −
∫
R
ψ̄(r)γ(r)dr,

by Fubini’s Theorem. Since −rγ(r) = γ′(r), integration by parts gives the result. Now
we can differentiate the equation Lϕ = ψ̄, to obtain

Lϕ′ = ψ′ + ϕ. (2.68)

By (2.67) and (2.66), we deduce that

‖ϕ′′‖∞ ≤ 2‖ψ′‖∞ + 2‖ϕ‖∞. (2.69)

To conclude, there remains to prove

‖ϕ‖∞ ≤ ‖ψ′‖∞. (2.70)

This is a consequence of the maximum principle for the elliptic equation (2.68). Indeed,
assume M = supz∈R ϕ(z) > 0 (if M ≤ 0, we have nothing to prove). Since ϕ tends
to 0 at ±∞ by (2.65), M is reached at a point zM ∈ R. At this point, we have
ϕ′(zM ) = 0 and ϕ′′(zM ) ≤ 0. In particular, Lϕ′(zM ) ≤ 0. By (2.68), we deduce that
M = ϕ(zM ) ≤ −ψ′(zM ) ≤ ‖ψ′‖∞. A similar argument using infz∈R ϕ(z) gives the
result.

2.11 Law of large numbers

Theorem 2.19 (Weak law of large numbers). Let X1, X2, . . . be some independent, iden-
tically distributed random variables with finite first moment E|X1|. Then, the average

X̄N :=
X1 + · · ·+XN

N

is converging in probability to the constant µ = E [X1].
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Theorem 2.20 (Strong law of large numbers). Let X1, X2, . . . be some independent,
identically distributed random variables with finite first moment E|X1|. Then, the aver-
age

X̄N :=
X1 + · · ·+XN

N

is converging almost-surely to the constant µ = E [X1].

Proof of Theorem 2.19. The mean value of X̄N is

E
[
X̄N

]
=

E [X1] + · · ·+ E [XN ]

N
= µ.

If the random variables Xn have finite second moment E|X1|2, then, due to (2.28), the
variance of X̄N is

Var(X̄N ) =
Var(X1) + · · ·+ Var(XN )

N2
=

Var(X1)

N
. (2.71)

Consequently X̄N → µ in L2(Ω) and thus (by the Markov inequality) in probability,
when N → +∞. To treat the general case of L1(Ω) random variables, we introduce the
following truncates

TR(Xn) = [Xn ∧R] ∨ (−R),

and the average

X̄R,N :=
TR(X1) + · · ·+ TR(XN )

N
.

Since |TR(Xn)| ≤ R, the variance of TR(Xn) is bounded by R2, and the estimate (2.71)
gives us the bound

E|X̄R,N − µR| ≤ Var(X̄R,N )1/2 ≤ R√
N
, (2.72)

where µR is the mean value of TR(Xn). The two averages X̄R,N and X̄N close to each
other for large R. Indeed,

E|X̄R,N − X̄N | ≤
E|X1 − TR(X1)|+ · · ·+ E|XN − TR(XN )|

N
= E|X1 − TR(X1)|,

and E|X1−TR(X1)| → 0 when R→ +∞ by dominated convergence. Note that we have
also

|µ− µR| ≤ E|X1 − TR(X1)|

by the triangle inequality. Using (2.72), it follows that

E|X̄N − µ| ≤ 2E|X1 − TR(X1)|+ R√
N
.

Choosing R large and then N large, we can make E|X̄N − µ| arbitrary small.
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3 Stochastic processes and the Brownian motion

Brownian motion is the type of motion observed by the botanist Robert Brown (1826-
1827), specifically the motion of pollen particles, subject to collisions with the atom
of the fluid in which they evolve. Brown noted the irregularity of the trajectories in
particular. The mathematical theory of Brownian motion is due to Norbert Wiener
(1920’s). The mathematical model for Brownian motion is called a Wiener process, but
also Brownian motion by extension.

Definition 3.1 (Stochastic process). Let E be a separable Banach space, I a subset of R
and (Ω,F ,P) a probability space. An E-valued stochastic process (Xt)t∈I is a collection
of random variables Xt : Ω→ E indexed by I.

If I = N or Z, then (Xt)t∈I is a discrete-time process. We will work with continuous-time
processes, for which I = R+ or R or [0, T ], T > 0. We will also use the notation [0, T ]
for R+ when T = +∞.

Definition 3.2 (Processes with independent increments). Let E be a separable Banach
space. A process (Xt)t∈[0,T ] with values in E is said to have independent increments if,
for all n ∈ N∗, for all 0 ≤ t1 < . . . < tn ≤ T , the family {Xti+1 −Xti ; i = 1, . . . , n− 1} of
E-valued random variables is independent.

Definition 3.3 (Gaussian process). A process (Xt)t∈[0,T ] with values in R is said to be
a Gaussian process if, for all n ∈ N∗, for all 0 ≤ t1 < . . . < tn ≤ T , (Xti)i=1,...,n is a
Gaussian vector in Rn.

Definition 3.4 (Processes with continuous trajectories). Let E be a separable Banach
space. A process (Xt)t∈[0,T ] with values in E is said to have continuous trajectories, if
for all ω ∈ Ω, the map t 7→ Xt(ω) is continuous from [0, T ] to E. If this is realized only
almost surely (for ω in a set of full measure), then we say that (Xt) is almost surely
continuous, or has almost surely continuous trajectories.

Similarly, one defines processes that are càdlàg : for all ω ∈ Ω, the map t 7→ Xt(ω) is
continuous from the right and has limit from the left (continue à droite, limite à gauche,
i.e. càdlàg in french). We also speak of process with almost sure càdlàg trajectories.
An example of càdlàg process is the Poisson process defined below. The trajectories
of a process (Xt)t∈[0,T ] may have more regularity than the C0-regularity. Consider for
example a process satisfying: there exists α ∈ (0, 1) such that, for P-almost all ω ∈ Ω,
there exists a constant C(ω) ≥ 0 such that

‖Xt(ω)−Xs(ω)‖E ≤ C(ω)|t− s|α, (3.1)

for all t, s ∈ [0, T ]. Then we say that (Xt)t∈[0,T ] has almost surely α-Hölder trajectories,
or is almost-surely Cα. The Wiener process defined below has almost surely α-Hölder
trajectories for all α < 1

2 , cf. Corollary 3.5.
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Definition 3.5 (Poisson process). Let λ > 0. A Poisson process (Nt)t≥0 with parameter
λ is a process with values in N with independent increments satisfying N0 = 0 almost-
surely, t 7→ Nt is integer-valued, càdlàg and non-decreasing almost surely and

1. for t, h ≥ 0, the law of N(t+ h)−N(t) is independent on t,

2. for all t ≥ 0, P(Nt+h −Nt = 1) = λh+ o(h),

3. for all t ≥ 0, P(Nt+h −Nt > 1) = o(h).

One can show that, for 0 ≤ s < t, the increment Nt−Ns has the Poisson distribution of
parameter λ(t− s):

P(Nt −Ns = k) = e−λ(t−s) [λ(t− s)]k

k!
. (3.2)

One can also how that

Nt =
∞∑
i=n

1T1+···+Tn≥t, (3.3)

where T1, . . . , Tn, . . . are i.i.d. random variable with exponential law of parameter λ. It
is clear on Expression (3.3) that t 7→ Nt is integer-valued, càdlàg and non-decreasing
almost surely. An example of process with almost sure continuous trajectories is the
Wiener process.

Definition 3.6 (Wiener process). A d-dimensional Wiener process is a process (Bt)t≥0

with values in Rd such that: B0 = 0 almost-surely, (Bt)t≥0 has independent increments,
and, for all 0 ≤ s < t, the increment Bt −Bs follows the normal law N (0, (t− s)Id).

By standard properties of Gaussian Rn-valued random variables (“Gaussian vectors”).
The last two properties my be summed up in a single one: for all n ∈ N∗, for all
0 ≤ t1 < . . . < tn, setting t0 = 0, the vector (Xti − Xti−1)i=1,...,n of size nd is centred
Gaussian with covariance the diagonal matrix with jj-entries ti − ti−1 for j = id +
1, . . . , (i+ 1)d, 0, . . . , n− 1. The almost-sure continuity of t 7→ Bt is often added in the
definition, although it is a consequence (after modification) of the stated properties, see
Corollary 3.5.

3.1 Law of a process

3.1.1 Cylindrical sets

Let E be a separable Banach space. A process (Xt)t∈[0,T ] with values in E can be seen
as a function

X : Ω→ E[0,T ], (3.4)

where E[0,T ] is the set of the applications [0, T ] → E. Let Fcyl denote the cylindrical
σ-algebra on E[0,T ]. This is the coarsest (minimal) σ-algebra that makes the projections

πt : E
[0,T ] → E, Y 7→ Yt
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measurable. It is called cylindrical because it is generated by the cylindrical sets, which
are subsets of E[0,T ] of the form

D = π−1
t1

(B1)
⋂
· · ·
⋂
π−1
tn (Bn) =

{
Y ∈ E[0,T ];Yt1 ∈ B1, . . . , Ytn ∈ Bn

}
, (3.5)

where t1, . . . , tn ∈ [0, T ] for a given n ∈ N∗, and B1, . . . , Bn are Borel subsets of E.
Roughly speaking, in (3.5), D is the product of B1 × · · · × Bn with the whole space∏
t6=tj E. This why we speak of cylinder set. We have

X−1(D) =
n⋂
j=1

X−1
tj

(Bj) ∈ F ,

hence X : (Ω,F)→ (E[0,T ],Fcyl) is a random variable.

Definition 3.7 (Law of a stochastic process). Let E be a separable Banach space.
The law of an E-valued stochastic process (Xt)t∈[0,T ] is the probability measure µX on

(E[0,T ],Fcyl) induced by the map X in (3.4).

Remark 3.1. The σ-algebra Fcyl being generated by the cylindrical sets, the law of X is
characterized by the data

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn),

which are called the finite-dimensional distributions of X (see Section 3.1.2).

We can be more specific on Fcyl. Each cylindrical set in (3.5) is of the form{
Y ∈ E[0,T ]; (Yt)t∈J ∈ B

}
, (3.6)

where J is a countable (since finite) subset of [0, T ] and B an element of the product
σ-algebra Πt∈JB(Et), where Et = E for all t (this latter is the cylindrical σ-algebra for
EJ). The collection of sets of the form (3.6) is precisely Fcyl.

Lemma 3.1 (Countably generated sets). The cylindrical σ-algebra Fcyl is the collections
of sets of the form (3.6), for J ⊂ [0, T ] countable and B in the cylindrical σ-algebra of
EJ .

Proof of Lemma 3.1. Let us call F◦ the collection of sets of the form (3.6), for J ⊂ [0, T ]
countable and B in the cylindrical σ-algebra of EJ . The countable union of countable
sets being countable, F◦ is stable by countable union. Clearly it contains the empty set
and is stable when taking the complementary since{

Y ∈ E[0,T ]; (Yt)t∈J ∈ B
}c

=
⋃
t∈J

π−1
t (Ct), Ct = (πt(B))c ∈ B(E).

Therefore, F◦ is a σ-algebra. Since F◦ contains cylindrical sets (case J finite in (3.6)),
F◦ = Fcyl.
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A corollary of this characterization of Fcyl is that a lot of sets described in terms of
an uncountable set of values Xt of the process (Xt)t∈[0,T ] are not measurable, i.e not
in Fcyl (see the following exercise). This is due to the fact that [0, T ] is uncountable.
For processes indexed by countable sets (discrete time processes), these problems of
non-measurable sets do not appear.

Exercise 3.8. Show that the following sets are not in Fcyl:

1. A1 = {X ≡ 0} =
⋂
t∈[0,T ] π

−1
t ({0}),

2. A2 = {t 7→ Xt is continuous}.

The solution to Exercise 3.8 is here.

Now, assume that (Xt)t∈[0,T ] is a process with almost-sure continuous trajectories. Then
we would like to say that, instead of (3.4), we have

X : Ω→ C([0, T ];E), (3.7)

In that case, the sets A1 and A2 in Exercise 3.8 are measurable.

Exercise 3.9. Let
Fcts = Fcyl ∩ C([0, T ];E).

Show that the σ-algebra Fcts coincides with the Borel σ-algebra on C([0, T ];E), the
topology on C([0, T ];E) being the topology of Banach space with norm

X 7→ sup
t∈[0,T ]

‖X(t)‖E .

Then show that the sets A1 and A2 in Exercise 3.8 are measurable.

The solution to Exercise 3.9 is here.

Actually, starting from (3.4), we have (3.7) indeed only if we first redefine X on Ω \Ωcts

where Ωcts is the set of ω such that t 7→ Xt(ω) is continuous. However, it is not
ensured that Ωcts(=X

−1(A2) with the notation of Exercise 3.8) is measurable. A correct
procedure is the following one (we modify not only Ω, but P also [RY99]). Define the
probability measure Q on Fcts by

Q(A) = P(X ∈ Ã), A = Ã ∩ C([0, T ];E), Ã ∈ Fcyl. (3.8)

for all A ∈ Fcts. By definition, each A ∈ Fcts can be written as in (3.8). If two
decompositions

A = Ã1 ∩ C([0, T ];E) = Ã2 ∩ C([0, T ];E)

are possible, then the definition of Q(A) is unambiguous since P(X ∈ Ã1) = P(X ∈ Ã2).
Indeed, by hypothesis, there exists a measurable subset G of Ω of full measure such that:
ω ∈ G implies that t 7→ Xt(ω) is continuous (i.e. G ⊂ Ωcts). If ω ∈ X−1(Ã1) ∩G, then

X(ω) ∈ Ã1 ∩ C([0, T ];E) = Ã2 ∩ C([0, T ];E),
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hence X−1(Ã1) ∩G ⊂ X−1(Ã2) ∩G. It follows that

P(X ∈ Ã1) = P(X−1(Ã1) ∩G) ≤ P(X−1(Ã1) ∩G) = P(X ∈ Ã2).

By symmetry of Ã1 and Ã2, we obtain the result. We consider then the canonical process

Yt : C([0, T ];E)→ R, Yt(ω) = ω(t).

The law of Y on (C([0, T ];E),Fcts, Q) is the same as X (cf. Remark 3.1), thus consid-
ering X or Y is equivalent, and Y has the desired path-space C([0, T ];E).

3.1.2 Finite-dimensional distributions

Let us introduce the following notation: if I is a subset of [0, T ] we denote by πI the
projection E[0,T ] → EI which maps (Yt)t∈[0,T ] to (Yt)t∈I . We have then a probability

measure PI on EI defined as PI = [πI ]∗µX . If I is finite, say I = {t1, . . . , tn}, then

PI(B) = P((Xt1 , . . . , Xtn) ∈ B)

for all B in the product σ-algebra Πt∈IB(E). The probability measures PI , for I finite
are called the finite-dimensional distributions of (Xt)t∈[0,T ]. They satisfy the consistency
relation

PJ = [πJ←I ]∗PI (3.9)

for all J ⊂ I ⊂ [0, T ] with I finite, where πJ←I is the projection EI → EJ . The Kol-
mogorov extension theorem asserts that, to any collection of finite distribution satisfying
the consistency relation corresponds a unique probability measure µ on (E[0,T ],Fcyl) such
that Pi = [πI ]∗µX for all finite I ⊂ [0, T ], see [Tao11, Theorem 2.4.3] for a more precise
statement. We will not use the Kolmogorov extension theorem, but we will mention
some of its corollaries when it is relevant.

Example 3.2 (Wiener process). Let t1, . . . , tn ∈ R+. Assume the times are ordered:
t1 < · · · < tn. Let θn : Rnd → Rnd denote the map

(w1, . . . , wn) 7→ (w1, w2 − w1, . . . , wn − wn−1), w1, . . . , wn ∈ Rd. (3.10)

The application θn is a linear isomorphism of inverse

θ−1
n : (z1, . . . , zn) 7→ (z1, z2 + z1, . . . , zn + zn−1 + · · ·+ z1). (3.11)

The Wiener process (Wt)t∈R+ is such that θn((Wti)1,n) is centred Gaussian with co-
variance the diagonal matrix Γ(t) with jj-entries ti − ti−1 for j = id + 1, . . . , (i + 1)d,
i = 0, . . . , n − 1 (with the convention t0 = 0), cf. the comment after Definition 3.6.
The finite-dimensional distribution [PW ]t1,...,tk is therefore given as [θ−1

n ]∗P̃t1,...,tn , where
P̃t1,...,tn is the N (0,Γ(t)) law. It is clear that the consistency relation (3.9) is satisfied.
The Kolmogorov extension theorem gives therefore the existence of a one-dimensional
Wiener process. The existence of a one-dimensional Wiener process will also be estab-
lished by the Donsker theorem, see Section 3.4.
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Example 3.3 (Poisson process). Let (Nt)t≥0 be a Poisson process of parameter λ. Let
t1, . . . , tn ∈ R+. Assume again that the times are ordered: t1 < · · · < tn. Recall (3.2):
the increments Nti+1 −Nti have the Poisson distribution of parameter λ(ti+1 − ti). By
independence, this gives the probabilities

P(Nt2 −Nt1 ∈ B1, . . . , Ntn −Ntn−1 ∈ Bn),

for B1, . . . , Bn ⊂ N from which we deduce, using (3.11), the finite-dimensional distribu-
tions Pt1,...,tn . Again, we check that we can apply the Kolmogorov extension theorem,
to obtain the existence of a Poisson process with parameter λ.

The concept of stationary process is based on the finite-dimensional distribution.

Definition 3.10 (Stationary process). Let E be a separable Banach space. An E-valued
stochastic process (Xt)t∈R+ is said to be stationary if, for all σ ≥ 0, for all finite I ⊂ R+,
PI = Pσ+I :

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn) = P(Xσ+t1 ∈ B1, . . . , Xσ+tn ∈ Bn) (3.12)

for all t1, . . . , tn ∈ R+, B1, . . . , Bn ∈ B(E).

We will also consider later stationary process (Xt)t∈R indexed by R, in which case (3.12)
is satisfied for all t1, . . . , tn ∈ R and all σ ∈ R.

Exercise 3.11. This exercise is about stationary processes. The questions are indepen-
dent.

1. Are the Wiener process and the Poisson process of parameter λ stationary pro-
cesses?

2. Show that if (Xt)t∈R+ is a stationary process, then the law of Xt is constant in
time.

3. Let X0, X1, . . . be the sequence of random variables on R defined as follows: X0 is
chosen at random, according to a law µ0, then, XN being known, a random variable
ZN+1 taking the values +1 or −1 with equi-probability is drawn independently on
X0, . . . , XN and XN+1 is given by

XN+1 =
1

2
XN + ZN+1. (3.13)

(This time-discrete process was already considered in Exercise 2.8). We assume
that µ0 is the uniform measure of the interval [−2, 2]:∫

R
ϕ(x)dµ0(x) =

1

4

∫ 2

−2
ϕ(x)dx.

(a) Show that the law of Xn is independent on n.

(b) Show that (Xn)n∈N is stationary.

The solution to Exercise 3.11 is here.
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3.1.3 Equality of processes

In all this section, E is a separable Banach space. The Borel σ-algebra is denoted
B(E). We have seen in the previous section 3.1.2 that the law of an E-valued pro-
cesses (Xt)t∈[0,T ] is characterized by the collection of the finite-dimensional distributions.
Therefore, two E-valued processes (Xt)t∈[0,T ] and (Yt)t∈[0,T ] have the same law if, and
only if,

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn) = P(Yt1 ∈ B1, . . . , Ytn ∈ Bn) (3.14)

for all t1, . . . , tn ∈ [0, T ], B1, . . . , Bn ∈ B(E). In that case, we say that the two pro-
cesses are equivalent, or that (Yt)t∈[0,T ] is a version of (Xt)t∈[0,T ]. The equality of finite-
dimensional distributions (3.14) is satisfied in particular if

for all t ∈ [0, T ], Xt = Yt almost-surely, (3.15)

which means, according to the following definition, that (Yt)t∈[0,T ] is a modification of
(Xt)t∈[0,T ].

Definition 3.12 (Modification of a process). Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be two E-
valued processes. If (3.15) is satisfied, then we say that (Yt)t∈[0,T ] is a modification of
(Xt)t∈[0,T ].

Modifications of processes do not affect their statistical properties thus, but modify their
regularity or measurability properties, see Theorem 3.2 and Theorem 3.3 below.

3.2 Elementary properties of processes

Our main aim, in this section, is to prove the following result.

Theorem 3.2 (Kolmogorov’s continuity theorem). Let E be a separable Banach space.
Let (Xt)t∈[0,T ] be a process with values in E which satisfies

E‖X(t)−X(s)‖pE ≤ C|t− s|
1+δ, (3.16)

for all s, t ∈ [0, T ], where p > 1, δ > 0 and C ≥ 0 are some given constant. Then
(Xt)t∈[0,T ] has a modification which has α-Hölder trajectories for any α < δ

p .

Proof of Theorem 3.2. We give the proof of [DPZ92, p. 73], based on the Sobolev em-
bedding Theorem: if r ≥ 1, σ > 0, σr > 1, then

W σ,r(0, T ;E) ↪→ Cµ([0, T ];E) (3.17)

for all µ ∈ (0, σ − 1
r ). In (3.17), W σ,r(0, T ;E) is the space of functions u in Lr(0, T ;E)

with finite norm

‖u‖Wσ,r(0,T ;E) = ‖u‖Lr(0,T ;E) +

[∫ T

0

∫ T

0

‖u(t)− u(s)‖rE
|t− s|1+σr

dsdt

] 1
r

.
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Note that (3.17) has to be understood as follows: every u ∈ W σ,r(0, T ;E) has a repre-
sentative ũ ∈ Cµ([0, T ];E) with

‖ũ‖Cµ([0,T ];E) := sup
t∈[0,T ]

‖ũ(t)‖E + sup
t,s∈[0,T ]

‖ũ(t)− ũ(s)‖E
|t− s|µ

≤ C‖u‖Wσ,r(0,T ;E), (3.18)

where C is a constant depending on r, σ, µ. Note furthermore (we will use it later) that
the most natural candidate for the representative ũ is the function [u] defined by

[u](t) =

 lim
n→+∞

1

|Jn(t)|

∫
Jn(t)

u(s)ds, if the limit exists,

0 otherwise,

(3.19)

where Jn(t) is the interval Jn(t) := [t − n−1, t + n−1] ∩ [0, T ] and |Jn(t)| its length.
Indeed, by the Lebesgue differentiation theorem [Tao11, Theorem 1.6.12], for almost
every t ∈ [0, T ], the limit in (3.19) exists and [u](t) = u(t). Besides u = [u] if u is
continuous. To prove the theorem, let us assume

E‖X(0)‖pE ≤ C. (3.20)

Actually, we may as well suppose that X(0) = 0. Indeed, if not, we prove the result for
X̃(t) = X(t) − X(0) (this process satisfies (3.16) also). If (Ỹt)[0,T ] is a modification of

(X̃t)[0,T ] with α-Hölder trajectories, then (X(0) + Ỹt)[0,T ] is a modification of (Xt)[0,T ]

with α-Hölder trajectories,

Let σ < 1+δ
p . Let us apply the Fubini theorem to the functions

(t, ω) 7→ ‖X(t, ω)‖pE , (t, s, ω) 7→
‖X(t, ω)−X(s, ω)‖pE

|t− s|1+σp
. (3.21)

Since [0, T ]×Ω has finite measure under dt×dP and [0, T ]× [0, T ]×Ω has finite measure
under dt × ds × dP, this is licit if the functions in (3.21) are measurable. This point is
not obvious, and actually requires to consider a modification of the process (Xt)t∈[0,T ].
We postpone the discussion of that fact to the end of the proof. For the moment,
interchanging integrals, we obtain thus

E‖X‖pWσ,p(0,T ;E) =

∫ T

0
E‖X(t)‖pEdt+

∫ T

0

∫ T

0

E‖X(t)−X(s)‖pE
|t− s|1+σp

dsdt.

By (3.16)-(3.20), we have

E‖X(t)‖pE ≤ 2p
(
E‖X(t)−X(0)‖pE + E‖X(0)‖pE

)
≤ C(T ),

which gives

E‖X‖pWσ,p(0,T ;E) ≤ TC(T ) + C

∫ T

0

∫ T

0
|t− s|δ−σpdsdt < +∞, (3.22)
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thanks to the condition σ < 1+δ
p . Let

Ωσ = {‖X‖pWσ,p(0,T ;E) < +∞}.

Then Ωσ is measurable (a consequence of the fact that the functions in (3.21) are mea-
surable) and of full measure, P(Ωσ) = 1. Indeed

Ωc
σ =

⋂
n∈N∗

An, AR :=
{
‖X‖pWσ,p(0,T ;E) > R

}
, (3.23)

a decreasing intersection, and by the Markov inequality,

P(AR) ≤ 1

R
E‖X‖pWσ,p(0,T ;E). (3.24)

Let (σm) be an increasing sequence of positive reals converging to 1+δ
p . We set Ω̃ =

∩m∈NΩσm . Then P(Ω̃) = 1. We also set

Y (t, ω) =

{
[X(·, ω)](t), ω ∈ Ω̃,

0, ω /∈ Ω̃,

where [u] is defined in (3.19). Then Yt is a random variable for all t ∈ [0, T ] and for
all ω ∈ Ω̃, for all µ < δ

p , t 7→ Y (t, ω) is in Cµ([0, T ]) (choose σm < 1+δ
p such that

µ < σm − 1
p and use the fact that Ω̃ ⊂ Ωσm). Therefore (Yt)t∈[0,T ] has almost-surely

µ-Hölder trajectories. We know also that, for P-almost all ω (the ω’s in Ω̃), for a.e.
t ∈ [0, T ], Yt(ω) = Xt(ω). To prove that (Yt)t∈[0,T ] is a modification of (Xt)t∈[0,T ], we
have to invert the order of ω and t in this statement, and to have a result for all t. Let
us fix t ∈ [0, T ] therefore. We have the bound

E

∥∥∥∥∥X(t)− 1

|Jn(t)|

∫
Jn(t)

X(s, ω)ds

∥∥∥∥∥
E

≤ 1

|Jn(t)|

∫
Jn(t)

[
E‖X(t)−X(s)‖pE

]1/p
ds

by the Hölder inequality. We deduce from (3.16) that

E

∥∥∥∥∥X(t)− 1

|Jn(t)|

∫
Jn(t)

X(s, ω)ds

∥∥∥∥∥
E

≤ C1/p

n(1+δ)/p
.

It follows, up to a subsequence, that

1

|Jn(t)|

∫
Jn(t)

X(s, ω)ds→ X(t, ω)

for all ω ∈ Ω̂, where P(Ω̂) = 1. If ω ∈ Ω̂ ∩ Ω̃ (a set of full measure in Ω), we have also

1

|Jn(t)|

∫
Jn(t)

X(s, ω)ds→ Y (t, ω),

43



and, consequently, Y (t, ω) = X(t, ω). This proves that Xt = Yt almost-surely.

There remains to prove the fact that we left aside, that, under (3.16), (Xt)t∈[0,T ] has a

modification (X̃t)t∈[0,T ] such that (t, ω) 7→ X̃(t, ω) is B([0, T ]) × F-measurable (this is

sufficient for the functions in (3.21), with X̃ in place of X, to be measurable). Let us
first observe that (3.16) implies that (Xt)t∈[0,T ] is stochastically continuous, which means
continuous for the convergence in probability: for all t ∈ [0, T ], for all ε > 0,

lim
s→t

P(‖X(t)−X(s)‖E > ε) = 0. (3.25)

Indeed, by the Markov inequality and (3.16), we have

P(‖X(t)−X(s)‖E > ε) ≤ ε−pC|t− s|1+δ → 0 when s→ t.

Then the result follows from Theorem 3.3 below.

Remark 3.4. Note that, thanks to (3.18) and to the bounds established in the proof of
the Kolmogorov’s continuity criterion, we have obtained the estimate

E‖Y ‖Cα([0,T ];E) ≤ E‖X0‖E + C̃, (3.26)

for the modification (Yt)t∈[0,T ] of (Xt)t∈[0,T ]. In (3.26), the constant C̃ depends on T , E,
p, δ and on the constant C in (3.16) only.

Definition 3.13 (Stochastically continuous process). Let (Xt)t∈[0,T ] be an E-valued
process. It is said to be stochastically continuous at t∗ ∈ [0, T ] if (Xt) is converging to
t∗ in probability when t→ t∗. It is said to be stochastically continuous without specific
mention of the point if it is stochastically continuous at every t ∈ [0, T ].

Theorem 3.3 (Measurable modification). Let (Xt)t∈[0,T ] be an E-valued, stochastically

continuous process. Then (Xt)t∈[0,T ] has a modification (X̃t)t∈[0,T ] such that (t, ω) 7→
X̃(t, ω) is B([0, T ])×F-measurable.

The following exercises introduce the tools used in the proof of Theorem 3.3.

Exercise 3.14. Prove the Borel-Cantelli lemma:

Lemma 3.4 (Borel-Cantelli). Let (An) be a sequence of events such that the series∑
P(An) is convergent. Then, almost-surely, a finite number of the An’s is realized.

The solution to Exercise 3.14 is here.

Exercise 3.15. Let (Xn) be a sequence of random variable which converges rapidly
to 0 in probability, in the sense that, for every δ > 0, the series

∑
P(‖Xn‖E > δ) is

convergent3. Show that (Xn) converges to 0 almost-surely.

The solution to Exercise 3.15 is here.

3Recall that convergence in probability only requires limn→+∞ P(‖Xn‖E > δ) = 0 for every δ > 0
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Proof of Theorem 3.3. We will construct a sequence of B([0, T ]) × F-measurable func-
tions which converges dt×dP-almost everywhere to a function Y such that (Yt)t∈[0,T ] is a
modification of (Xt)t∈[0,T ]. First, we observe that stochastic continuity on [0, T ] implies
uniform stochastic continuity. Indeed, if ε, δ > 0, then, for every t ∈ [0, T ], there is an
open neighbourhood Jt of t such that s ∈ Jt implies P(‖X(t)−X(s)‖E > δ) < ε. Cov-
ering the compact [0, T ] by a finite number of the intervals Jt, t ∈ [0, T ], we deduce that
there exists η > 0 such that t, s ∈ [0, T ], |t− s| < η, imply P(‖X(t)−X(s)‖E > δ) < ε.
Let (δk), (εk) ↓ 0 and let ηk be the associated modulus of uniform stochastic continuity.
We do a partition

[0, T ] =

Nk⋃
j=1

Ikj

in intervals of length< ηk, pick up tkj ∈ Ikj and define

Xk(t, ω) =

Nk∑
j=1

1Ikj
(t)Xtkj

.

Then Xk is B([0, T ]) × F-measurable since, for B ∈ B(E), X−1
k (B) is the union over j

of the measurable rectangles Ikj ×X
−1
tkj

(B). Let Acv denote the set of (t, ω) ∈ [0, T ]× Ω

such that the sequence (Xk(t, ω)) is converging in E. Then Acv is in B([0, T ])×F (this
is a classical fact: we use a Cauchy criterion for the characterization of the convergence).
Set

Y (t, ω) =

 lim
k→+∞

Xk(t, ω) if (t, ω) ∈ Acv,

0 otherwise.

Then Y is B([0, T ]) × F-measurable. To conclude, assume that the series
∑
εk is con-

vergent. Let t ∈ [0, T ]. For k ≥ 1, we have ‖X(t)−Xk(t)‖E = ‖X(t)−X(tkj )‖E , where

j ∈ {1, . . . , Nk} is the index such that t ∈ Ikj . Since |t− tkj | < ηk, we have

P(‖X(t)−Xk(t)‖E > δk) = P(‖X(t)−X(tkj )‖E > δk) < εk.

From the Borel-Cantelli lemma, we deduce that there is a measurable set Ω̃t ⊂ Ω of
probability 1 such that, for ω ∈ Ω̃t, ‖X(t, ω) − Xk(t, ω)‖E > δk occurs only a finite
number of time. Then we have Xk(t, ω)→ X(t, ω). Consequently, X(t, ω) = Y (t, ω) for
all ω ∈ Ω̃t. This concludes the proof.

Corollary 3.5 (Hölder continuity of the Brownian motion). Let (Bt)t≥0 be a Wiener
process. There is a modification of (Bt)t≥0 which has α-Hölder continuous trajectories
for all α < 1

2 .

Proof of Corollary 3.5. Let p ∈ N∗, and 0 ≤ s ≤ t. Since Bt−Bs is normally distributed,
with mean 0 and variance t− s, we have

E|Bt −Bs|p =
1

(2π(t− s))d/2

∫
R
|x|pe−

|x|2
(t−s)dx = Cp(t− s)p/2.
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The last identity is obtained by the change of variable x = (t − s)1/2x′. The constant
Cp is the p-th moment of a N (0, Id) random variable. We choose p > 2 and let

αp :=
1

p

(p
2
− 1
)

=
1

2
− 1

p
.

We apply the Kolmogorov continuity theorem to obtain a modification of (Bt)t≥0 which
has α-Hölder continuous trajectories for all α < αp. The modification may depend on p

and we denote it by (B̃
(p)
t )t≥0. For each t ≥ 0, B̃

(p)
t coincides with Bt on a set Ω

(p)
t of

probability 1. We define then B̃t = Bt on

Ω̃ :=
⋂

p∈N,p>2

Ω
(p)
t ,

and B̃t = 0 on the complementary of Ω̃. The process (B̃t)t≥0 is a modification of (Bt)t≥0

which has α-Hölder continuous trajectories for all α < 1
2 .

Exercise 3.16. Admit the Garsia - Rodemich - Rumsey inequality: for all r > 1, σ ∈
(r−1, 1), there exists a constant Cσ,r, such that, for all continuous function u : [0, T ]→ R,
one has

‖u(t)− u(s)‖rE ≤ Cσ,r|t− s|σr−1

∫ T

0

∫ T

0

‖u(t′)− u(s′)‖rE
|t′ − s′|1+σr

ds′dt′. (3.27)

Suppose that (Xt)t∈[0,T ] satisfies the hypothesis of Theorem 3.2. Let α < δ
p . Show that

there exists a modification (X̃t)t∈[0,T ] of (Xt)t∈[0,T ] and a non-negative random variable
ζ with moments of all orders less than p such that

‖X̃(t)− X̃(s)‖E ≤ ζ|t− s|α, (3.28)

almost-surely, for all t, s ∈ [0, T ].

Note: actually, the Garsia - Rodemich - Rumsey inequality is a little bit more general,
see Section 1.3 of this course by S.R.S. Varadhan and [Bau14, Theorem 7.34] for example.

The solution to Exercise 3.16 is here.

3.3 The Wiener measure

We have seen in (2.6), (2.35) that is it often natural and/or useful to modify the quadru-
plet (Ω,F ,P, X) into (E,B(E), µX , IdE). Consider now an E-valued process (Xt)t∈[0,T ]

with continuous trajectories. Here E is a separable Banach space. We have seen in
Section 3.1 (see (3.7) in particular) that we may see X as element of C([0, T ];E). Then
F := C([0, T ];E) is the path space. Endowed with the norm supt∈[0,T ] ‖ω(t)‖E , it is a
separable Banach space. Recall that B(F ) coincides with the trace on F of the cylindrical
σ-algebra Fcyl (Exercise 3.9). Consider the probability space

(F,B(F ), µX).
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The family of evaluations (et)t∈[0,T ], where

et : F 3 ω 7→ ω(t) ∈ R

is the canonical process on F . It has the law µX .

The Wiener measure (often denoted PW ) is the probability law on C([0, T ];Rd) deter-
mined by the Wiener process, i.e. µB. It gives a way do draw continuous curves in
Rd, those latter being described thanks to a continuous parametrization ω : [0, T ]→ Rd.
The Wiener measure PW is entirely characterized by the finite-dimensional distributions,
described in Example 3.2.

3.4 The Donsker Theorem

Consider the random walk defined in Example 2.2, which evolves from time n = 0 to a
final time N . We see it as a graph (with the interval [0, N ] in abscissa and the line R in
ordinate) by using linear interpolation between the points (n,Xn). For the homogeneity
of notations, we will use the notation Sn for Xn (Sn is the sum Z1 + · · · + Zn thus).
Rescale this graph by a factor N−1 in abscissa and N−1/2 in ordinate. This gives us a
process (ξN (t)) defined, for t ∈ [0, 1], by

ξN (t) =
ti+1 − t
ti+1 − ti

Si√
N

+
t− ti
ti+1 − ti

Si+1√
N
, ti ≤ t < ti+1, (3.29)

where ti = i
N . More generally, we will consider (3.29) where Sn is the sum

Sn =
Z1 + · · ·+ Zn

σ

and Z1, Z2, . . . are independent identically distributed random variables, centred, with
variance σ2 and a finite forth moment: E|Z|4 < +∞.

3.4.1 Finite-dimensional distributions

Proposition 3.6. For all t1, . . . , tk ∈ [0, 1], for all A1, . . . , Ak Borel subsets of R, we
have

lim
N→+∞

P(ξN (t1) ∈ A1, . . . , ξN (tk) ∈ Ak) = [PW ]t1,...,tk(A1, . . . , Ak), (3.30)

where [PW ]t1,...,tk is the finite-dimensional distribution of a one-dimensional Wiener pro-
cess, introduced in Example 3.2.

Proof of Proposition 3.6. We will prove (3.30) simply for k = 2. For a general k the
proof is similar. For k = 1 first, and t ∈ (0, 1], we have (3.29) for i = [Nt], where [Nt] is
the integer part of Nt. We rewrite (3.29) as

ξN (t) =
Si√
N

+ εi(t), εi(t) :=
t− ti
ti+1 − ti

Si+1 − Si√
N

. (3.31)
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The remainder εi(t) converges to 0 in L2(Ω) when N → +∞ since

|εi(t)| ≤
|Zi+1|
σ
√
N
,

and thus E|εi(t)|2 ≤ N−1. We have also

Si√
N

=

√
[Nt]

N

S[Nt]√
[Nt]

.

The factor

√
[Nt]
N tends to

√
t when N → +∞. By the central limit theorem (cf.

Theorem 2.17 and (2.59)),
S[Nt]√

[Nt]
is converging in law to the centred reduced N (0, 1)

law. We use Lemma 2.12 (and the scaling
√
tN (0, 1) = N (0, t) ) to conclude that ξN (t)

converges in law to the N (0, t) law, which is (3.30) for k = 1. For k = 2 now, let 0 < s <
t ≤ 1 and let θ2 be the function defined by (3.10). We have θ2(ξN (s), ξN (t)) = (XN , YN ),
where XN = ξn(s) is converging in law to N (0, s) as we saw, while

YN =
Z[Ns]+1 + · · ·+ Z[Nt]

σ
√
N

+ ε̃N , E|ε̃N |2 ≤ N−1.

For N greater than (t − s)−1, YN is independent on XN and (YN ) is converging to the
N (0, t− s) law. It follows that (XN , YN ) is converging in law to a N (0,Γs,t) law, where
Γs,t is the diagonal 2 × 2 matrix diag(s, t − s). Applying θ−1

2 , we deduce (3.30) for
k = 2.

The following exercise completes the proof of Proposition 3.6.

Exercise 3.17. Let (Xn), (Yn) be two sequences of random variables on a separable
Banach space E such that (Xn) is converging in law to a random variable X.

1. Let (an) be a sequence or real numbers converging to a ∈ R. Assume E‖Yn‖2E → 0
when [n→ +∞]. Show that (anXn + Yn) is converging in law to aX.

2. Assume that (Yn) is converging in law to a random variable Y and that Xn and
Yn are independent for all n. Show that (Xn, Yn) is converging in law to (X,Y ).

The solution to Exercise 3.17 is here.

3.4.2 Tightness

Our aim now will be to prove the following

Proposition 3.7. The sequence (µξN ) is tight on C([0, 1];R).
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Admit Proposition 3.7 for the moment. By the Prohorov theorem (Theorem 2.13),
there is a subsequence of (µξN ) which is converging weakly to a probability measure
µ on C([0, 1];R). By Proposition 3.6, we have µ = PW . This proves the existence of
the Wiener measure, on the one-hand, the convergence of the whole sequence (µξN ) by
uniqueness of the accumulation points on the other hand. We have therefore these two
fundamental corollaries.

Theorem 3.8 (Wiener Measure). On C([0, 1];R) endowed with the Borel σ-algebra,
there exists a Wiener measure PW .

Theorem 3.9 (Donsker’s Theorem). Let Z1, Z2, . . . be independent identically distribu-
ted random variables, centred, with variance σ2. Let (ξN (t)) be the rescaled random walk
defined by (3.29). Then (ξN ) is converging in law on C([0, 1];R) to a one-dimensional
Wiener process.

The extension to the d-dimensional case is straightforward by considering processes
with independent coordinates. To prove Proposition 3.7, we will use the Kolmogorov’s
continuity criterion.

Proof of Proposition 3.7. We do the proof in the case Z = ±1 with equi-probability. We
show first that there exists a constant C ≥ 0 such that

E|ξN (t)− ξN (s)|4 ≤ C|t− s|4, (3.32)

for all s, t ∈ [0, 1]. We consider first the case s = ti, t = tj with i < j. Then

|ξN (t)− ξN (s)|4 =
1

N2
|Zi+1 + · · ·+ Zj |4 =

1

N2

∑
i<l1,l2,l3,l4≤j

Zl1Zl2Zl3Zl4 . (3.33)

If the indices l1, l2, l3, l4 are not all identical, there may be one index different from any
of the other ones, say l4 for example. In that case, we have, by independence,

E [Zl1Zl2Zl3Zl4 ] = E [Zl1Zl2Zl3 ]E [Zl4 ] = 0.

The indices may also be grouped two by two, for example l1 = l2, l3 = l4 with l1 6= l3.
We obtain then

E [Zl1Zl2Zl3Zl4 ] = E
[
Z2
l1

]
E
[
Z2
l3

]
= 1.

These cross products are

Z2
i+1(Z2

i+2 + · · ·+ Z2
j ), Z2

i+2(Z2
i+3 + · · ·+ Z2

j ), . . . , Z2
j−1Z

2
j .

There are 1
2(j − i)2 such indices in the sum in (3.33). If all the indices coincide (which

occurs for (j − i) terms of the sum in (3.33)), then

E [Zl1Zl2Zl3Zl4 ] = E[Z4] = 1.
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Consequently (3.33) gives us

E|ξN (t)− ξN (s)|4 =
1

N2
[
1

2
(j − i)2 + (j − i)] ≤ 3

2

1

N2
(j − i)2 =

3

2
|t− s|2.

To obtain (3.32) for some general points s, t ∈ [0, 1], let us discuss the size of the
increment |t− s| compared to 1

N . If |t− s| < 1
N , then either both s and t are in the same

intervals [ti, ti+1], in which case

E|ξN (t)− ξN (s)|4 = |t− s|4N2E|Z|4 ≤ |t− s|2,

or s ∈ [ti, ti+1] and t ∈ [ti+1, ti+2] for a certain i ∈ {0, . . . , N − 1}. We have then

E|ξN (t)− ξN (s)|4 =E|(ti+1 − s)Zi+1 − (t− ti+1)Zi+2|4N2

=[(ti+1 − s)4 + (t− ti+1)4 + 6(ti+1 − s)2(t− ti+1)2]N2

≤(ti+1 − s)2 + (t− ti+1)2 + 6(ti+1 − s)(t− ti+1)

≤3[(ti+1 − s)2 + (t− ti+1)2 + 2(ti+1 − s)(t− ti+1)]

=3(t− s)2.

Assume |t− s| ≥ 1
N now. Let i, j be such that s ∈ [ti, ti+1], t ∈ [tj , tj+1]. By (3.31), we

have

E|ξN (t)− ξN (s)|4 ≤ 24
[
E|ξN (tj)− ξN (ti+1)|4 + E|εN (t)|4 + E|ε̃N (s)|4

]
,

where
ε̃N (s) = (ti+1 − s)

√
NZi+1, εN (t) = (t− tj)

√
NZj+1.

It follows that

E|ξN (t)− ξN (s)|4 ≤ 24

[
3

2
|tj − ti+1|2 +

2

N2

]
≤ C|t− s|2.

This concludes the proof of the estimate (3.32). Let us now the Kolmogorov’s continuity
criterion. Let α ∈ (0, 1

2). We obtain that t 7→ ξN (t) is in Cα([0, 1]), which we already
know (it is Lipschitz continuous), but also we have the uniform bound

E‖ξN‖Cα([0,1];R) ≤ C,

by (3.26), where C is independent on N . By the Markov inequality, we deduce that

P(‖ξN‖Cα([0,1];R) > R) ≤ C

R
. (3.34)

Let ε > 0. Let
KR = {ξ ∈ C([0, 1];R); ‖ξ‖Cα([0,1];R) ≤ R}.

By Ascoli’s theorem, the set KR is compact in C([0, 1];R). Take R > Cε−1. By (3.34),
we have

P(ξN ∈ KR) ≥ 1− ε

for all N . This shows that (ξN ) is tight in C([0, 1];R).
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4 Markov Processes

4.1 Markov process

If E is a Banach space, we denote by BM(E) denote the vector space of bounded Borel-
measurable functions on E. We use the following norm on BM(E):

‖ϕ‖BM(E) = sup
x∈E
|ϕ(x)|.

Definition 4.1 (Transition function). Let E be a separable Banach space. A collection
{Qt; t ≥ 0} of functions on E × B(E) is called a time homogeneous transition function
on E if

1. for all t ≥ 0, for all x ∈ E, Qt(x, ·) is a Borel probability measure on E,

2. for all x ∈ E, Q0(x, ·) = δx, the Dirac mass at x,

3. for all A ∈ B(E), (t, x) 7→ Qt(x,A) is Borel measurable on R+ × E,

4. the following Chapman-Kolmogorov relation is satisfied:

Qt+s(x,A) =

∫
E
Qs(y,A)Qt(x, dy) (4.1)

for all 0 ≤ s, t, x ∈ E, A ∈ B(E).

Definition 4.2 (Markov process). Let E be a separable Banach space and let {Qt; t ≥ 0}
be a time homogeneous transition function on E. An E-valued process (Xt)t≥0 is a time-
homogeneous Markov process associated to {Qt; t ≥ 0} if

E
[
ϕ(Xt+s)|FXt

]
=

∫
E
ϕ(y)Qs(Xt, dy), (4.2)

for all ϕ ∈ BM(E), 0 ≤ s, t, where FXt = σ({Xs; 0 ≤ s ≤ t}) (see (4.26) below).

The σ-algebra FXs in Definition 4.2 is the σ-algebra of the past, up to time s (see (4.26)).
The σ-algebra σ(Xs) is the σ-algebra of the present, relatively to time s. It is clear that
(4.2) implies

E
[
ϕ(Xt+s)|FXt

]
= E [ϕ(Xt+s)|σ(Xt)] , (4.3)

for all ϕ ∈ BM(E), s, t ≥ 0. The identity (4.2) can be rewritten

E
[
ϕ(Xt+s)|FXt

]
= (Psϕ)(Xt), (4.4)

where we have introduced the transition operator Pt associated to Qt, defined by

Ptϕ(x) =

∫
E
ϕ(y)Qt(x, dy), ϕ ∈ BM(E). (4.5)
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Example 1: process with independent increments. Let (Xt)t≥0 be a process with inde-
pendent increments. Let (Ft)t≥0 be the natural filtration of the process. For s, t ≥ 0
and ϕ ∈ BM(E), we have

E [ϕ(Xt+s)|Ft] = E [ϕ(Xt+s −Xt +Xt)|Ft] = ψ(Xt) (4.6)

by independence, where
ψ(x) = Eϕ(Xt+s −Xt + x). (4.7)

If the increments are i.i.d., we obtain ψ(x) = 〈Qs(x, ·), ϕ〉 = Psϕ(x), where

Qs(x,A) = P(Xt+s −Xt + x ∈ A). (4.8)

Let us check the Chapman-Kolmogorov relation (4.1) under the form Pt ◦Ps = Pt+s: for
x ∈ E, and 0 ≤ τ ≤ t+ s, we have

Ps+tϕ(x) = Eϕ(Xt+s −X0 + x) = E [E[ϕ(Xt+s −Xτ +Xτ −X0 + x)|Fτ ]]

= E [(Pt+s−τϕ)(Xτ −X0 + x)] = Pτ ◦ Pt+s−τϕ(x).

We obtain the result with τ = t. Consequently, (Xt)t≥0 is a time-homogeneous Markov
process. In particular, the Wiener process and the Poisson process are examples of
homogeneous Markov processes.

Example 2: the Wiener process. Let (Xt)t≥0 be a d-dimensional Wiener process. We
have

Ptϕ(x) :=

∫
Rd
ϕ(x− y)e−

|y|2
2t

dy

(2πt)d/2
= Kt ∗ ϕ(x), (4.9)

where Kt is (up to a coefficient 1
2) the heat kernel.

Example 3: the Poisson process. Let (Nt)t≥0 be a Poisson process of exponent λ > 0.
By (3.2), we have, for x ∈ N,

Ptϕ(x) := e−λt
∑
y∈N

ϕ(x+ y)
[λt]y

y!
. (4.10)

4.2 Finite-dimensional distributions of a Markov process

Proposition 4.1. Let E be a separable Banach space, let (Xt)t≥0 be a time-homogeneous
Markov process with transition function {Qt; t ≥ 0} and transition operator Pt. Let
µ0 = Law(X0). Then (Pt)t≥0 and µ0 determine the finite-dimensional distributions of
(Xt)t≥0.

Proof of Proposition 4.1. To prove the result, we will establish the following formulae:

µt+s = (Pt)
∗µs, (4.11)

and
µt1,...,tn = (Ptn−tn−1)∗ ⊗ · · · (Pt2−t1)∗ ⊗ µt1 , (4.12)
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for all s, t ≥ 0 and 0 ≤ t1 ≤ · · · ≤ tn. We have introduced the following notations: P ∗t
is the dual operator to Pt defined as follows: given µ a Borel probability measure on E
(denoted µ ∈ P(E) below), P ∗t µ is the probability measure defined by

P ∗t µ(A) =

∫
E
Qt(x,A)dµ(x) =

∫
E
Pt1Adµ.

In (4.12), by µt1,...,tn , we denote the law of (Xt1 , . . . , Xtn), an element of P(En). If
µn ∈ P(En) and µn+1 ∈ P(En+1), we say that µn+1 = P ∗t ⊗ µn if

〈µn+1, ϕ1 ⊗ · · · ⊗ ϕn+1〉 = 〈µn, ϕ1 ⊗ · · · ⊗ (ϕnPtϕn+1)〉,

where
(ϕ1 ⊗ · · · ⊗ ϕm)(x1, . . . , xm) = ϕ1(x1) · · ·ϕm(xm).

To establish (4.11), note that

〈µt, ϕ〉 = Eϕ(Xt) = E(E[ϕ(Xt)|FXs ]) = EPt−sϕ(Xs) = 〈µs, Pt−sϕ〉.

We establish (4.12) by recursion on n. For n = 2, we have

〈µt1,t2 , ϕ1 ⊗ ϕ2〉 =E[ϕ1(Xt1)ϕ2(Xt2)]

=E(E[ϕ1(Xt1)ϕ2(Xt2)|FXt1 ])

=E(ϕ1(Xt1)Pt2−t1ϕ2(Xt1)) = 〈µt1 , ϕ1Pt2−t1ϕ2〉.

The proof of n 7→ n+ 1 in (4.12) is similar. Once (4.12) is established, we express µt1 in
function of µ0 by (4.11): µt1 = P ∗t1µ0. This concludes the proof.

As a corollary of Proposition 4.1, we obtain the following result.

Theorem 4.2 (Stationary Markov process). Let (Xt)t≥0 be an homogeneous Markov
process. Assume that its law is invariant: µXt is independent on t. Then (Xt)t≥0 is
stationary.

Exercise 4.3. Give the proof of Theorem 4.2.

The solution to Exercise 4.3 is here.

4.3 A class of contraction semi-groups

Definition 4.4 (π-convergence). Let E be a separable Banach space. We say that
a sequence (ϕn) of BM(E) is π-converging to ϕ ∈ BM(E) (denoted ϕn

π−→ ϕ) if
supn ‖ϕn‖BM(E) < +∞ and ϕn(x)→ ϕ(x) for all x ∈ E.

Remark 4.1. This mode of convergence is sometimes called bounded pointwise conver-
gence, b.p.c. (e.g. in [EK86, p. 111]).
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Let E be a separable Banach space, let (Xt)t≥0 be a time-homogeneous Markov process
with transition function {Qt; t ≥ 0} and transition operator Pt. Note that Pt has the
following property:

if ϕn
π−→ ϕ, then Ptϕn

π−→ Ptϕ. (4.13)

This is a consequence of the definition (4.5) and the dominated convergence theorem.

Definition 4.5 (π-contraction semi-group, [Pri99]). A semi-group of operators (Pt)t≥0

on BM(E) is said to be a π-contraction semi-group if P0ϕ = ϕ and

1. for all ϕ ∈ Cb(E), for all x ∈ E, t 7→ Ptϕ(x) is continuous from the right on R+,

2. for all t ≥ 0, Pt has the continuity property (4.13),

3. for all t ≥ 0, ‖Pt‖ ≤ 1 in operator norm.

Note that, in [Pri99], semi-groups Pt : Cb(E)→ Cb(E) are considered and t 7→ Ptϕ(x) is
assumed to be continuous (not just continuous from the right) on R+. We have modified
slightly the notion of π-semi-group introduced in [Pri99], because it gets easier then to
compare π-contraction semi-groups and Markov semi-groups. This is the object of the
following Proposition 4.3.

Definition 4.6 (Markov semi-group). A semi-group (Pt) of operators on BM(E) is said
to be a Markov semi-group if (4.5) is satisfied for a given transition function {Qt}.

Proposition 4.3 (π-contraction semi-group and transition semi-groups). Let (Pt)t≥0 be
a contraction semi-group on BM(E). We have the following results:

1. if (Pt)t≥0 is a π-contraction semi-group that preserves the positivity (ϕ ≥ 0 implies
Ptϕ ≥ 0) and fixes the constants (Pt1 = 1), then (Pt)t≥0 is a Markov semi-group,

2. if (Pt)t≥0 is a Markov semi-group satisfying (4.16) for all ϕ ∈ Cb(E), then (Pt)t≥0

is a π-contraction semi-group.

Remark 4.2 (Stochastic continuity). The property “(4.16) for all ϕ ∈ Cb(E)” is called
stochastic continuity. If (Pt) is a Markov semi-group, we do not expect (4.16) to be
satisfied for all ϕ ∈ BM(E). For example if (Pt) is the Heat semi-group,

Ptϕ(x) =

∫
Rd
ϕ(y)

e−
|x−y|2

2t

(2πt)d/2
dy,

then Ptϕ(x)→ ϕ(x) will only be true for almost every x for general bounded measurable
functions. In particular, if ϕ = 1A where A is a set of measure zero, then Ptϕ(x) → 0
for every x, thus Ptϕ(x) does not converge to ϕ(x) when x ∈ A. The Heat semi-group
has the property of stochastic continuity however.

54



Proof of Proposition 4.3. Assume that (Pt)t≥0 is a π-contraction semi-group that pre-
serves the positivity (ϕ ≥ 0 implies Ptϕ ≥ 0) and fixes the constants. Set Qt(x,A) =
Pt1A(x) for t ∈ R+, x ∈ E, A ∈ B(E). We have several points to consider.
Probability measure. The set function A 7→ Qt(x,A) is a probability measure. Indeed
Qt(x,A) ≥ 0 since 1A ≥ 0, Qt(x,E) = 1 since Pt1 = 1 and we will see that the property
of σ-additivity is satisfied. Let A1, A2, . . . be disjoint Borel subsets of E. We have then

Qt(x,A1 ∪ · · · ∪AN ) = Pt(1A1 + · · ·+ 1AN )(x) =

N∑
n=1

Qt(x,An). (4.14)

The right-hand side of (4.14) is converging to
∑

nQt(x,An) when N → +∞. The left-
hand side of (4.14) is PtϕN (x), where ϕN = 1A1∪···∪AN is π-converging to 1A, A = ∪nAn.

Therefore PtϕN
π−→ Pt1A by (4.13), and we obtain the countable additivity. Similarly,

using the continuity property (4.13), and approaching ϕ ∈ BM(E) by a sequence of
simple functions, we deduce from the relation Qt(·, A) = Pt1A that (4.5) is satisfied. We
have also Q0(x, ·) = δx since P0ϕ = ϕ.
Measurability. Let A ∈ B(E). We want to show that (t, x) 7→ Qt(x,A) is measur-
able. The Radon measure Qt(x, ·) is inner regular [Bil99, Theorem 1.1]: Qt(x,A) =
supQt(x, F ), where the supremum is taken over closed sets F ⊂ A. Therefore it is
sufficient to consider the case A closed. If A is closed, there is a sequence (ϕk) of Lip-
schitz bounded functions that π-converges to 1A (this fact was established in the proof
of Proposition 2.8, see also Remark 2.9). Consequently Qt(x,A) is the limit of Ptϕk(x)
when k → +∞ and that (t, x) 7→ Qt(x,A) is measurable follows from the fact that
(t, x) 7→ Ptϕ(x) is measurable when ϕ ∈ Cb(E). Indeed, the map h : (t, x) 7→ Ptϕ(x)
is continuous from the right in t and measurable in x. Consider a regular partition of
R+ \ {0} in intervals (a, b] of length N−1 and approximate h(·, x) on (a, b] by the value
h(b, x) at the right of the interval, we obtain4 a sequence of B(R+ × E)- measurable
functions hN that π-converges to h.
Chapman-Kolmogorov property. The Chapman-Kolmogorov property (4.1) follows
from the semi-group property of (Pt)t≥0 and (4.5).
Conversely, assume now that (Pt)t≥0 is a semi-group of transition operators with the
continuity property (4.16) for all ϕ ∈ Cb(E). We have seen that (Pt)t≥0 satisfies (4.16).
By (4.13) and the semi-group property, (4.16) implies condition 1 in Definition 4.5. This
proves the result.

Remark 4.3 (Feller-semi-group). A contraction semi-group (Pt)t≥0 on BM(E) is said to
be Feller if Cb(E) is stable by Pt. A simple example of non-Feller contraction semi-group
is given by

Ptϕ = e−tϕ+ (1− e−t)〈ϕ, ν〉ψ,

where ν is a probability measure on E and ψ a function in BM(E) \ Cb(E) such that
〈ψ, ν〉 = 1.

4we also set hN (0, x) = h(0, x)
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4.4 Infinitesimal generator

Let (Pt) be a π-contraction semi-group. We define the infinitesimal generator L of (Pt)
as follows: ϕ ∈ Cb(E) is in the domain D(L) of L if there exists ψ ∈ BM(E) such that

Ptϕ− ϕ
t

π−→ ψ. (4.15)

We then set Lϕ = ψ. Note that if ϕ ∈ D(L), then

Ptϕ
π−→ ϕ (4.16)

when t→ 0.

Proposition 4.4. For all t ≥ 0, for all ϕ ∈ D(L), we have Ptϕ ∈ D(L) and LPtϕ =
PtLϕ. Besides, for all x ∈ E, the map t 7→ Ptϕ(x) from R+ to R is differentiable on
R+, with

d

dt
Ptϕ(x) = LPtϕ(x) = PtLϕ(x). (4.17)

Proof of Proposition 4.4. It results from the semi-group property Pt+s = Pt ◦ Ps, which
gives

PsPtϕ− Ptϕ
s

=
Ps+tϕ− Ptϕ

s
= Pt

Psϕ− ϕ
s

, (4.18)

and from the continuity property (4.13).

Remark 4.4 (Strongly continuous semi-groups). If

lim
t→0
‖Ptϕ− ϕ‖BM(E) = 0 (4.19)

for all ϕ ∈ Cb(E), then (Pt)t≥0 is a C0 semi-group on GE [Paz83, p. 4]. This will gene-
rally not be the case unless E has finite dimension. We can then define the infinitesimal
generator L by considering the limit of Ptϕ−ϕ

t in BM(E) (for the sup norm hence). The
Hille-Yosida theorem [Paz83, p. 8] characterizes the unbounded operators L which give
rise to a C0-semi-group of contraction.

Lemma 4.5. Let θ : R+ → R+ be an integrable function of class C1 such that θ′ is
integrable. Suppose that the semi-group of transition operators (Pt)t≥0 satisfies (4.16)
for all ϕ ∈ Cb(E). Then

ψθ :=

∫ ∞
0

θ(t)Ptϕdt ∈ D(L), Lψθ = −θ(0)ϕ−
∫ ∞

0
θ′(t)Ptϕdt, (4.20)

for all ϕ ∈ Cb(E).
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Proof of Lemma 4.5. The function ψθ is well defined in BM(E): it is measurable as the
sum of measurable quantities, and bounded since |ψθ(x)| ≤ ‖ϕ‖BM(E)‖θ‖L1(R+). We
compute

1

s
(Psψθ − ψθ) =

1

s

[∫ ∞
0

θ(t)Pt+sϕdt−
∫ ∞

0
θ(t)Ptϕdt

]
(4.21)

=
1

s

[∫ ∞
s

θ(t− s)Ptϕdt−
∫ ∞

0
θ(t)Ptϕdt

]
=

∫ ∞
s

θ(t− s)− θ(t)
s

Ptϕdt−
1

s

∫ s

0
θ(t)Ptϕdt. (4.22)

The first term in (4.22) π-converges to −
∫∞

0 θ′(t)Ptϕdt, the second term π-converges to
−θ(0)ϕ by (4.16). To obtain (4.21), we have cut the integral at level n and used the
estimates

Ps

∫ ∞
n

θ(t)Ptϕdt,

∫ ∞
n

θ(t)Pt+sϕdt = O(‖θ‖L1(n,+∞)‖ϕ‖BM(E))

in the BM(E)-norm to neglect the remainder terms at the limit n→ +∞.

As a corollary to (the proof) of Lemma 4.5, we have the following result.

Proposition 4.6. Suppose that the semi-group of transition operators (Pt)t≥0 satisfies
(4.16). Then the domain D(L) is π-dense in Cb(E).

Proof of Proposition 4.6. if ϕ ∈ Cb(E), we have

1

t

∫ t

0
Psϕds ∈ D(L),

1

t

∫ t

0
Psϕds

π−→ ϕ (4.23)

when t→ 0.

We will apply Lemma 4.5 with θ(t) = e−λt, λ > 0 in particular. We denote then by

Rλϕ =

∫ ∞
0

e−λtPtϕdt, (4.24)

the resolvent of (Pt). Here, (4.20) gives the identity LRλϕ = λRλϕ − ϕ, i.e. for
ϕ ∈ Cb(E),

Rλϕ ∈ D(L), (λ− L)Rλϕ = ϕ. (4.25)

4.5 Filtration

Definition 4.7 (Filtration). Let (Ω,F ,P) be a probability space. A family (Ft)t≥0 of
sub-σ-algebras of F is said to be a filtration if the family is increasing with respect to t:
Fs ⊂ Ft for all 0 ≤ s ≤ t. The space (Ω,F , (Ft)t≥0,P) is called a filtered space. If (Ft)t≥0

we set Ft+ = ∩s>tFs. We say that (Ft)t≥0 is continuous from the right if Ft = Ft+ for
all t. We say that (Ft)t≥0 is complete if Ft is complete: it contains all P-negligible sets.
We say that (Ft)t≥0 satisfies the usual condition if (Ft)t≥0 is continuous from the right
and complete.
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Definition 4.8 (Adapted process). Let (Ω,F ,P) be a probability space and E a sepa-
rable Banach space. An E-valued process (Xt)t≥0 is said to be adapted if, for all t ≥ 0,
Xt is Ft-measurable.

Note that this means σ(Xt) ⊂ Ft for all t ≥ 0.

Example 4.5. If (Xt)t≥0 is a process over (Ω,F ,P), we introduce

FXt = σ({Xs; 0 ≤ s ≤ t}) (4.26)

the σ-algebra generated by all random variables (Xs1 , . . . , XsN ) for N ∈ N∗, s1, . . . , sN ∈
[0, t]. Then (FXt )t≥0 is a filtration and (Xt)t≥0 is adapted to this filtration: (FXt )t≥0 is
called the natural filtration of the process, or the filtration generated by (Xt)t≥0.

Exercise 4.9. Let (Xt)t≥0 be a continuous process adapted to the filtration (Ft)t≥0.
Show that (FXt )t≥0 is not necessarily continuous from the right. Hint: you may consider
Xt = tY , Y being given. The solution to Exercise 4.9 is here.

Proposition 4.7. We assume that (Ft) is complete. Then any limit (a.s., or in proba-
bility, or in Lp(Ω)) of adapted processes is adapted.

Proof of Proposition 4.7. Let Xn and X be some E-valued random variables such that
(Xn)n∈N is converging to X for one of the modes of convergence that we are considering.
We just have to consider convergence almost-sure since convergence in probability or in
Lp(Ω) implies convergence a.s. of a subsequence. If all the Xn are G-measurable, where
G is a sub-σ-algebra of F , then the set of points where (Xn) is converging is in G (we use
the Cauchy criterion to characterize the convergence). Consequently, X is equal P-a.e.
to a G-measurable function. If G is complete, we deduce that X is G-measurable.

Definition 4.10 (Markov process relatively to a filtration). Let E be a separable Banach
space. Let {Qt; t ≥ 0} be a transition function on E and let (Ft)t≥0 be a filtration. An
E-valued process (Xt)t≥0 is a time-homogeneous Markov process relatively to (Ft)t≥0

associated to {Qt; t ≥ 0} if

E [ϕ(Xt+s)|Ft] =

∫
E
ϕ(y)Qs(Xt, dy), (4.27)

for all ϕ ∈ BM(E), 0 ≤ s, t.

The Markov property (4.27) with respect to (Ft)t≥0 implies (4.2) with respect to the
filtration (FXt )t≥0. Indeed, (4.27) implies that Xt is Ft-measurable, hence FXt ⊂ Ft.
We can then deduce (4.2) from the identity

E
[
ϕ(Xt+s)|FXt

]
= E

[
E [ϕ(Xt+s)|Ft] |FXt

]
and from (4.27) thus. However, it is necessary to extend Definition 4.2 into Defini-
tion 4.10, for at least two reasons: 1. it is sometimes easier to prove (4.27) (see Exer-
cise 4.11 below for example), 2. the strong Markov property (see Section 4.6) naturally
involves stopping times with respect to certain filtrations which have no reasons to be
the filtration (FXt )t≥0.
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Exercise 4.11 (Markov jump process). Let (Xn)n≥0 be a discrete time-homogeneous
Markov chain on E with transition function Qn and transition operator Pn, n ∈ N. Let
N(t) be a Poisson process of exponent 1 independent on (Xn)n≥0 and let ξt = XN(t).

Introduce also Ft = Fξt ∨ FNt , the minimal σ-algebra containing Fξt and FNt .

1. Show that Pn = Pn1 for all n ≥ 0.

2. Show that, for all E ∈ Ft,

E
[
1Eϕ(Xn+N(t))

]
= E

[
1EPnϕ(XN(t))

]
. (4.28)

Hint: you may prove (4.28) for E of the form E = B ∩D ∩ {N(t) = m}, m ∈ N,
B ∈ FXm , D ∈ FNt first.

3. Show that (ξt)t≥0 is a time-homogeneous Markov process with respect to (Ft)t≥0

with transition function

ρt(x,A) = e−t
∑
n≥0

tn

n!
Qn(x,A) (4.29)

and transition operator and infinitesimal generator

Πt = e−t(Id−P1), L = P1 − Id. (4.30)

The solution to Exercise 4.11 is here.

4.6 Stopping time and strong Markov property

Definition 4.12 (Stopping time). Let (Ft)t≥0 be a filtration. A random variable τ
with values in [0,+∞] is an (Ft)-stopping time (or stopping time relatively to (Ft)t≥0)
if {τ ≤ t} ∈ Ft for all t ≥ 0. If τ is a stopping time, we denote by Fτ the σ-algebra

Fτ = {A ∈ F ;A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}. (4.31)

Remark 4.6. If Ft describes the information accessible at time t, Fτ describes the in-
formation accessible (via the filtration) by the knowledge of τ . This last statement is
quite informal. To give a more rigorous version of it, consider the case of a discrete
stopping time τ : we assume that τ takes its values in the finite set {t1, . . . , tm}, with
0 ≤ t1 < · · · < tm. To decide if an event A is in Fτ , we look at A ∩ {τ = ti}: this
should be in Fti . Observe that requiring A ∩ {τ = ti} ∈ Fti for all i is equivalent to the
requirement in (4.31).

Exercise 4.13. Let E be a separable Banach space. Let (Xt) be an E-valued stochastic
process. Let (Ft)t≥0 be a filtration. Recall that Ft+ = ∩s>tFs.
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1. Show that τ is a stopping time relatively to (Ft+)t≥0 if, and only if, {τ < t} ∈ Ft
for all t > 0.

2. Show that, for all s ≥ 0, τ ∧ s is a stopping time, that τ ∧ s is Fs-measurable and
that Fτ∧s ⊂ Fs.

3. We assume (Xt) continuous and adapted to (Ft)t≥0. Let A be a closed set. Show
that the hitting time

τA = inf{t ≥ 0;Xt ∈ A} (4.32)

is an (Ft)-stopping time. Hint: consider t 7→ d(Xt, A) = infy∈A ‖Xt − y‖E .

4. We assume that (Xt) is continuous from the right and adapted to (Ft)t≥0. Let A
be an open set. Show that the hitting time

τA = inf{t ≥ 0;Xt ∈ A} (4.33)

is an (Ft+)-stopping time.

5. Let τ be a discrete (FXt )-stopping time. Show that

Fτ = σ({X(t ∧ τ); t ≥ 0}). (4.34)

The solution to Exercise 4.13 is here.

Definition 4.14 (Progressively measurable process). Let (Ft)t∈[0,T ] be a filtration.
An E-valued process (Xt)t∈[0,T ] is said to be progressively measurable (with respect
to (Ft)t∈[0,T ]) if, for all t ∈ [0, T ], the map (s, ω) 7→ Xs(ω) from [0, t] × Ω to E is
B([0, t])×Ft-measurable.

Definition 4.15 (Strong Markov property). Let E be a separable Banach space, let
(Xt)t≥0 be a time-homogeneous Markov process with transition function {Qt; t ≥ 0}
and transition operator Pt. We assume that (Xt) is progressively measurable. Let τ be
a stopping time such that τ < +∞ a.s. We say that (Xt) is strong Markov at τ if

E[ϕ(Xτ+t)|Fτ ] = (Ptϕ)(Xτ ), (4.35)

for all ϕ ∈ BM(E).

Note that Xτ is a random variable that is Fτ -measurable, due to the fact that (Xt) is
progressively measurable. Indeed, if t ≥ 0, Question 2 in Exercise 4.13 shows that τ ∧t is
Ft-measurable. The map ω 7→ X(τ(ω)∧t, ω) is the composition of (s, ω) 7→ X(s, ω) from
[0, t]× Ω, that is B([0, t])× Ft-measurable, with the measurable map ω 7→ (τ(ω) ∧ t, ω)
from Ω endowed with Ft) to [0, t]× Ω endowed with B([0, t])× Ft. Consequently, Xτ∧t
is Ft-measurable. If B ∈ B(E) it follows that

{Xτ ∈ B} ∩ {τ ≤ t} = {Xτ∧t ∈ B} ∩ {τ ≤ t} ∈ Ft.

This proves the result.
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Proposition 4.8 (Strong Markov property - discrete time). Let E be a separable Ba-
nach space, let (Xt)t≥0 be a time-homogeneous Markov process with transition function
{Qt; t ≥ 0} and transition operator Pt. We assume that (Xt) is progressively measurable.
Let τ be a discrete stopping time such that τ < +∞ a.s. Then (Xt) is strong Markov at
τ .

Proof of Proposition 4.8. Let 0 ≤ t1 < · · · < tm be the values taken by τ . Let ϕ ∈
BM(E) and let B ∈ Fτ . We have

E
[
1B∩{τ=ti}ϕ(Xτ+t)

]
= E

[
1B∩{τ=ti}ϕ(Xti+t)

]
= E

[
1B∩{τ=ti}E[ϕ(Xti+t)|Fti

]
(4.36)

= E
[
1B∩{τ=ti}(Ptϕ)(Xti)

]
(4.37)

= E
[
1B∩{τ=ti}(Ptϕ)(Xτ )

]
. (4.38)

The identity (4.36) is due to the fact that B ∩{τ = ti} ∈ Fti , (4.37) uses the (standard)
Markov property. Summing (4.38) over i, we get the result.

5 Martingale

Definition 5.1 (Martingale). Let (Ω,F , (Ft)t≥0,P) be a filtered space and E a separable
Banach space. Let (Xt)t≥0 be a L1, E-valued process: for all t ≥ 0, Xt ∈ L1(Ω). The
process (Xt)t≥0 is said to be a martingale if, for all 0 ≤ s ≤ t, Xs = E(Xt|Fs).

Remark 5.1. 1. A martingale with continuous (resp., càdlàg) trajectories is said to
be a continuous (resp., càdlàg) martingale.

2. If (Xt)t≥0 is a martingale, then it is adapted to (Ft)t≥0.

3. With respect to a fixed time t > 0, conditioning on Fs with s ≤ t is a way to average
over all events which occurred between times s and t. For a martingale, this will
let the position Xs unchanged. In the scalar case E = R, a process (Xt)t≥0 is said
to be a sub-martingale if (Xt) is adapted and Xs is below the average E(Xt|Fs)
for all 0 ≤ s ≤ t. If Xs ≥ E(Xt|Fs) for all 0 ≤ s ≤ t, then an adapted process
(Xt)t≥0 is said to be a super-martingale.

Exercise 5.2. Let (Xt)t≥0 be a real-valued process adapted to a filtration (Ft)t≥0 such
that Xt −Xs is independent on Fs for all 0 ≤ s ≤ t. We assume that (Xt)t≥0 has finite
second moment and is centred: E|Xt|2 < +∞, E[Xt] = 0 for all t ≥ 0.

1. Show that (Xt)t≥0 is a martingale .

2. Show that t 7→ E[X2
t ] is increasing.

3. Show that (X2
t − E[X2

t ])t≥0 is a martingale.

The solution to Exercise 5.2 is here.
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Exercise 5.3. 1. If ϕ : R → (−∞,+∞] is proper, i.e. ϕ(x) is finite for at least an
x ∈ R, we denote by ϕ∗ the Legendre-Fenchel conjugate of ϕ defined by

ϕ∗(p) = sup
x∈R

[xp− ϕ(x)] ∈ (−∞,+∞].

(a) Show that ϕ∗ is convex and continuous.

(b) We admit that, if ϕ is convex, then ϕ = ϕ∗∗. Show that

ϕ(x) = sup
p∈D

[px− ϕ∗(p)],

where D is a countable subset of R.

(c) Let X be a real-valued L1 random variable, G a sub-σ-algebra of F and
ϕ : R→ R a convex function such that ϕ(X) ∈ L1(Ω). Show that

ϕ(E[X|G]) ≤ E[ϕ(X)|G] a.s. (5.1)

(d) Let (Xt)t≥0 be a real-valued martingale relatively to a filtration (Ft)t≥0. Let
ϕ : R→ R be a convex function such that ϕ(Xt) ∈ L1(Ω) for all t ≥ 0. Show
that (ϕ(Xt))t≥0 is a sub-martingale.

2. Let E be a Banach space such that the dual E∗ is separable. Let X be an E-valued
L1 random variable, G a sub-σ-algebra of F . Show that

‖E[X|G]‖E ≤ E[‖X‖E |G] a.s. (5.2)

3. Let E be a Banach space such that the dual E∗ is separable. Let (Xt)t≥0 be an
E-valued martingale relatively to a filtration (Ft)t≥0. Show that (‖Xt‖E)t≥0 is a
sub-martingale.

The solution to Exercise 5.3 is here.

Remark 5.2. By Question 1d of Exercise (5.3), if (Xt)t∈[0,T ] is a real-valued martingale,
then (X2

t )t≥0, or, more generally, (|Xt|p)t≥0 for p ≥ 1, is a submartingale.

Lemma 5.1. Let (Xt)t≥0 be an (Ft)-submartingale. Let τ1 and τ2 be two discrete stop-
ping times relatively to (Ft)t≥0. Then Xτ1∧τ2 ≤ E[Xτ2 |Fτ1 ].

Proof of Lemma 5.1. Let 0 ≤ t1 < · · · < tm be the values taken by τ1. Given A ∈ Fτ1 ,
we want to show that

E [1AXτ2 ] ≥ E [1AXτ2∧τ1 ] . (5.3)

By decomposing A = ∪mi=1A ∩ {τ1 = ti}, (5.3) is equivalent to

E
[
1A∩{τ1=ti}Xτ2

]
≥ E

[
1A∩{τ1=ti}Xτ2∧τ1

]
= E

[
1A∩{τ1=ti}Xτ2∧ti

]
, (5.4)

for all i ∈ {1, . . . ,m}. Since A ∩ {τ1 = ti} ∈ Fti , (5.4) follows from the inequality

E [Xτ2 |Fti ] ≥ Xτ2∧ti . (5.5)
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To obtain (5.5), we split E [Xτ2 |Fti ] into the sum of the two terms E [Xτ21τ2>ti |Fti ] and
E [Xτ21τ2≤ti |Fti ]. The second term is

E [Xτ21τ2≤ti |Fti ] = E [Xτ2∧ti1τ2≤ti |Fti ] = Xτ2∧ti1τ2≤ti ,

since Xτ2∧ti is Fti-measurable (Question 2 of Exercise 4.13). For the first term, we have

E [Xτ21τ2>ti |Fti ] = E [Xτ2 |Fti ] 1τ2>ti .

The conclusion will therefore follow from the inequality

E [Xτ2 |Fti ] ≥ Xτ2∧ti , (5.6)

Note that (5.6) corresponds to the general inequality Xτ1∧τ2 ≤ E[Xτ2 |Fτ1 ] that we want
to prove, in the special case τ1 = ti a.s. To establish (5.6), we denote by s1 < · · · < sq
the values taken by τ2. For t ∈ [sj , sj+1], we have

E
[
Xτ2∧sj+1 |Ft

]
= E

[
Xτ2∧sj+1(1τ2>t + 1τ2≤t)|Ft

]
= E

[
Xsj+1 |Ft

]
1τ2>t +Xsj1τ2≤t

≥ Xt1τ2>t +Xsj1τ2≤t = Xτ2∧t. (5.7)

In (5.7), we have used the fact that (X)t is a sub-martingale. We apply (5.7) with
j = q − 1, q − 2, . . . , t = sq−1, t = sq−2, . . . . This gives (since τ2 ∧ sq = τ2)

E
[
Xτ2 |Fsq−1

]
≥ Xτ2∧sq−1 , E

[
Xτ2∧sq−1 |Fsq−2

]
≥ Xτ2∧sq−2 , . . . .

Using (2.44), we obtain E
[
Xτ2 |Fsj

]
≥ Xτ2∧sj where j ∈ {1, . . . , q} is such that sj−1 ≤

ti < sj . We apply then (5.7) once more with t = ti and use (2.44) again to obtain
(5.6).

Let us consider the case of general (non necessarily discrete) stopping times. If (Xt) is
a right-continuous submartingale, τ1 and τ2 are two (Ft)-stopping times, then

X(τ1 ∧ τ2 ∧ T ) ≤ E [X(τ2 ∧ T )|Fτ1 ] .

If in addition, τ2 is finite a.s., E|X(τ2)| < +∞ and limT→+∞ E [|X(T )|1T>τ2 ] = 0, then

X(τ1 ∧ τ2) ≤ E [X(τ2)|Fτ1 ] . (5.8)

See [EK86, Theorem 2.13 p.61]. If (Xt) is a right-continuous martingale, and all the
necessary hypotheses are fulfilled, we can apply (5.8) to −X, we obtain thus the equality

X(τ1 ∧ τ2) = E [X(τ2)|Fτ1 ] , (5.9)

which is the content of the Doob’s optional sampling theorem.

We will use Lemma 5.1 in the proof of Theorem 5.5. For the moment, we will need the
following corollary to Lemma 5.1.
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Corollary 5.2. Let (Xt)t≥0 be an (Ft)-submartingale taking non-negative values. Let
T > 0 and let J be a finite subset of [0, T ]. Then

P
(

sup
t∈J

Xt ≥ λ
)
≤ 1

λ
E
[
1{supt∈J Xt≥λ}XT

]
. (5.10)

Proof of Lemma 5.2. Define the stopping time τ = min{t ∈ J,Xt ≥ λ}, with the usual
convention τ = +∞ if Xt < λ for all t ∈ J . We want to prove

P(1τ<+∞) ≤ 1

λ
E [1τ<+∞XT ] . (5.11)

Let τ1 = τ ∧ T , τ2 = T . Note that {τ < +∞} ∈ Fτ1 . By Lemma 5.1, we have therefore

Xτ1∧τ21τ<+∞ ≤ E[XT1τ<+∞|Fτ1 ]. (5.12)

Since λ1τ<+∞ ≤ Xτ1 = Xτ1∧τ2 , taking expectation in (5.12) gives us (5.11).

Using Corollary 5.2, we will establish the following result.

Theorem 5.3 (Doob’s martingale inequality). Let p > 1. Let (Mt)t∈[0,T ] be a continu-
ous, real-valued martingale, such that E|MT |p < +∞. Then the inequality

E

[
sup
t∈[0,T ]

|Mt|p
]
≤
(

p

p− 1

)p
E|MT |p (5.13)

is satisfied.

Proof of Theorem 5.3. We admit first the result for discrete-time martingales and simply
explain the end of the proof... which is straightforward then. Indeed, by continuity of
the process, we have

sup
t∈[0,T ]

|Mt|p = sup
n≥1

sup
i=1,...,n

|Mti |p,

where {t2, . . .} is an enumeration of [0, T ) ∩ Q and t1 = T . This shows first that
supt∈[0,T ] |Mt|p is measurable, and also gives the result since

E

[
sup

i=1,...,n
|Mti |p

]
≤
(

p

p− 1

)p
E|MT |p

for all n by the discrete-time case. There remains to show the discrete-time case: if
J ⊂ [0, T ] is finite, we want to prove that

E [(M∗J )p] ≤
(

p

p− 1

)p
E|MT |p, M∗J := sup

t∈J
|Mt|. (5.14)
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We use the fact that Xt := |Mt| is a non-negative sub-martingale. By Corollary 5.2, we
have

P(M∗J > λ) ≤ 1

λ
E
[
1M∗J>λ|MT |

]
.

Let k > 0. By Fubini’s Theorem, we obtain

E[(M∗J ∧ k)p] = E
∫ k

0
pλp−11M∗J>λdλ =

∫ k

0
pλp−1P(M∗J > λ)dλ, (5.15)

and thus
E[(M∗J ∧ k)p] ≤ p

p− 1
E[(M∗J ∧ k)p−1|MT |].

By the Hölder inequality, we deduce that

E[(M∗J ∧ k)p] ≤ p

p− 1
(E[(M∗J ∧ k)p])

1− 1
p (E[|MT |p])1/p.

This gives E[(M∗J ∧k)p] ≤
(

p
p−1

)p
E|MT |p, which yields (5.14) at the limit k → +∞.

Remark 5.3 (An alternative proof, and generalization, of (5.14)). Let Φ: R+ → R+ be
an non-decreasing function of class C1. Assume in a first time that λ 7→ λ−1Φ′(λ) is
integrable around 0. We can generalize (5.15) into

E[Φ(M∗J ∧ k)] =

∫ k

0
Φ′(λ)P(M∗J > λ)dλ.

Using (5.10) and Fubini’s theorem, we obtain the estimate

E[Φ(M∗J ∧ k)] ≤ E
∫ k

0
λ−1Φ′(λ)1{M∗J>λ}|MT ||dλ = E[Ψ(M∗J ∧ k)|MT |], (5.16)

where Ψ′(λ) := λ−1Φ′(λ). We use the convexity inequality

sq ≤ h(s) + h∗(q), (5.17)

where h∗ is the Fenchel-Legendre transform of h, defined by h∗(q) = sups∈R(sq −
h(s)). Here we assume that h is a convex function of class C1 with superlinear growth:
lim|s|→+∞ |s|−1|h(s)| = +∞. Then the sup defining h∗(q) is reached at a point sq such
that q = h′(sq). By differentiating the relation h∗(q) = sqq − h(sq), we obtain thus
∂qh
∗(q) = sq = (h′)−1(q). Note that if we apply (5.17) to the function s 7→ θh(s), where

θ is a positive parameter, we have (θh)∗(q) = θh∗(θ−1q) and thus

sq ≤ θh(s) + θh∗(θ−1q). (5.18)

Using (5.16) and (5.18) with θ ∈ (0, 1), we see that

E[Φ(M∗J ∧ k)] ≤ θE[h ◦Ψ(M∗J ∧ k)] + θE[h∗(θ−1|MT |)].
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Let us choose h such that h ◦ Ψ = Φ (we will see that such an h exists and sat-
isfies the properties assumed above). We deduce then that E[Φ(M∗J ∧ k)] ≤ θ(1 −
θ)−1E[h∗(θ−1|MT |)]. At the limit k → +∞, this gives

E[Φ(M∗J )] ≤ θ(1− θ)−1E[h∗(θ−1|MT |)].

By differentiation of the relation h ◦ Ψ = θΦ, we obtain h′ ◦ ΨΨ′ = θΦ′, and thus
h′ ◦Ψ(λ) = λ, which implies ∂qh

∗(q) = Ψ(q). We deduce finally that

E[Φ(M∗J )] ≤ θ

1− θ
E[Φ2(θ−1|MT |)], (5.19)

where

Φ2(s) :=

∫ s

0

∫ r

0

Φ′(λ)

λ
dλdr =

∫ s

0

s− λ
λ

Φ′(λ)dλ = sΨ(s)− Φ(s). (5.20)

Equivalently to (5.19), we have

E[Φ(M∗J )] ≤ 1

a− 1
E[Φ2(a|MT |)], (5.21)

where a is a paramater in (1,+∞). The optimal value of a is obtained when

E[Φ2(a|MT |)− (a− 1)|MT |Φ′2(a|MT |)] = 0.

Since Φ′2(s) = Ψ(s) and Φ2(s) = sΨ(s)− Φ(s), this equation is equivalent to

E[a|MT |Ψ(a|MT |)− aΦ((a|MT |))] = 0. (5.22)

Example 1. The power-law case. Let p > 1. When Φ(s) = sp, we have Ψ(s) = p
p−1s

p−1 =

p′sp−1, Ψ2(s) = 1
p−1s

p. Equation (5.22) takes the form (p′ − a)E[|aMT |p] = 0. We take

thus a = p′ in (5.21) and obtain exactly (5.13).
Example 2. The exponential case. Consider Φ(s) = eαs

2
. We have then, by means of a

change of variables,

Ψ(s) = 2α

∫ s

0
eαr

2
dr, Φ(s) = αs2

∫ 1

0
reαs

2r2/2dr, Φ2(s) = αs2

∫ 1

0
(1− r)eαs2r2/2dr.

Compare the expressions of Φ and Φ2. The integrand in Φ(s) reaches its maximum at
r = 1. The integrand in Φ2(s) reaches its maximum at a r∗ close to 1, solution to the
equation

1 = αs2r∗(1− r∗).

We expect therefore that Φ2(s) ' e−1Φ(s) for large s (the Laplace’s method should give
the result - not checked). In particular, we shall have Φ2 ≤ CΦ for a given constant
C ≥ 0. Taking a = 2 in (5.21), this gives

E

[
sup
t∈[0,T ]

eα|Mt|2/2

]
≤ CE

[
eα|MT |2

]
, (5.23)

where C is, possibly, a different non-negative constant.
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5.1 Quadratic Variation

We always assume here that the filtration (Ft) satisfies the usual condition. We will
study in this section the quadratic variation of a martingale. Let us first state the
following result.

Theorem 5.4 (Doob-Meyer decomposition theorem). Let (Yt)t∈[0,T ] be a càdlàg, real-
valued, bounded submartingale. Then (Yt)t∈[0,T ] admits a unique decomposition Y =
M +A, where (Mt)t∈[0,T ] is a martingale et (At)t∈[0,T ] an increasing predictable process.

Precictable processes are defined only later in Section 7.2. In the time discrete case, a
process (An) is predictable if each An is Fn−1-measurable, n = 1, 2, . . . . At time n, An
is therefore entirely known.

Exercise 5.4. Prove Theorem 5.4 in the time discrete case.
The solution to Exercise 5.4 is here.

For processes indexed by a continuous set, we will just need the following result here5:
adapted processes which are a.s. continuous from the left are predictable. The complete
statement of the Doob-Meyer decomposition theorem is more general (no need to con-
sider bounded processes in particular). Some proofs of Theorem 5.4 can be found at
various places in classical textbooks on the general theory of stochastic processes. We
mention also the paper [BSV12], for a recent, short, self-contained proof of the result.

Consider now (Xt)t∈[0,T ] a càdlàg, real-valued, bounded martingale. We can apply the
Doob-Meyer decomposition theorem in the particular case Yt = X2

t . What is the process
A in that case? If X is a.s. continuous, then A is the quadratic variation of X, which
we define below. The situation where X may have jumps is discussed in Remark 5.4.

Theorem 5.5 (Quadratic variation). Let (Xt)t∈[0,T ] be a continuous, real-valued, boun-
ded martingale. Let σ = {t0, . . . , tn} with

0 = t0 < t1 < · · · < tn = T

be a subdivision of [0, T ] of size |σ| = inf0≤i<n(ti+1 − ti). We introduce V
(2)
σ (t) the

variation of order 2 relative to σ:

V (2)
σ (t) =

n−1∑
i=0

|Xt∧ti+1 −Xt∧ti |2. (5.24)

Then, there exists an increasing adapted continous process t 7→ 〈X,X〉t such that, for

all t ∈ [0, T ], V
(2)
σ (t) is converging in L2(Ω) to 〈X,X〉t when |σ| → 0. The process

(〈X,X〉t)t≥0 is called the quadratic variation of (Xt)t≥0. It is the unique increasing,
continuous, adapted process (Zt)t≥0 such that (X2

t − Zt) is a martingale.

5a result which is natural with regard to the time discrete case, see [Dur84, p. 49]
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Sometimes the notation 〈X〉t is used to denote the quadratic variation. We will insist
on using the notation 〈X,X〉t however, since this indicates that the object is quadratic
in X. It is also consistent with the definition of the cross-quadratic variation of two
martingales X and Y which is defined by polarization:

〈X,Y 〉t =
1

4
[〈X + Y,X + Y 〉t − 〈X − Y,X − Y 〉t] .

Proof of Theorem 5.5. The difference of two non-increasing functions is a function with
bounded variation. Uniqueness in the statement of Theorem 5.5 then comes from the
fact that a martingale with a.s. bounded variation is constant, [RY99, Proposition IV-
1.2]. Uniqueness also comes from the uniqueness statement in Theorem 5.4 since an
adapted continuous process is predictable.

To prove the convergence of V
(2)
σ (t) in L2(Ω), we consider a sequence of subdivisions σm

with |σm| → 0. We want to show a Cauchy condition of the type

E|V (2)
σp (t)− V (2)

σq (t)|2 → 0, (5.25)

when p, q → +∞. From σp and σq we can form a refined subdivision σp,q common to

σp and σq by taking all the points of both subdivisions. Using V
(2)
σp,q(t) as a common

element of comparison, we see that is sufficient to show that

lim
|σ|→0

E|V (2)
σ (t)− V (2)

σ′ (t)|2 = 0, (5.26)

where σ′ is a refinement of σ. We use the following reduction and notations:

1. we assume without loss of generality that X(0) = 0. Let M > 0 be such that
|Xt| ≤M for all t ∈ [0, T ],

2. subdivisions: σ′ = {tk} is the fine one, σ = {sl} the coarsest one,

3. the final indices relatively to t are respectively

K = sup{k; tk ≤ t}, L = sup{l; sl ≤ t},

4. increments: fine ones: ζ(tk) = X(tk)−X(tk−1), big ones: Z(sl) = X(sl)−X(sl−1),
intermediary ones: z(tk) = X(tk)−X(πtk) where

πtk := max{sl; sl ≤ tk}

(the action of π is to project a tk ∈ σ′ onto the closest element of σ below tk).

Note that
Z(sl) =

∑
{k:πtk−1=sl−1}

ζ(tk). (5.27)
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In particular, due to (5.27), the difference B =
∑

l≤L |Z(sl)|2 −
∑

k≤K |ζ(tk)|2 is

B =
∑
l

∣∣∣∣∣∣
∑

{k:πtk−1=sl−1}

ζ(tk)

∣∣∣∣∣∣
2

−
∑

{k:πtk−1=sl−1}

|ζ(tk)|2
 ,

and, by developing the square, this gives

B = 2
∑
l

∑
{k:πtk−1=sl−1}

∑
{j<k:πtj−1=sl−1}

ζ(tk)ζ(tj) = 2
∑
l

∑
{k:πtk−1=sl−1}

ζ(tk)z(tk−1),

whence

B = 2
∑
k

ξ(tk), ξ(tk) := ζ(tk)z(tk−1).

We have E [ξ(tk+1)|Ftk ] = 0, which implies

1

4
E|B|2 =

∑
k≤K

E|ξ(tk)|2 + 2
∑

j<k≤K
E[ξ(tj)ξ(tk)] =

∑
k≤K

E|ξ(tk)|2 (5.28)

since E[ξ(tj)ξ(tk)] = E(E[ξ(tj)ξ(tk)|Ftj ]) = E(ξ(tj)E[ξ(tk)|Ftj ]) = 0 for j < k. Let ε > 0.
Let

τl = min{tk ≥ sl; |z(tk)| > ε} ∪ {sl+1}, βl = sl+1. (5.29)

Note that each τl is a stopping time with respect to (Ft) since deciding the occurrence
of the event {τl ≤ t} is something non-trivial only when t ∈ [sl, sl+1] and, in that case,
this only requires to know M(s) up to the time tk such that tk ≤ t < tk+1. We use the
following estimate on (5.28): E|B|2 is bounded by the sum of

4E
∑
l

∑
{πtk−1≤tk<τl−1}

|ξ(tk)|2 (5.30)

and
4E
∑
l

∑
{τl−1≤tk−1<tk≤sl}

1τl−1<sl |ξ(tk)|
2. (5.31)

The first term (5.30) is bounded by

4ε2E
∑
k

|ζ(tk)|2 = 4ε2E|X(tK)|2 ≤ 4M2ε2. (5.32)

The equality in (5.32) comes from the decomposition

|ζ(tk)|2 = |X(tk)−X(tk−1)|2 = |X(tk)|2 − |X(tk−1)|2 − 2Xtk−1
ζ(tk) (5.33)
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and the martingale property E[ζ(tk)|Ftk−1
] = 0. In the second term (5.31), we estimate

the intermediary increment z(tk) by 2M , which gives the bound by

16M2E
∑
l

∑
{τl−1≤tk−1<tk≤sl}

1τl−1<sl |ζ(tk)|2

= 16M2E
∑
l

1τl−1<sl

∑
{τl−1≤tk−1<tk≤sl}

E[|ζ(tk)|2|Fτl−1
].

By (5.33) and the martingale property, we have∑
{τl−1≤tk−1<tk≤sl}

E[|ζ(tk)|2|Fτl−1
] = E[|X(sl)|2|Fτl−1

]− |X(τl−1)|2. (5.34)

To obtain (5.34), it is sufficient to write τl−1 = τl−1 ∧ tk−1 if τl−1≤tk−1
and thus

∑
{τl−1≤tk−1<tk≤sl}

E[|ζ(tk)|2|Fτl−1∧tk−1
] = E

[ ∑
{τl−1≤tk−1<tk≤sl}

|ζ(tk)|2
∣∣∣∣∣Fτl−1∧tk−1

]

= E

[ ∑
{τl−1≤tk−1<tk≤sl}

E[|ζ(tk)|2|Ftk−1
]

∣∣∣∣∣Fτl−1

]
.

(5.35)

Then we use (5.33). Note that (5.35) is satisfied since Fτl−1∧tk−1
⊂ Ftk−1

(cf. Question 2
of Exercise 4.13). We deduce from (5.34) that (5.31) is bounded by

16M2E
∑
l

1τl−1<sl(E[|X(sl)|2|Fτl−1
]− |X(τl−1)|2) (5.36)

Let N > 0 (that will be large). Let γN denote the stopping time

γN = min

{
sl;

l∑
i=1

1τi−1<si = N

}
∪ {sL}.

Let λN be the corresponding index: γN = sλN . In (5.36), we consider the sum over the
indices {λN < l ≤ L}. Using the simple estimate 1τl−1<sl ≤ 1, the fact that (consequence
of Lemma 5.1)

E[|X(sl)|2|Fτl−1
]− |X(τl−1)|2 ≥ 0 (5.37)

and the identity E
(
E[|X(sl)|2|Fτl−1

]
)

= E|X(sl)|2, we obtain a telescopic sum and, thus,
a bound by

16M2E
[
|X(sL)|2 − |X(γN )|2

]
≤ 16M4P(λN < L). (5.38)

Let η (random, a.s. positive) be a modulus of uniform continuity of t 7→ X(t) associated
to ε. Let |σ| = max(sl+1 − sl). We have 1τl−1<sl ≤ 1η≤|σ|. Therefore, using the bound
by M on X(t), the sum over the indices {l ≤ λN} in (5.36) can be bounded by

16M4NP(η ≤ |σ|). (5.39)
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Gathering the estimates (5.32), (5.38), (5.39), we conclude that

E|B|2 ≤ 4M2ε2 + 16M4P(γN < sL) + 16M4NP(η ≤ |σ|). (5.40)

Since limN→+∞ P(γN < sL) = 0 and lim|σ|→0 P(η ≤ |σ|) = 0, choosing N large, then |σ|
small gives E|B|2 < ε. This proves the convergence (5.26). Note that B, which depends

on t actually, is a continuous martingale since V
(2)
σ (t) is continuous in t. By using the

Doob’s inequality (5.13), our previous considerations applied at the final time t = T
gives the Cauchy condition

E sup
t∈[0,T ]

|V (2)
σp (t)− V (2)

σq (t)|2 → 0, (5.41)

which is stronger than (5.41), and which shows that (〈X,X〉t) is continuous. There
remains to prove that (M(t)), where M(t) = X2

t −〈X,X〉t, is a martingale. Let Mσ(t) =

X2
t − V

(2)
σ (t). Let 0 ≤ s < t, and tn+1 = min{ti; ti ≥ t}, tl+1 = min{ti; ti ≥ s}. We may

assume tn ≥ s. We have the expansion

Mσ(t) = X2
t −

n−1∑
i=0

|Xti+1 −Xti |2 − |Xt −Xtn |2,

which gives the identity

Mσ(t)−Mσ(s) = (X2
t −X2

s )−
n−1∑
i=l

|Xti+1 −Xti |2 − |Xt −Xtn |2 + |Xs −Xtl |
2.

Since E
[
|Xσ −Xr|2|Fs

]
= E

[
X2
σ −X2

r |Fs
]

if r, σ ≥ s, we obtain the identity

E [Mσ(t)−Mσ(s)|Fs] = E
[
|Xs −Xtl |

2 − |Xtl+1
−Xtl |

2|Fs
]
. (5.42)

by conditioning with respect to Fs. The right-hand side of (5.42) tends to 0 when |σ| → 0
by continuity (and boundedness) of the process (Xt). Taking the limit |σ| → 0 in (5.42)
gives thus the desired result E [M(t)−M(s)|Fs] = 0.

Exercise 5.5. Give the quadratic variation of the one-dimensional Wiener process. The
solution to Exercise 5.5 is here.

Remark 5.4. Consider the case where X = N , a Poisson Process of intensity λ. It is

quite clear that, when |σ| → 0, the sum of the increments V
(2)
σ (t) should converge (at

least if t is not a time of jump) to the sum of the square of all the jumps that have
occurred before time t, i.e.

∑
s≤t(∆Xs)

2, where, for a general càdlàg process, we set
∆Xt := Xt −Xt−. In the case where X is the Poisson Process, the jumps have size 1,
hence (∆Xs)

2 = ∆Xs, and we find (quite informally) that the quadratic variation of the
Poisson process N is N itself:

[N,N ]t = Nt.
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Here we have used the notation [·, ·]t for the quadratic variation, the notation 〈·, ·〉t
is used to denote the predictable process as the A of Theorem 5.4 (compensator), see
the final lines of this remark. For a general semimartingale6, the quadratic variation is
defined by

[X,X]t = X2
t −X2

0 − 2

∫ t

0
Xs−dXs. (5.43)

We do not explain the meaning of the stochastic integral in (5.43) either, but you may
guess that, in the case where (Xt) is a mere jump process, only jumps with their respec-
tive size should contribute to the stochastic integral, giving thus

[X,X]t = X2
t −X2

0 − 2
∑
s≤t

Xs−∆Xs =
∑
s≤t

∆(Xs)
2 − 2

∑
s≤t

Xs−∆Xs

=
∑
s≤t

(Xs +Xs− − 2Xs−)∆Xs =
∑
s≤t

(∆Xs)
2.

This computation, done in the case where (Xt) is a mere jump process, shows that the
definition (5.43) seems consistent with the approach by sum of square of increments in
Theorem 5.5 (and the reason for this is the fact that the stochastic integral is defined
first for step-functions, using increments). Besides, since the stochastic integral is a
martingale, [X,X]t in (5.43) is such that X2

t − [X,X]t is a martingale. However, in the
case of càdlàg processes, t 7→ [X,X]t is not the only process that realizes this property.
Indeed, if we come back to the case of the Poisson Process, for example, we know by
independence of the increments that (Nt − λt) is a martingale. Since [N,N ]t = Nt,
we deduce that the process At = λt is also such that N2

t − At is a martingale. What
is the difference between (At) and ([N,N ]t)? We notice that (At) is predictable (it is
deterministic), therefore it fulfills the condition of Theorem 5.4 applied to Y = N2,
while [N,N ] does not (it is increasing, but certainly not predictable, being a jump
process). For a general càdlàg process X, the notation [X,X]t will denote the quadratic
variation as defined in (5.43), while the notation 〈X,X〉 will denote the process A given
by Theorem 5.4 applied to Y = X2. Sometimes, 〈X,X〉t is called the predictable
quadratic variation. In terms of compensator, [JS03, p. 32], 〈X,X〉 is the predictable
compensator of [X,X]. This immediately follows from the definition of predictable
compensator, since [X,X]− 〈X,X〉 is a martingale.

Proposition 5.6 (Quadratic variation). Under the hypotheses of Theorem 5.5, let

V̄ (2)
σ (t) =

n−1∑
i=0

E
[
|Xt∧ti+1 −Xt∧ti |2|Fti

]
. (5.44)

Then V̄
(2)
σ (t) is converging in L2(Ω) to 〈X,X〉t when |σ| → 0.

6we do not explain the terms here, see [JS03], p. 32 for the definition of compensator, and p. 42 for
the definition of semimartingale, but let us note state that a martingale is a semimartingale
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Proof of Proposition 5.6. Let D = V
(2)
σ (t)− V̄ (2)

σ (t). Using the notations of the proof of
Theorem 5.5, we have

D =
∑
k≤K

θ(tk), θ(tk) := |ζ(tk)|2 − E[|ζ(tk)|2|Ftk−1
].

Since E[θ(tk)|Ftk−1
] = 0, we obtain, as in (5.28),

E|D|2 =
∑
k

E|θ(k)|2 ≤ 4
∑
k

E|ζ(tk)|4.

By adapting the proof Theorem 5.5, we can show then that E|D|2 → 0 when |σ| → 0.

Exercise 5.6. Give the details of the end of the proof of Proposition 5.6. The solution
to Exercise 5.6 is here.

Exercise 5.7. Assume that (Xt) is a jump process as in Exercise 4.11. Suppose that,
for n ≥ 1, each Xn is drawn independently on Xn−1 according to a law ν. Try to guess

what would be the limit of V̄
(2)
σ (t) in that case. The solution to Exercise 5.7 is here.

We end this section with the following result (5.45), which is a particular case of the
more general inequality of Burkholder, Davis, Gundy [BDG72], [Bau14, Theorem 5.70].

Proposition 5.7. Let p ≥ 2. There exists a constant CBDG(p) ≥ 0 such that, for all
continuous, real-valued martingale (Mt)t∈[0,T ] such that E|MT |p < +∞ and M0 = 0, the
inequality

E

[
sup
t∈[0,T ]

|Mt|p
]
≤ CBDG(p)E

[
〈M,M〉p/2T

]
(5.45)

is satisfied.

Remark 5.5. The result is true for càdlàg martingales, with 〈M,M〉T replaced with
[M,M ]T (cf. Remark 5.4). See, for example, [MR14], for a proof “using almost only
stochastic calculus”.

(Partial) proof of Proposition 5.7. By the Doob’s inequality (5.13), we have

E

[
sup
t∈[0,T ]

|Mt|p
]
≤
(

p

p− 1

)p
E|MT |p. (5.46)

Under the hypotheses of Proposition 5.7, we also have

E
[
〈M,M〉p/2T

]
≤ C̃BDG(p)E

[
sup
t∈[0,T ]

|Mt|p
]
.

This justifies in particular that E
[
〈M,M〉p/2T

]
is finite when E|MT |p < +∞. We will

admit this fact here to do our proof. Let ϕ(s) = |s|p. Let σ = {0 = t0 < · · · < tN = T}
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be a subdivision of the interval [0, T ]. We decompose ϕ(MT ) as the sum of the increments
ϕ(Mti+1) − ϕ(Mti). Using the Taylor formula and the fact that ϕ′′ : s 7→ p(p − 1)|s|p−2

is increasing on R+, we have, a.s.

ϕ(Mti+1)− ϕ(Mti) ≤ ϕ′(Mti)(Mti+1 −Mti) +
1

2
ϕ′′(M∗T )|Mti+1 −Mti |2,

where M∗T = supt∈[0,T ] |Mt|. Taking the conditional expectation with respect to Fti ,
summing on i and taking expectation, we obtain

Eϕ(MT ) ≤ 1

2
E
[
ϕ′′(M∗T )V̄ (2)

σ

]
,

where V̄
(2)
σ is defined by (5.44). This gives, using (5.46),

E [(M∗T )p] ≤
(

p

p− 1

)p p(p− 1)

2
E
[
(M∗T )p−2V̄ (2)

σ

]
.

By the Hölder inequality, we deduce that

E [(M∗T )p] ≤
(

p

p− 1

)p p(p− 1)

2
E [(M∗T )p]

p−2
p E

[
|V̄ (2)
σ |p/2

]2/p
.

At the limit |σ| → 0, we obtain (5.45) with the constant

CBDG(p) =

[(
p

p− 1

)p p(p− 1)

2

]p/2
.

5.2 Law and paths of a Markov process

The two results Theorem 5.8 (“Dynkin’s formula”, [Pro05, p. 56]) and Theorem 5.10
below give a martingale characterization of a Markov process. This characterization
requires the knowledge of the generator L. This is the reason why we will put so
much emphasis on the generator in the diffusion-approximation results of Section 6. To
establish these results, we will also need Proposition 5.9, which completes Theorem 5.8.

Theorem 5.8. Let E be a separable Banach space, let (Ft) be a filtration. Let (Xt) be
an E-valued time-homogeneous Markov process with respect to (Ft), with semi-group of
transition operators (Pt)t≥0 satisfying (4.16). Let L be the generator of (Pt). Assume
that (Xt) is a.s. continuous. Then, for all ϕ in the domain of L,

Mϕ(t) := ϕ(Xt)− ϕ(X0)−
∫ t

0
Lϕ(Xs)ds (5.47)

is a (Ft)-martingale.
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Remark 5.6. Up to a modification, we can assume that (ω, t) 7→ Xt(ω) is measurable.
Consequently the integral in (5.47) is, at fixed time t, a random variable. Note also that
(Xt) is (Ft)-adapted since the Markov identity E[ϕ(Xt+s)|Ft] = Psϕ(Xt) gives ϕ(Xt) =
E[ϕ(Xt)|Ft] when s = 0. Consequently, all the terms in (5.47) are Ft-measurable.

Proposition 5.9. Under the hypotheses of Theorem 5.8, assume furthermore that |ϕ|2
is in the domain of L. Then the quadratic variation of the càdlàg martingale (Mϕ(t))
defined by (5.47) is given by

〈Mϕ,Mϕ〉t =

∫ t

0
(L|ϕ|2 − 2ϕLϕ)(Xs)ds, (5.48)

for all t ≥ 0.

Theorem 5.10. Let E be a separable Banach space. Let (Pt)t≥0 be a π-contraction
semi-group (Definition 4.5) such that t 7→ Ptϕ(x) is continuous for all ϕ ∈ Cb(E), for
all x ∈ E. Let L, with domain D(L), be the infinitesimal generator associated to (Pt)t≥0.
Let (Ft)t≥0 be a filtration, let (Xt)t≥0 be an E-valued process such that (ω, t) 7→ Xt(ω) is
measurable Ω×R+ → E. Assume that, for all ϕ ∈ D(L), the process (Mϕ(t))t≥0 defined
by (5.47) is an (Ft)-martingale. Then (Xt)t≥0 satisfies

E
[
ϕ(Xs+t)

∣∣∣Ft] = Psϕ(Xt), (5.49)

for all ϕ ∈ Cb(E), for all t, s ≥ 0.

Proof of Theorem 5.8 and Proposition 5.9. Let 0 ≤ s ≤ t. By Remark 5.6, we have

E[Mϕ(t)|Fs]−Mϕ(s) = E[Mϕ(t)−Mϕ(s)|Fs] = Pt−sϕ(Xs)−ϕ(Xs)−
∫ t

s
[Pσ−sLϕ](Xs)dσ.

We use the relation d
dtPtϕ(x) = PtLϕ(x) (see (4.17)) to obtain the martingale property.

Indeed, this gives

Pt−sϕ− ϕ =

∫ t

s
Pσ−sLϕdσ,

and thus E[Mϕ(t)|Fs]−Mϕ(s) = 0. The proof of (5.48) is divided in several steps. By
C(ϕ), we will denote any constant that depend on ϕ and may vary from lines to lines.
We fix a subdivision σ = (ti)0,n of [0, T ] and introduce the notation

At =

∫ t

0
(L|ϕ|2 − 2ϕLϕ)(Xs)ds. (5.50)

In a first step, we show that

At = lim
|σ|→0

n−1∑
i=0

E
[
At∧ti+1 −At∧ti |Fti

]
. (5.51)
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Indeed, we have

At =
n−1∑
i=0

At∧ti+1 −At∧ti , (5.52)

and ζ(ti+1) := At∧ti+1 −At∧ti − E
[
At∧ti+1 −At∧ti |Fti

]
satisfies

E[ζ(ti)ζ(tj)] = 0, i 6= j, |ζ(ti+1)| ≤ C(ϕ)(ti+1 − ti), (5.53)

where C(ϕ) = ‖Lϕ2‖BM(E) + 2‖ϕ‖BM(E)‖Lϕ‖BM(E). It follows that

E

∣∣∣∣∣
n−1∑
i=0

ζ(ti+1)

∣∣∣∣∣
2

= E
n−1∑
i=0

|ζ(ti+1)|2 ≤ C(ϕ)T |σ|,

which tends to 0 when |σ| → 0. Using (5.52), we obtain (5.51). In a second step we
prove that

|Mϕ(ti+1)−Mϕ(ti)|2 = |ϕ(Xti+1)− ϕ(Xti)|2 +Rti,ti+1 , (5.54)

with

E
n−1∑
i=0

|Rti,ti+1 | = O(|σ|1/2). (5.55)

By definition of Mϕ(t), (5.54) is satisfied with a remainder term

Rti,ti+1 =

∣∣∣∣∫ ti+1

ti

Lϕ(Xs)ds

∣∣∣∣2 − 2(ϕ(Xti+1)− ϕ(Xti))

∫ ti+1

ti

Lϕ(Xs)ds. (5.56)

Using the fact that ϕ2 ∈ D(L), we have also

|ϕ(Xti+1)− ϕ(Xti)|2 = Mϕ2(ti+1)−Mϕ2(ti)− 2ϕ(Xti)(Mϕ(ti+1)−Mϕ(ti))

+

∫ ti+1

ti

Lϕ2(Xs)ds− 2ϕ(Xti)

∫ ti+1

ti

Lϕ(Xs)ds.

It follows that

E[|ϕ(Xti+1)− ϕ(Xti)|2|Fti ] =

∫ ti+1

ti

E
[(
Lϕ2(Xs)− 2ϕ(Xti)Lϕ(Xs)

)
|Fti

]
ds. (5.57)

Taking expectation in (5.57), we get the following bound.

E[|ϕ(Xti+1)− ϕ(Xti)|2] ≤ Cϕ(ti+1 − ti). (5.58)

Consider now the cross-product term in the right-hand side of (5.56). Using Young’s
inequality with a parameter η > 0, we see that the term E|Rti,ti+1 | can be bounded by

(1 + η−1)E
∣∣∣∣∫ ti+1

ti

Lϕ(Xs)ds

∣∣∣∣2 + ηE[|ϕ(Xti+1)− ϕ(Xti)|2],
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and thus, taking η = (ti+1− ti)1/2, bounded from above by C(ϕ)(ti+1− ti)3/2. This gives
(5.55). We conclude in a third step. Using the characterization in Proposition 5.6 of the
quadratic variation and (5.51), (5.55), (5.57), we see that

〈Mϕ,Mϕ〉t = At + ε(|σ|) + r(t, σ), (5.59)

where ε(|σ|)→ 0 in L2(Ω) when |σ| → 0 and

|r(t, σ)| ≤ 2

n−1∑
i=0

∫ ti+1

ti

|(ϕ(Xti)− ϕ(Xs))Lϕ(Xs)| ds.

We have

|r(t, σ)| ≤ C(ϕ)

n−1∑
i=0

∫ ti+1

ti

|ϕ(Xti)− ϕ(Xs)| ds

and an estimate similar to (5.58) (obtained by working on the increment ϕ(Xs)−ϕ(Xti)
instead of ϕ(Xti+1)−ϕ(Xti)) shows that E|ϕ(Xs)−ϕ(Xti)|2 ≤ C(ϕ)(s− ti). We deduce
that r(t, σ) is also converging to 0 in L2(Ω) when |σ| → 0.

Remark 5.7 (The càdlàg case). The proof of Theorem 5.8-Proposition 5.9 does not use
the continuity of the trajectories t 7→ Xt (we simply use the continuity in quadratic mean
(5.58)). Let us replace the hypothesis that (Xt) is a.s. continuous by the assumption
that it is a.s. càdlàg. Inspecting the proof of Theorem 5.8-Proposition 5.9, we see that
we obtain the following result: Mϕ(t) in (5.47) is a (Ft)-martingale, and the variation

V̄ (2)
σ (t) =

n−1∑
i=0

E
[
|Mϕ(t ∧ ti+1)−Mϕ(t ∧ ti)|2|Fti

]
(cf. (5.44)) is converging in L2(Ω) to the continuous process At defined by (5.50). If we
inspect now the end of the proof of Theorem 5.5 and use additionally the tower property

(2.44), we see (compare to (5.42)) that, for 0 ≤ s < t and Zσ(t) := |Mϕ(t)|2 − V̄ (2)
σ (t),

E
[
Zσ(t)− Zσ(s)|2|Fs

]
= E

[
E
[
|Mϕ(s)|2 − |Mϕ(tl+1)|2|Ftl

]
|Fs
]

By (5.58), we deduce, at the limit |σ| → 0, that |Mϕ(t)|2 − At is a martingale. Since
t 7→ At is predictable (continuous and adapted), this establishes the following fact:
Proposition 5.9 holds true in the càdlàg case, where 〈Mϕ,Mϕ〉t denotes the predictable
quadratic variation (cf. Remark 5.4).

Remark 5.8 (Time dependent test-functions). It is easy to adapt the results of Theo-
rem 5.8 and Proposition 5.9 to the case where the test-function depends on t also. Under
adequate hypotheses on ψ, the stochastic process

Mψ(t) := ψ(t,Xt)− ψ(0, X0)−
∫ t

0
[(∂s + L)ψ] (s,Xs)ds (5.60)
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is a martingale with quadratic variation

〈Mψ,Mψ〉t =

∫ t

0
[(∂s + L)ψ2 − 2ψ(∂s + L)ψ](s,Xs)ds. (5.61)

See (5.62) for example.

Proof of Theorem 5.10. Let ϕ ∈ D(L). Let us first show that the martingale property
for (5.47) implies the martingale property for (5.60) with ψ(t, x) = θ(t)ϕ(x), θ ∈ C1(R+).
If (Mt)t≥0 is a continuous martingale, then

t 7→Mtθ(t)−
∫ t

0
Mσθ

′(σ)dσ

is a martingale. For Mt given by (5.47), using the Fubini theorem we obtain (5.60).
Taking now θ(t) = e−λt, λ > 0 gives us

e−λ(t+T )E[ϕ(Xt+T )|Ft] = e−λtϕ(Xt) + E

[∫ t+T

t
λe−λs(λ−1L − Id)ϕ(Xs)ds

∣∣∣∣∣Ft
]
. (5.62)

Doing the change of variable s = s′ + t in the integral shows that

ϕ(Xt) = e−λTE[ϕ(Xt+T )|Ft]− E

[∫ T

0
λe−λs(λ−1L − Id)ϕ(Xs+t)ds

∣∣∣∣∣Ft
]
.

We let T → +∞ to obtain

ϕ(Xt) = E

[∫ +∞

0
λe−λs(Id− λ−1L)ϕ(Xs+t)ds

∣∣∣∣∣Ft
]
. (5.63)

The convergence is easy to justify since ϕ and Lϕ are bounded. Compare (5.63) to
Formula (4.24) for the resolvent. Actually, both (4.24) and (5.63) can be written more
concisely by introducing a random variable independent τ with exponential distribution
of parameter λ. We may work on the probability space (Ω,F) (it suffices to assume
independence of τ and (Ft)t≥0). However, the lines below will be more explicit if we
consider that τ is defined on a probability space (Ω],F ],P]). Let Jλϕ := λRλϕ. We
rewrite (4.24) and (5.63) as

Jλϕ = E]Pτϕ, ϕ(Xt) = E]E
[
(J−1
λ ϕ)(Xτ+t)

∣∣∣Ft],
respectively. By iteration of the two formulas (we apply it to Jλϕ, J2

λϕ, etc.), we obtain,
for k ≥ 1,

Jkλϕ = E]Pσkϕ, Jkλϕ(Xt) = E]E
[
ϕ(Xσk+t)

∣∣∣Ft], (5.64)

where σk = τ1 + · · · + τk for τ1, . . . , τk some i.i.d. E(λ) independent random variables.
from (Ft)t≥0. Take now λ = N , where N → +∞ and k = [Ns] for a given s > 0. By
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the weak law of large numbers, we have σk → s in probability (for P]). Consequently,
the limit [N → +∞] of the first equality in (5.64) gives

J
[ns]
N ϕ

π−→ Psϕ. (5.65)

The map θ : σ 7→ E[ϕ(Xσ+t)|Ft] is continuous since, for σ′ ≥ σ, and by the martingale
property,

∣∣θ(σ′)− θ(σ)
∣∣ =

∣∣∣∣∣
∫ t+σ′

t+σ
E[Lϕ(Xs)|Ft]ds

∣∣∣∣∣ ≤ ‖Lϕ‖BM(E)(σ
′ − σ).

Consequently, at the limit [N → +∞] in the second identity in (5.64), we get (5.49). We
have supposed ϕ ∈ D(L), but D(L) is π-dense in Cb(E) (cf. Proposition 4.6), therefore
(5.49) holds true when ϕ is an arbitrary element of Cb(E).

6 Diffusion approximation in finite dimension

Let d, k ≥ 0, let f ∈ C1
b (Rd;Rd) and g ∈ C2

b (Rk × Rd;Rd), where Ckb denote the set
of functions with continuous and bounded derivatives for all orders from 0 to k. Let
(Ft)t≥0 be a complete filtration and let (mt(n)) be a collection of càdlàg Markov process
on Rk such that, for every F0-measurable random variable n : Ω→ Rk,

P(m0(n) = n) = 1, (6.1)

E [ϕ(mt+s(n))|Ft] = E [(Ptϕ)(mt(n))] , (6.2)

for all ϕ ∈ BM(Rk), for all 0 ≤ s, t, where (Pt)t≥0 is a Markov semi-group associated
to a transition function {Qt; t ≥ 0}, with (Pt)t≥0 satisfying (4.16). We assume that, for
every t ≥ 0, the map

Ω× Rk → Rk, (ω, n) 7→ mt(n), (6.3)

is measurable. We assume also that (mt(n)) has the invariant measure ν ∈ P(Rk). More
precisely, we assume that there is a F0-measurable random variable n̄ having the law ν
such that m̄t := mt(n̄) is a stationary process (note that, in virtue of Theorem 4.2, this
amounts to require Law(m̄t) = ν for all t ≥ 0). Let x ∈ Rd. Our aim in this section is
to find the limit when ε→ 0 of the solution Xε

t to the Cauchy problem

dXε
t

dt
= f(Xε

t ) +
1

ε
g(m̄ε

t , X
ε
t ), (6.4)

Xε
0 = x. (6.5)

In (6.4) the process m̄ε
t is the rescaled process

m̄ε
t = m̄ε−2t. (6.6)

The plan of this section is the following one. In Section 6.1, we explain what is the
framework (hypotheses on (mt(n))) in which (6.4) may have a limit. In Section 6.1
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we analyse the Markov property for (Xε
t ,m

ε
t (n)) and give the associated generator Lε.

In Section 6.3, we find the limit generator L by a perturbed test function method. In
Section 6.4, we prove the tightness of (Xε

t ). In Section 6.5, we display a limit martin-
gale problem. In Section 6.6, we identity the limit problem as a stochastic differential
equation. This uses the theory of stochastic differential equation, whose treatment is
reported to Section 8. The main result of this section is Theorem 6.13.

6.1 Mixing hypothesis

6.1.1 Hypotheses on the driving stochastic process

Assume that (m̄t) has the following ergodic property: for all n ∈ Rk, for all ψ ∈ BM(Rk),

lim
T→+∞

1

T

∫ T

0
Eψ(mt(n))dt→ 〈ν, ψ〉. (6.7)

Taking ψ = g(·, x), and T = ε−2t, we see that

1

ε

∫ t

0
E[g(mε

t (n), x)]dt ' t

ε
〈ν, g(·, x)〉.

The solution Xε
t to (6.4) will be singular when ε→ 0, unless the first moment vanishes:∫

Rk
g(n, x)dν(n) = E[g(m̄t, x)] = 0, ∀x ∈ Rd. (6.8)

Our general framework will be the following one: we will assume that the condition (6.8)
is satisfied and that (mt(n))t≥0 has the following mixing property: there exists a non-
negative non-increasing function γmix ∈ L1(R+) such that, for all n, n′ F0-measurable
random variables, there is a coupling (m∗t (n),m∗t (n

′))t≥0 of (mt(n),mt(n
′))t≥0 such that

E
[
|m∗t (n)−m∗t (n′)|

]
≤ γmix(t)E[|n− n′|]. (6.9)

We have used the

Definition 6.1 (coupling). Let E be a separable Banach space and (Xt)t≥0, (Yt)t≥0

two E-valued stochastic processes. The couple (X̃t, Ỹt)t≥0 is a coupling of (Xt, Yt)t≥0 if
(X̃t)t≥0 and (Ỹt)t≥0 have the same law as (Xt)t≥0 and (Yt)t≥0 respectively.

If (X̃t, Ỹt) is a coupling of (Xt, Yt), their joint law may be different, and that is the
potential interest of a coupling. The estimate (6.9) can be expressed in terms of the joint
law of (m∗t (n)) and (m∗t (n

′)). See the examples in Section 6.1.3. See also Appendix A
on the problem of maximal coupling.
Assume

M1 = E|n̄| = E|m̄t| =
∫
Rk
|n|dν(n) < +∞. (6.10)

If n ∈ Rk and ϕ ∈ BM(Rk) is Lipschitz continuous, (6.9) gives

|Ptϕ(n)− 〈ϕ, ν〉| = |E[ϕ(m∗t (n))− ϕ(m∗t (n̄))]| ≤ γmix(t)Lip(ϕ)(|n|+M1), (6.11)
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and, for n′ ∈ Rk,

|Ptϕ(n)− Ptϕ(n′)| = |E[ϕ(m∗t (n))− ϕ(m∗t (n
′))]| ≤ γmix(t)Lip(ϕ)|n− n′|. (6.12)

We will make a much stronger hypothesis than (6.10). We assume that there exists
κ > 0 such that the closed ball B̄κ of center 0 and radius κ is stable by evolution along
the process: for any F0-measurable random variable n, we have

n ∈ B̄κ a.s.⇒ mt(n) ∈ B̄κ a.s. for all t ≥ 0. (6.13)

We deduce from (6.9) and (6.13) that m̄t ∈ B̄κ a.e. Indeed, if ϕ is Lipschitz continuous,
non-negative and vanishes on B̄κ and n is given in B̄κ, then, due to (6.11),

Eϕ(m̄t) = 〈ϕ, ν〉 = lim
s→+∞

Psϕ(n) = 0,

since Psϕ(n) = 0 for all s ≥ 0. Consequently, we have

|m̄t| ≤ κ a.s. for all t ≥ 0. (6.14)

We will now take B̄κ as a state space for the process (mt(n)).

6.1.2 The Poisson equation

Later (see Section 6.3), we will need to solve the Poisson equation associated to (mt),
Equation (6.15) below.

Proposition 6.1 (The Poisson equation). Let A denote the generator of (mt). Let
ϕ ∈ Lip(B̄κ) satisfy the cancellation condition 〈ν, ϕ〉 = 0. Then the Poisson equation

−Aψ = ϕ (6.15)

has a unique solution ψ ∈ D(A) such that 〈ν, ψ〉 = 0, given by

ψ(n) = R0ϕ(n) =

∫ ∞
0

Ptϕ(n)dt. (6.16)

We have also the bound
Lip(ψ) ≤ ‖γmix‖L1(R+)Lip(ϕ), (6.17)

for ψ given by (6.16).

Proof of Proposition 6.1. Since 〈ϕ, ν〉 = 0, the estimate (6.11) shows that the integral
defining ψ in (6.16) is convergent. The estimate (6.17) follows from (6.12). It is also
simple to show that ψ ∈ D(A), and that ψ satisfies (6.15). There remains to show
uniqueness. We start from the identity (it follows from (4.4))

Ptψ(n) = ψ(n) +

∫ t

0
PsAψ(n)ds. (6.18)

If Aψ = 0 and 〈ψ, ν〉 = 0, we deduce from (6.11) that

|ψ(n)| ≤ γmix(t)Lip(ϕ)(|n|+M1).

At the limit t→ +∞, we obtain ψ(n) = 0.
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Remark 6.1. If ψ ∈ D(A) satisfies Aψ = 0, then ψ is constant. This follows from the
uniqueness part of Proposition 6.1 applied to ψ − 〈ψ, ν〉.

6.1.3 Some examples

We give some classical examples of processes (mt(n)) satisfying (6.8), (6.9), (6.10). Our
first example is the Ornstein-Uhlenbeck process. Maybe the more classical definition of
the Ornstein-Uhlenbeck process is that it should solve the stochastic differential equation

dmt(n) = −mt(n)dt+
√

2dBt, m0(n) = n, (6.19)

where (Bt) is a k-dimensional Wiener process. Since we have not seen stochastic diffe-
rential equations yet, we take the following definition:

mt(n) = e−tn+Br(t), r(t) = 1− e−2t. (6.20)

Indeed, the solution to (6.19) has the same law as the right-hand side of (6.20). The in-
variant measure is the N (0, 1). The cancellation condition (6.8) is then satisfied if g(·, x)
is odd, for example. A coupling of mt(n) and mt(n

′) that gives (6.9) is the synchronous
coupling, that uses the same realization of Wiener process for both trajectories. Here
this amounts to no coupling at all: we have

E|mt(n)−mt(n
′)| = e−tE|n− n′|,

hence (6.9) with γmix(t) = e−t. It is clear that (6.10) is satisfied. Note also that

Aϕ(n) = −n · ∇nϕ(n) + ∆nϕ(n).

However, (6.13) is not satisfied since a Gaussian is not compactly supported. Our second
example is a Markov jump process. Let ν be a given probability measure on Rk supported
in B̄κ such that ∫

Rk
ndν(n) = 0.

Let (F0
k )k∈N be a filtration indexed by N. Let (m0

k(n))k≥0 be a (F0
k )-Markov chain on

Rk having the invariant measure ν and satisfying the following mixing property: there
exists γ ∈ (0, 1) and C ≥ 0 such that, for all n, n′ F0

0 -measurable, there is a coupling
(m0,∗

k (n),m0,∗
k (n′)) of (m0

k(n),m0
k(n
′)) such that

E|m0,∗
k (n)−m0,∗

k (n′)| ≤ CγkE|n− n′|. (6.21)

Assume also that B̄κ is stable by n 7→ m0
k(n) for every k. Let (Tj)j∈N be a Poisson

process of constant rate 1 independent on (F0
k )k≥1. For t ≥ 0 and n a F0

0 -measurable
function, let Sk = T1 + · · ·+ Tk and let

mt(n) = n1t<T1 +
∑
k≥1

m0
k(n)1Sk≤t<Sk+1

. (6.22)
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By Exercise 4.11, (mt(n)) is a Markov process for the filtration Ft generated by Fmt and
the natural filtration of the Poisson process. Note that F0 = F0

0 . To obtain (6.9), we
use the coupling

m∗t (n) = n1t<T1 +
∑
k≥1

m0,∗
k (n)1Sk≤t<Sk+1

. (6.23)

This is again a synchronous coupling since the time of the jumps are the same for both
trajectories. By independence and by (6.21), we have

E|m∗t (n)−m∗t (n′)| ≤ P(t < T1)E|n− n′|+
∑
k≥1

CγkE|n− n′|P(Sk ≤ t < Sk+1).

Since P(t < T1) = e−t, P(Sk ≤ t < Sk+1) = e−t, we obtain (6.9) with

γmix(t) =

[
1 +

Cγ

1− γ

]
e−t.

It is clear that (6.13) is satisfied here.

6.2 Markov property

6.2.1 Resolution of the ODE

We are interested in the resolution of (6.4)-(6.5). Since we work at fixed ε > 0 for the
moment. We will first consider the Cauchy Problem

dXt

dt
= f(Xt) + g(qt, Xt), (6.24)

X0 = x, (6.25)

where (qt) is a given càdlàg function.

Proposition 6.2. Let T > 0. On the interval [0, T ], the problem (6.24)-(6.25) has a
unique solution X ∈ C([0, T ];Rd). If q̃t is another càdlàg function and X̃ ∈ C([0, T ];Rd)
the associated solution to (6.24)-(6.25), then

|Xt − X̃t| ≤ Lip(g)e(Lip(f)+Lip(g))T

∫ t

0
|qs − q̃s|ds. (6.26)

Proof of Proposition 6.2. The existence and uniqueness of X ∈ C([0, T ];Rd) solution to
(6.24)-(6.25) follows from the Cauchy-Lipschitz theorem. To obtain (6.26), we write

|Xt − X̃t| ≤
∫ t

0

[
|f(Xs)− f(X̃s)|+ |g(qs, Xs)− g(q̃s, X̃s)|

]
ds

≤ (Lip(f) + Lip(g))

∫ t

0
|Xs − X̃s|ds+ Lip(g)

∫ t

0
|qs − q̃s|ds.

The Gronwall Lemma gives

|Xt − X̃t| ≤ Lip(g)

∫ t

0
e(Lip(f)+Lip(g))(t−s)|qs − q̃s|ds,

and (6.26) follows.
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6.2.2 Markov property

Let us denote by X(t, 0;x, (qσ)σ∈[0,t]) the solution to (6.24)-(6.25). More generally, we
can denote by X(t, s;x, (qσ)σ∈[s,t]) the value at time t of the solution to (6.24) on [s, t]
starting from x at time s. By uniqueness, we have the semi-group property

X(t, s;x, (qσ)σ∈[s,t]) = X(t, τ ; y, (qσ)σ∈[τ,t]), y = X(τ, s;x, (qσ)σ∈[s,τ ]), (6.27)

for all s ≤ τ ≤ t. Assume now that (qt(z)) is a càdlàg Markov process relatively to a
complete filtration (Gt). Then we have the following result.

Proposition 6.3 (Markov property). The process (Xt, qt) is a Markov process, relatively
to (Gt), with transition operator (Πt) given by

Πtϕ(x, z) = Eϕ
[
X(t, 0;x, (qs(z))s∈[0,t]), qt(z)

]
. (6.28)

To prove Proposition 6.3, we will need the following lemma.

Lemma 6.4. Assume that, for all t ≥ 0,

Ω× Rk → Rk, (ω, z) 7→ qωt (z), (6.29)

is measurable. Let Πt be defined by (6.28). Then Πt : BM(Rd × Rk) → BM(Rd × Rk)
and (Πt) satisfies the points 1, 2, 3 of Definition 4.5.

Note: we do not assert at that point that (Πt) is a π-contraction semi-group since the
semi-group property will be established later, in the proof of Proposition 6.3.

Proof of Lemma 6.4. Note first that (6.29) implies that

Ω× Rk → L1((0, t);Rk), (ω, z) 7→ (qωs (z))s∈[0,t], (6.30)

is measurable. Indeed, for n ∈ N∗, set sk = kt
n and define

qn,ωs (z)

n−1∑
k=0

qωsk+1
(z)1[sk,sk+1)(s)

We have qn,ωs (z)→ qωs+(z) = qωs (z) for every s ∈ [0, t] since s 7→ qωs (z) is càdlàg, and thus

(qn,ωs (z))s∈[0,t] → (qωs (z))s∈[0,t]

in L1(0, t). We also have

|Xt(x)− x| ≤ (‖f‖BM(Rd) + ‖g‖BM(Rk×Rd))t. (6.31)

Together with (6.26), this shows that

(ω, x, z) 7→ (X(t, 0;x, (qs(z))s∈[0,t]), qt(z))
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is measurable. It follows that Πt : BM(Rd × Rk)→ BM(Rd × Rk). We have

Πtϕ(x, z) = 〈ϕ, λt〉, λt := Law(X(t, 0;x, (qs(z))s∈[0,t]), qt(z)). (6.32)

From (6.32) we deduce the points 2 and 3 of Definition 4.5. To prove the point 1
(stochastic continuity), we simply use the dominated convergence theorem. Indeed,
almost-surely,

(X(t, 0;x, (qs(z))s∈[0,t]), qt(z))→ (x, z)

by (6.31) and the càdlàg property of (qt(z)).

Proof of Proposition 6.3. First, it is clear that (Xt) is (Gt)-adapted. A way to see this is
to write (Xt)t∈[0,T ] as the solution to a fixed point equation X = T (X) on C([0, T ],Rd),
where, for an adequate7 norm on C([0, T ],Rd), T is a contraction. It follows that X =
limn→+∞X

n a.s. in C([0, T ],Rd), where Xn is the sequence defined by the iteration
Xn+1 = T (Xn), X0

t = x. Since each Xn
t is Gt-measurable, so is Xt (Proposition 4.7).

By (6.27), we have

ϕ
[
X(t+ s, 0;x, (qσ(z))σ∈[0,t+s]), qt+s(z)

]
= ϕ

[
X(t+ s, t; y, (qσ(z))σ∈[t,t+s]), qt+s(z)

]
, (6.33)

where y = X(t, 0;x, (qσ(z))σ∈[0,t]). Taking the conditional expectation of (6.33), we see
that we will obtain the Markov property

E [ϕ(Xt+s, qt+s(z))|Gt] = (Πs)(Xt, qt(z)), Xt = X(t, 0;x, (qσ)σ∈[0,t]), (6.34)

if we establish that

E
[
ϕ
[
X(t+ s, t;Y, (qσ(z))σ∈[t,t+s]), qt+s(z)

]
| Gt
]

= (Πsϕ)(Y, qt(z)) (6.35)

for all Gt-measurable random variable Y . We consider first a continuous and bounded
function ϕ. Let (si)0,N be a regular subdivision of the interval [0, s] and let

q̃Nσ (z) =
N−1∑
i=0

qsi+t(z)1[si+t,si+1+t)(σ), σ ∈ [t, s+ t].

We claim that it is sufficient to consider (6.35) with the path (qσ(z))σ∈[t,t+s]) replaced

by the path (q̃Nσ (z))σ∈[t,t+s]). Indeed, (q̃Nσ (z)) is converging to (qσ(z)) when N → +∞ in

L1(t, s+ t). Indeed, we have q̃Nσ (z) = qsi(σ)+t(z) where si(σ)+ t ≤ σ < si+1(σ)+ t. Since
si+1(σ) = si(σ) + s

N , we see that si(σ) + t is converging to σ from below when N → +∞
and, consequently, q̃Nσ (z) is converging to qσ−(z) when N → +∞, for all σ ∈ [t, s+t]. By
qσ−(z) we denote the limit from the left of the càdlàg function σ 7→ qσ(z). It coincides
with the value qσ(z), except at a countable set of points σ. The L1-convergence follows

7take ‖X‖ = supt∈[0,T ] e
−(Lip(f)+Lip(g))t|Xt|
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by the dominated convergence theorem. Those arguments show that the left-hand side
of (6.35) is the limit when N → +∞ of

E
[
ϕ
[
X(t+ s, t;Y, (q̃Nσ (z))σ∈[t,t+s]), qt+s(z)

]
| Gt
]
. (6.36)

By Proposition 6.2, there is a continuous function ξ such that

X(t+ s, t;Y, (q̃Nσ (z))σ∈[t,t+s]) = ξ(s;Y, qt+s0(z), . . . , qt+sN−1(z)), (6.37)

ξ(s;Y, qs0(z), . . . , qsN−1(z)) = X(s, 0;Y, (q̂Nσ (z))σ∈[0,s]), (6.38)

where

q̂Nσ (z) =

N−1∑
i=0

qsi(z)1[si,si+1)(σ), σ ∈ [0, s].

Using (6.37)-(6.38) and the Markov property for (qσ), we obtain

(6.36) = E
[
ϕ
[
ξ(s;Y, qt+s0(z), . . . , qt+sN−1(z)), qt+s(z)

]
| Gt
]

= Ψs(Y, qt(z)),

Ψs(x, z) := Eϕ
[
ξ(s;x, qs0(z), . . . , qsN−1(z)), qs(z)

]
= E

[
ϕ
[
X(s, 0;x, (q̂Nσ (z))σ∈[0,s]), qs(z)

]]
.

By taking the limit [N → +∞], we obtain (6.35), and hence (6.34), with the restriction
that ϕ is continuous. We deduce that, for ϕ ∈ Cb(Rd × Rk) and s, t ≥ 0,

Πt+sϕ(x, z) = E [ϕ(Xt+s(x), qt+s(z))] = E [E [ϕ(Xt+s(x), qt+s(z))|Gt]]
= E [(Πsϕ)(Xt(x), qt(z))] = (Πt ◦Πsϕ)(x, z). (6.39)

Consider the two maps

ϕ 7→ Πt+sϕ(x, z), ϕ 7→ (Πt ◦Πsϕ)(x, z).

They preserve the positivity and fix the constants and are continuous for π-convergence
due to Lemma 6.4. It follows (see the proof or Proposition 4.3) that

A 7→ Πt+s1A(x, z), A 7→ (Πt ◦Πs1A)(x, z)

are both probability measures on B(Rd×Rk). These two measures coincide when tested
against functions of Cb(Rd×Rk) and Cb(Rd×Rk) is a separating class (Proposition 2.10).
These two measures are therefore equal, and we deduce that (6.39) is satisfied for any
function ϕ ∈ BM(Rd × Rk). This gives the semi-group property Πt+s = Πt ◦ Πs. By
Lemma 6.4 and Proposition 4.3, we deduce that (Πt) is a Markov semi-group. To
conclude, we have to show that (6.34) is satisfied not only for continuous functions, but
for all ϕ ∈ BM(Rd × Rk). Our aim is to prove that, given B a Gt-measurable set,

E [1Bϕ(Xt+s, qt+s(z))] = E [1B(Πs)(Xt, qt(z))] . (6.40)

We do the same reasoning as above. Both members of (6.40) define some Radon measures
(of total mass P(B)) that coincide when tested against continuous bounded functions.
An argument of separating class gives the conclusion.
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We have worked on the system (6.24)-(6.25). Let Fεt = Fε−2t. Replacing g by 1
εg and

taking mε
t as a driving process, we obtain the following result for the solution

Xε
t = Xε(t, 0;x, (mε

σ(n))σ∈[0,t])

to

dXε
t

dt
= f(Xε

t ) +
1

ε
g(mε

t (n), Xε
t ), Xε

0 = x. (6.41)

The solution (Xε
t ,m

ε
t ) is a Markov process relatively to (Fεt )t≥0 with transition operator

Πε
t given by

Πε
tϕ(x, n) = Eϕ

[
Xε(t, 0;x, (mε

σ(n))σ∈[0,t]),m
ε
t (n)

]
, (6.42)

for ϕ ∈ BM(Rd × B̄κ), (x, n) ∈ Rd × B̄κ.

6.2.3 Generator

Definition 6.2 (Admissible test-function). A continuous bounded function ϕ : Rd ×
B̄κ → R is said to be an admissible test-function if

1. for all x ∈ Rd, ϕ(x, ·) ∈ D(A) and (x, n) 7→ Aϕ(x, n) is bounded,

2. for all n ∈ B̄κ, ϕ(·, n) is of class C1 on Rd and (x, n) 7→ ∇xϕ(x, n) is bounded,

3. for all x ∈ Rd, ∇xϕ(x, ·) ∈ D(A), and (x, n) 7→ A∇xϕ(x, n) is bounded.

Remark 6.2 (Poisson’s equation with parameter). It is clear from the proof of Proposi-
tion 6.1 that, if ϕ is a Lipschitz continuous admissible test-function such that

〈ϕ(x, ·), ν〉 = 0

for all x, then

ψ(n, x) = R0ϕ(n, x) =

∫ ∞
0

Ptϕ(n, x)dt,

is also an admissible test-function and satisfies the Poisson equations −Aψ(·, x) = ϕ(·, x)
and −A∇xψ(·, x) = ∇xϕ(·, x) for all x ∈ Rd.

Proposition 6.5 (Generator). Let Lε be the generator associated to the transition semi-
group (Πε

t )t≥0 given by (6.42). If ϕ is an admissible test-function, then ϕ is in the domain
of Lε and

Lεϕ(x, n) =
1

ε2
Aϕ(x, n) +

1

ε
g(n, x) · ∇xϕ(x, n) + f(x) · ∇xϕ(x, n), (6.43)

for all (x, n) ∈ Rd × B̄κ.

87



Proof of Proposition 6.5. Let ϕ be an admissible test-function. Note first that Lεϕ as
defined by (6.43) is a bounded measurable function. We want to show that

Πε
tϕ = ϕ+ tLεϕ+ ηε(t)t, (6.44)

where (ηε) is π-converging to 0 on Rd × B̄κ. We split the difference Πε
tϕ − ϕ into the

sum of the two terms
Eϕ (Xε

t ,m
ε
t (n))− Eϕ(x,mε

t (n)), (6.45)

and Eϕ(x,mε
t (n))− ϕ(x, n). For this last term, we have

Eϕ(x,mε
t (n))− ϕ(x, n) = P εt ϕ(x, n)− ϕ(x, n) =

t

ε2
Aϕ(x, n) + tζε(t), (6.46)

where

ζε(t) : (x, n) 7→ 1

t

∫ t/ε2

0
[PsAϕ(x, n)−Aϕ(x, n)] ds =

∫ 1/ε2

0
[PstAϕ(x, n)−Aϕ(x, n)] ds

is π-converging to 0 since, by (4.16), PsAϕ(x, n) → Aϕ(x, n) when s → 0. The first
term (6.45) is

E
∫ t

0
∇xϕ (Xε

s ,m
ε
t (n)) · Ẋε

sds = E
∫ t

0
∇xϕ (Xε

s ,m
ε
t (n)) ·Hε(Xε

s ,m
ε
s)ds, (6.47)

where Hε(x, n) = f(x) + 1
εg(n, x). To obtain the asymptotic expansion of (6.45), we

introduce the partial maps

ψ(x, n;n′) = ∇xϕ(x, n′) ·Hε(x, n), θ(n;x′n′) = ∇xϕ(x′, n) ·Hε(x′, n′).

We have then (6.47) = t∇xϕ(x, n) ·Hε(x, n) + tξε1(t) + tξε2(t), with

ξε1(t) =
1

t

∫ t

0
E [∇xϕ (Xε

s ,m
ε
t (n)) ·Hε(Xε

s ,m
ε
s)−∇xϕ (Xε

s , n) ·Hε(Xε
s ,m

ε
s)] ds,

which we rewrite as

ξε1(t) =
1

t

∫ t

0

[
Pε−2tθ(n;x′, n′)− θ(n;x′, n′)

]
|(x′,n′)=(Xε

s ,m
ε
s(n))ds

=

∫ 1

0

[
Pε−2tθ(n;x′, n′)− θ(n;x′, n′)

]
|(x′,n′)=(Xε

st,m
ε
st(n))ds,

and

ξε2(t) =
1

t

∫ t

0
E [∇xϕ (Xε

s , n) ·Hε(Xε
s ,m

ε
s)−∇xϕ (x, n) ·Hε(x, n)] ds,

equal to

ξε2(t) =

∫ 1

0

[
Πε
stψ(x, n;n′)− ψ(x, n;n′)

]
|n′=nds.
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By dominated convergence, ξε2(t) → 0 when t → 0 and is a bounded function of (x, n).
To get a similar result for ξε1(t), we need a convergence Ptθ(n;x′, n′) → θ(n;x′, n′) that
is uniform in (x′, n′). This is the case since ∇xϕ(x, ·) ∈ D1(A), and thus

|Ptθ(n;x′, n′)− θ(n;x′, n′)| =
∣∣∣∣∫ t

0
PsAθ(n;x′, n′)

∣∣∣∣ ≤ t sup
Rd×B̄κ

|A∇xϕ|‖Hε‖BM(Rd×B̄κ).

This concludes the proof of the proposition.

6.3 Perturbed test function method

Let ϕ ∈ C3
b (Rd): ϕ is of class C3 on Rd and ϕ with its derivatives up to order three

are bounded on Rd (and ϕ is independent on n). By Theorem 5.8 and Section 6.2.2, we
know that

ϕ(Xε
t )− ϕ(x)−

∫ t

0
Lεϕ(Xε

s )ds (6.48)

is a (Fεt )-martingale. If (Xε
t ) converges (convergence on law is sufficient) to a certain

Markov process (Xt) with generator L (we call L the limit generator), then, for ϕ possibly
more regular, and in virtue of the Martingale characterization of Theorem 5.8

ϕ(Xt)− ϕ(x)−
∫ t

0
Lϕ(Xs)ds (6.49)

is a (FXt )-martingale. We expect therefore the convergence of the set of equations
(0 ≤ s ≤ t)

E

[
ϕ(Xε

t )− ϕ(Xε
s )−

∫ t

s
Lεϕ(Xε

σ)dσ

∣∣∣∣∣Fεt
]

= 0, (6.50)

to the set of equations

E

[
ϕ(Xt)− ϕ(Xs)−

∫ t

s
Lϕ(Xσ)dσ

∣∣∣∣∣Ft
]

= 0, (6.51)

where (Ft) may be larger than (FXt ). Although it gives, at least formally, the convergence
(6.50)→(6.51), it is not reasonable to expect Lεϕ→ Lϕ. Indeed, generic test functions
for Lε depend on x and n. It is the approximation Eϕ(Xε

t ,m
ε
t ) ' Eϕ̄(Xt), ϕ̄(x) :=

〈ϕ(x, ·), ν〉 that induces a dependence solely on x at the limit. The idea of the perturbed
test function method, devised (in our particular context) by Papanicolaou, Stroock and
Varadhan, [PSV77], is to look for an expansion ϕε = ϕ+ εϕ1 + ε2ϕ2 such that

Lεϕε = Lϕ+ o(1). (6.52)

By identification of the powers of ε, (6.52) gives the following equations: at the order
ε−2, we have Aϕ = 0, which is satisfied since ϕ is independent on n (actually this is an
equivalence by Remark 6.1). At the order ε−1, we obtain the equation

Aϕ1(n, x) + g(n, x) · ∇xϕ(x) = 0. (6.53)
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By (6.8) and (6.15), (6.53) has the solution

ϕ1(·, x) = R0(g(·, x)) · ∇xϕ(x), (6.54)

which is an admissible test function. At the order ε0, (6.52) gives the equation

Aϕ2(n, x) + g(n, x) · ∇xϕ1(n, x) + f(x) · ∇xϕ(x) = Lϕ(x). (6.55)

Since 〈Aϕ2(·, x), ν〉 = 0, a necessary condition to (6.55) is that

Lϕ(x) = f(x) · ∇xϕ(x) + 〈g(·, x) · ∇xϕ1(·, x), ν〉. (6.56)

The equation (6.56) gives the expression of the limit generator L. We have

∇xϕ1(x, ·) = ∇xR0(g(·, x)) · ∇xϕ(x)) +D2
xϕ(x) ·R0(g(·, x)). (6.57)

The limit generator is therefore

Lϕ(x) = F (x) · ∇xϕ(x) +G(x):D2ϕ(x), (6.58)

where

F (x) = f(x) + 〈g(·, x) · ∇xR0(g(·, x)), ν〉, G(x) = 〈g(·, x)⊗R0(g(·, x)), ν〉. (6.59)

In (6.58) and (6.59), we have used the following notations: A:B is the canonical scalar
product of two d× d matrices:

A:B =
d∑

i,j=1

aijbij . (6.60)

If u, v are two vectors of Rd, u⊗ v is the rank-one d× d matrix defined by

(u⊗ v)ij = uivj . (6.61)

Once L is defined by (6.56), we solve (6.55) by setting

ϕ2 = R0(ψ2 − 〈ψ2, ν〉), ψ2(x, n) = g(n, x) · ∇xϕ1(n, x) + f(x) · ∇xϕ(x). (6.62)

Proposition 6.6 (Correctors). Let ϕ ∈ C3
b (Rd). Let ϕ1 be defined by (6.54), let ϕ2

be defined by (6.62). Then ϕ1 and ϕ2 are admissible test-functions in the sense of
Definition 6.2 and the perturbed test function ϕε + ϕ+ εϕ1 + ε2ϕ2 satisfies

|Lεϕε(x, n)− Lϕ(x, n)‖ ≤ C(1 + |n|)ε, ∀(x, n) ∈ Rd × Rk, (6.63)

where the constant C depends on f , g, ϕ, but not on ε, x, n.

Proof of Proposition 6.6. By Proposition 6.1 and Remark 6.2, ϕ1 and ϕ2 are admissible
test-functions in the sense of Definition 6.2 and we have

Lεϕε − Lϕ = ε(f · ∇xϕ1 + g · ∇xϕ2) + ε2f · ∇xϕ2.

The bound (6.63) follows.
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6.4 Tightness

In this section, we will show that (Xε
t ) is tight.

Proposition 6.7 (Tightness). Assume that m is almost surely continuous and satisfies
(6.8), (6.9), (6.10). Assume that g satisfies

R0(gi(·, x)), |R0(gi(·, x))|2 ∈ D(A), A|R0(gi)|2 ∈ BM(B̄κ × Rd), (6.64)

for all i ∈ {1, . . . , d}, for all x ∈ Rd. Let T > 0. Then there exists α ∈ (0, 1) and C ≥ 0
independent on ε, such that, up to modification, the solution (Xε

t ) to (6.4)-(6.5) satisfies

Xε
t = Y ε

t + ζεt , E‖Y ε‖Cα([0,T ];Rd) ≤ C, E

[
sup
t∈[0,T ]

|ζεt |

]
≤ Cε. (6.65)

In particular, (Xε) is tight in C([0, T ];Rd).

Proof of Proposition 6.7. The last statement says, more exactly, that the law of (Xε) is
tight on C([0, T ];Rd). This last assertion is a simple consequence of the bound (6.65).
Indeed, (6.65) and the Markov inequality show that

νε(Kc
R) = P(‖Y ε‖Cα([0,T ];Rd) > R) ≤ C

R
,

where νε = Law(Xε), KR = {Y ∈ C([0, T ];Rd); ‖Y ‖Cα([0,T ];Rd) ≤ R}. By Ascoli’s
Theorem, KR is compact. If η > 0 is given, we have therefore νε(K) ≥ 1 − η for all
ε, where K is the compact KCη−1 . This shows that (Y ε

t ) is tight. By Lemma 2.12 and
Prohorov’s Theorem (Theorem 2.13), (Xε

t ) is tight. Remember that

‖Y ‖Cα([0,T ];Rd) = sup
t∈[0,T ]

|Y (t)|+ sup
s 6=t∈[0,T ]

|Y (t)− Y (s)|
|t− s|α

.

A consequence of (6.65), if ε ≤ 1, is that E|Xε
t | ≤ 2C for all t ∈ [0, T ]. Even this estimate

is non-trivial. The right-hand side of (6.4) is singular, owing to the factor ε−1 and none
of the classical techniques for ODEs, like the ones using Gronwall’s lemma applied for
example in the proof of Proposition 6.2, will give an estimate independent on ε. To
obtain such an estimate, we will apply a perturbed test-function method at order 1. Let
ϕ ∈ C2

b (Rd) and let ϕ1 be defined by (6.54): ϕ1 = R0(g) · ∇xϕ. Set ϕε = ϕ + εϕ1. By
Theorem 5.8 and Proposition 5.9,

M ε
t := ϕε(Xε

t , m̄
ε
t )− ϕ(x, n̄)−

∫ t

0
Lεϕε(Xε

s , m̄
ε
s)ds (6.66)

is a (Fεt )-martingale with quadratic variation

〈M ε,M ε〉t =

∫ t

0
(Lε|ϕε|2 − 2ϕεLεϕε)(Xε

s , m̄
ε
s)ds. (6.67)
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Indeed, |ϕε|2 is in the domain of Lε. Thus is due to (6.64) and to the fact that the
first-order terms (those in ∇xϕ in (6.43)) have no contribution in (6.67). It results that

|〈M ε,M ε〉t−〈M ε,M ε〉s| =
∣∣∣∣∫ t

s
(A|ϕ1|2 − 2ϕ1Aϕ1)(Xε

σ, m̄
ε
σ)dσ

∣∣∣∣ ≤ C1‖∇xϕ‖2Cb(Rd)(t−s),

(6.68)
for s ≤ t, where C1 (and C2, . . . in what follows) is a constant that may depend on x, g,
f , γmix and T , but is independent on ε and ϕ (indeed, we will have to be careful to the
dependence of our estimates upon ϕ, since at the end, we will take for ϕ the element
of a sequence (ϕk) on C2

b (Rd) converging to x 7→ x). By the Burkholder-Davis-Gundy
inequality, we deduce that

E
[
|M ε

t −M ε
s |4
]
≤ C2‖∇xϕ‖4Cb(Rd)(t− s)

2. (6.69)

Admit for the moment that

|Lεϕε(y, n)| ≤ C3(‖∇xϕ‖Cb(Rd) + ‖D2ϕ‖Cb(Rd)), (6.70)

for all (y, n) ∈ Rd × B̄κ. Then∣∣∣∣∫ t

s
Lεϕε(Xε

σ, m̄
ε
σ)dσ

∣∣∣∣4 ≤ C4

(
‖∇xϕ‖Cb(Rd) + ‖D2ϕ‖Cb(Rd)

)4
(t− s)4, (6.71)

and, using the definition (6.66) and (6.69), we obtain

E
[
|ϕε(Xε

t , m̄
ε
t )− ϕε(Xε

s , m̄
ε
s)|4
]
≤ C5(‖∇xϕ‖4Cb(Rd) + ‖D2ϕ‖4Cb(Rd))(t− s)

2. (6.72)

The estimate (6.70) follows from the identities

Lεϕε = f · ∇ϕ+ (g + εf) · ∇ϕ1, ∇ϕ1 = R0(∇xg) · ∇xϕ+D2ϕ ·R0(g).

Let us now define the odd function ϕk by

ϕk(y) =

∫ yi

0
min(1, k−1(z − 2k)−)dz, yi ≥ 0. (6.73)

The function ϕk is not C2
b but W 2,∞, which is enough for the validity of (6.72). We have

ϕk(y)→ yi for all y ∈ Rd with ‖∇xϕ‖L∞(Rd) ≤ 1, ‖D2ϕ‖L∞(Rd) ≤ 1. Therefore, we can
take the limit in (6.72) applied to ϕk. We see that, if we set

ζεt = εR0(g)(Xε
t , m̄

ε
t ), Y ε

t = Xε
t − ζεt , (6.74)

then we have
E|Y ε

t − Y ε
s |4 ≤ C6(t− s)2. (6.75)

At t = 0, we have Xε
0 = x, ζε0 = εR0(g)(x, n̄), which is bounded. It follows that

E|Y ε
0 | ≤ C7. Using (3.26) and (6.75), we obtain (up to modification), the estimate

E‖Y ε‖Cα([0,T ];Rd) ≤ C8, where α < 1
4 . The estimate E‖ζε‖C([0,T ];Rd) ≤ C9ε is clear since

R0(g) is bounded.
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Proposition 6.8 (Tightness, càdlàg case). Under the hypotheses of Proposition 6.7,
save for the continuity of the process, we have the following result. The solution (Xε

t )
to (6.4)-(6.5) admits a decomposition Xε

t = Y ε
t + ζεt as the sum of two càdlàg processes

(Y ε
t ) and (ζεt ) where (Y ε

t ) is tight in the Skorohod space D([0, T ];Rd) and (Y ε
t ) and (ζεt )

satisfies the bound

E

[
sup
t∈[0,T ]

|ζεt |

]
≤ Cε, E

[
sup
t∈[0,T ]

|Y ε
t |

]
≤ C. (6.76)

As a consequence, the family (Xε) is tight in C([0, T ];Rd).

Proof of Proposition 6.8. Note that considerations on the Skorohod topology on the
space of càdlàg processes D([0, T ];Rd) have not been introduced here before. We will
give the necessary references from [Bil99] and [JS03]. The decomposition Xε

t = Y ε
t + ζεt

is the same as in the proof of Proposition 6.7 (cf. (6.74)). We refer to this proof thus.
First, the estimate (6.76) is straightforward. The estimate (6.71) on the increment on the
integral term in (6.66) holds true, but the estimate on the martingale term (6.69) does
not, since we cannot apply the Burkholder-Davis-Gundy inequality here. To prove that
(Y ε
t ) is tight in D([0, T ];Rd), we will apply the Aldous’ criterion, [JS03, Theorem 4.5,

p.356]. By Remark 5.7, we know that |M ε
t |2 −Aεt is a martingale, where

Aεt =

∫ t

0
(Lε|ϕε|2 − 2ϕεLεϕε)(Xε

s , m̄
ε
s)ds.

Let 1 > θ > 0. Let τ1, τ2 be some (Fεt )-stopping times such that

τ1 ≤ τ2 ≤ τ1 + θ a.s., τ2 ≤ N, (6.77)

for a given constant N . By the Doob optional sampling theorem, (5.9), we have

E
[
|M ε

τ2 −M
ε
τ1 |

2
]

= E
[
|M ε

τ2 |
2 − |M ε

τ1 |
2
]
.

Since |M ε
t |2 −Aεt is a martingale, we deduce that

E
[
|M ε

τ2 −M
ε
τ1 |

2
]

= E
[
Aετ2 −A

ε
τ1

]
,

which gives E
[
|M ε

τ2 −M
ε
τ1 |

2
]
≤ Cθ. Similarly, (6.71) holds true when the terminal times

are stopping times, hence

E
∣∣∣∣∫ τ2

τ1

Lεϕε(Xε
σ, m̄

ε
σ)dσ

∣∣∣∣2 ≤ C (‖∇xϕ‖Cb(Rd) + ‖D2ϕ‖Cb(Rd)

)2
θ2. (6.78)

We come back to the decomposition (6.66) to conclude that the increments of Ỹ ε
t :=

ϕ(Xε
t , m̄

ε
t ) satisfy the estimate E

[
|Ỹ ε
τ2 − Ỹ

ε
τ1 |

2
]
≤ Cθ. We then take a sequence (ϕk) as

in (6.73) and let k → +∞ to obtain finally the bound E
[
|Y ε
τ2 − Y

ε
τ1 |

2
]
≤ Cθ for possibly

a different constant C. By the Markov inequality, this gives the property

lim
θ→0

lim sup
ε∈(0,1)

sup
τ1,τ2

P(|Y ε
τ2 − Y

ε
τ1 | > η) = 0
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for all η > 0, N > 0, where, the sup on τ1, τ2 is, more precisely, the sup on stopping
times satisfying (6.77). The Aldous’ criterion (and the bound (6.76)) in being satisfied,
(Y ε
t ) is tight in D([0, T ];Rd). Using the estimate on the remainder ζεt in (6.76) and

[JS03, Lemma 3.31 p.352], we deduce that (Xε
t ) is tight in D([0, T ];Rd). Since (Xε

t ) is
in C([0, T ];Rd), it is actually tight in C([0, T ];Rd). To establish this fact, one can use
[Bil99, Theorem 13.2 p. 139] first, to deduce then, by [Bil99, (12.10) p. 123], that the
condition [Bil99, (7.8) p. 82] on the standard modulus of continuity in C([0, T ];Rd) is
satisfied. The tightness of (Xε

t ) in C([0, T ];Rd) then follows from [Bil99, Theorem 7.3
p. 82].

6.5 The limit martingale problem

In this section, we will use the result of tightness established in Proposition 6.7 (or
Proposition 6.8) to pass to the limit in the martingale characterization of (6.4)-(6.5).
We refer to the discussion on the limit (6.50)→(6.51) at the beginning of Section 6.3.
We consider (Xε

t ) for ε ∈ εN, where εN = {εn;n ∈ N} with (εn) ↓ 0.

Proposition 6.9. Assume that m satisfies (6.8), (6.9), (6.10). Assume that g satisfies
(6.64). Then, up to subsequence, (Xε)ε∈εN is converging in law on C([0, T ];Rd) to a
process (Xt) satisfying the following martingale condition:

E

[
ϕ(Xt)− ϕ(Xs)−

∫ t

s
Lϕ(Xσ)dσ

∣∣∣∣∣FXt
]

= 0, (6.79)

for all 0 ≤ s ≤ t and for all ϕ ∈ C2
b (Rd).

Proof of Proposition 6.9. Let ϕ ∈ C3
b (Rd). Consider the modification ϕε = ϕ + εϕ1 +

ε2ϕ2 to ϕ, with ϕ1 and ϕ2 defined by (6.54) and (6.62) respectively. We have

E

[
ϕε(Xε

t , m̄
ε
t )− ϕε(Xε

s , m̄
ε
s)−

∫ t

s
Lεϕε(Xε

σ, m̄
ε
σ)dσ

∣∣∣∣∣Fεt
]

= 0, (6.80)

for all 0 ≤ s ≤ t. Let m ∈ N∗, let 0 ≤ t1 < · · · < tm ≤ t and let θ ∈ Cb(Rm). Since (Xε
t )

is adapted, it follows from (6.80) that

E

[(
ϕε(Xε

t , m̄
ε
t )− ϕε(Xε

s , m̄
ε
s)−

∫ t

s
Lεϕε(Xε

σ, m̄
ε
σ)dσ

)
θ(Xε

t1 , . . . , X
ε
tm)

]
= 0. (6.81)

Using (6.63), we deduce from (6.81) that

E
[
(ϕ(Xε

t )− ϕ(Xε
s ))θ(Xε

t1 , . . . , X
ε
tm)
]
−
∫ t

s
E
[
Lϕ(Xε

σ)θ(Xε
t1 , . . . , X

ε
tm)
]
dσ = O(ε).

(6.82)
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Up to a subsequence, (Xε)ε∈εN converges in law on C([0, T ];Rd) to a stochastic process
X on C([0, T ];Rd). By taking the limit in (6.82) along this subsequence, we have

E

[(
ϕ(Xt)− ϕ(Xs)−

∫ t

s
Lϕ(Xσ)dσ

)
θ(Xt1 , . . . , Xtm)

]
= 0. (6.83)

Since C3
b (Rd) is π-dense in C2

b (Rd), (6.83) holds true when ϕ ∈ C2
b (Rd). Define then the

following finite signed measure Q on Ω

Q(B) = E

[(
ϕ(Xt)− ϕ(Xs)−

∫ t

s
Lϕ(Xσ)dσ

)
1B

]
.

We want to show that Q(B) = 0 for all B ∈ FXs . Since FXs is generated by cylindrical
sets, it is sufficient to show that µ(A) = 0 for all A ∈ B(Rm), where

µ(A) = E

[(
ϕ(Xt)− ϕ(Xs)−

∫ t

s
Lϕ(Xσ)dσ

)
1A(Xt1 , . . . , Xtm)

]
.

We have 〈θ, µ〉 = 0 for all θ ∈ Cb(Rm), therefore µ(A) = 0 since Cb(Rm) is a separating
class (Proposition 2.10). This gives the desired result.

6.6 Identification of the limit and conclusion

6.6.1 Auto-correlation function of a stationary stochastic process

The definition of stationary process has already been given (Definition 3.10). Here
we focus on the definition and properties of the auto-correlation function of stationary
processes. If H is a Hilbert space and u, v ∈ H, then u⊗ v is the operator defined by

〈u⊗ v · x, y〉H = 〈u, x〉H〈v, y〉H

for all x, y ∈ H.

Definition 6.3 (Auto-correlation). Let H be a separable Hilbert space. Let (Xt)t≥0 be
an H-valued process such that E‖Xt‖2H < +∞ for all t. We assume E[Xt] = 0 for all t
(X is centred). The auto-correlation function of (Xt)t≥0 is the operator Γ(t, s) : H → H
defined by Γ(t, s) = E [X(s)⊗X(t)].

Note that ‖Γ(t, s)‖H→H ≤ E‖X(s)‖H‖X(t)‖H . If X is not centred, the definition should
be modified into

Γ(t, s) = E [(X(s)− E[X(s)])⊗ (X(t)− E[X(t)])] .

For a stationary process, the auto-correlation function depends on t− s only, and we set

Γ(t) = E [X(s)⊗X(s+ t)] . (6.84)
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Proposition 6.10. Let H be a separable Hilbert space. Let (Xt)t≥0 be an H-valued
stationary process such that E‖Xt‖2H < +∞ for all t and such that, for all x ∈ H, the
map t 7→ 〈Γ(t)x, x〉 is integrable on R+. Then the following integral is non-negative:∫ ∞

0
〈Γ(t)x, x〉dt ≥ 0. (6.85)

If the integral over R+ of Γ(t) is convergent in the space of linear bounded operators on
H, (6.85) asserts that

∫∞
0 Γ(t)dt is a positive operator on H.

Proof of Proposition 6.10. We will use the following result.

Lemma 6.11. Let E be a separable Banach space. Let (Xt)t≥0 be an E-valued stationary
process. Let θ ∈ L1(R+) be the density of a probability measure and let ϕ ∈ BM(E).
Then

E
∣∣∣∣∫ +∞

0
θ(t)ϕ(Xt)dt

∣∣∣∣2 = 2

∫ +∞

0
θ ∗ θ̌(t)E [ϕ(X0)ϕ(Xt)] dt, (6.86)

where θ ∗ θ̌ is defined by

θ ∗ θ̌(t) :=

∫ +∞

0
θ(t+ s)θ(s)ds, (6.87)

for a.e. t ≥ 0.

We admit Lemma 6.11 for the moment. Note that each term in (6.86) makes sense:
indeed, the random variable ∫ +∞

0
θ(t)ϕ(Xt)dt

is an average of ϕ(Xt). The left-hand side of (6.86) is finite as soon as E|ϕ(Xt)|2 (which is
independent on t) is finite. If we extend θ by 0 on R− and define θ̌(s) = θ(−s), then θ∗ θ̌
as defined in (6.87) is really a convolution product. In particular, θ ∗ θ̌ is also a density
probability and is well defined a.e. Consequently, we reach the same conclusion for the
right-hand side of (6.86). It is well defined if E|ϕ(Xt)|2 is finite. These considerations
prove that (6.86) can be extended, thanks to an argument of approximation, to ϕ(Xt) =
〈Xt, x〉H . It gives us∫ +∞

0
θ ∗ θ̌(t)〈Γ(t)x, x〉Hdt = E

∣∣∣∣∫ +∞

0
θ(t)〈Xt, x〉Hdt

∣∣∣∣2 ≥ 0 (6.88)

We apply (6.88) with θ(t) = θλ(t) = λe−λt1t>0 for λ > 0 (this is the probability density
of the exponential distribution with parameter λ). Computing first (for t ≥ 0)

θλ ∗ θ̌λ(t) := λ2e−λt
∫ +∞

0
e−2λsds =

1

2
θλ(t),

we obtain, after division by λ,∫ +∞

0
e−λt〈Γ(t)x, x〉Hdt = λE

∣∣∣∣∫ t

0
e−λt〈Xt, x〉Hdt

∣∣∣∣2 ≥ 0. (6.89)

We let λ→ 0 to conclude.
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Proof of Lemma 6.11. This is a simple computation. By the Fubini theorem, we have

E
∣∣∣∣∫ +∞

0
θ(t)ϕ(Xt)dt

∣∣∣∣2 =

∫ +∞

0

∫ +∞

0
θ(t)θ(s)E[ϕ(Xt)ϕ(Xs)]dsdt.

We make the distinction between the domains of integration {s ≤ t}, {s ≥ t}. By
symmetry of the argument, we obtain

2

∫ +∞

t=0

∫ t

s=0
θ(t)θ(s)E[ϕ(Xt)ϕ(Xs)]dsdt = 2

∫ +∞

t=0

∫ t

s=0
θ(t)θ(s)E[ϕ(Xt−s)ϕ(X0)]dsdt,

since (Xt)t≥0 is stationary. We use the change of variable s′ = t−s and Fubini’s theorem
to get

2

∫ +∞

t=0

∫ t

s=0
θ(t)θ(t− s)E[ϕ(Xs)ϕ(X0)]dsdt = 2

∫ +∞

s=0

∫ +∞

t=s
θ(t)θ(s)E[ϕ(Xs)ϕ(X0)]dsdt,

which yields (6.86).

6.6.2 Diffusion operator

Recall the formula (6.58)-(6.59) for the limit generator L. By Proposition 6.10 applied
with H = Rd, the matrix G(x) is symmetric and non-negative. Indeed, for ξ ∈ Rd, and
by the Fubini Theorem, we have

〈G(x)ξ, ξ〉Rd = E[〈g(n̄, x), ξ〉Rd〈R0(g)(n̄, x), ξ〉Rd ] =

∫ ∞
0

E[Ptϕ(n̄)ϕ(n̄)]dt,

where ϕ(n) := 〈g(n, x), ξ〉Rd (x being fixed here). By the Markov property, we have,
since m̄t = n̄ at t = 0,

E[Ptϕ(n̄)ϕ(n̄)] = E [E[ϕ(m̄t)|F0]ϕ(m̄0)] = E [E[ϕ(m̄t)ϕ(m̄0)|F0]] = 〈Γg(x)(t)ξ, ξ〉Rd ,

where Γg(x)(t) is the autocorrelation function of g(m̄t, x). Eventually, we obtain

〈G(x)ξ, ξ〉Rd =

∫ ∞
0
〈Γg(x)(t)ξ, ξ〉Rddt ≥ 0.

Set Xt = g(m̄t, x). The proof of Proposition 6.10 also shows that 〈G(x)ξ, ξ〉Rd is the
limit when λ→ 0 of

λE
∣∣∣∣∫ ∞

0
e−λt〈Xt, ξ〉Rddt

∣∣∣∣2 = λE
∫ ∞

0

∫ ∞
0

e−λ(t+s)〈Xt, ξ〉Rd〈Xs, ξ〉Rddsdt = 〈Gλ(x)ξ, ξ〉,

where

Gλ(x) := λ

∫ ∞
0

∫ ∞
0

e−λ(t+s)E[Xt ⊗Xs]dsdt.
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Since Gλ(x) is symmetric, G(x) is symmetric. We will make the following hypothesis:
we assume that there exists

σ ∈ Lip(Rd;Rd×d), G(x) = σ∗(x)σ(x), ∀x ∈ Rd. (6.90)

The existence of such a regular square root of G(x) is false in general (consider the case
G(x) = |x|Id). It is true if G(x) ≥ αId for α > 0, we can then take

σ(x) =
1

2πi

∫
C

(z −G(x))−1√zdz,
√
z = exp

(
1

2
log(z)

)
,

where log(z) is the determination of the logarithm on C\R− and C a circle with diameter
[z1, z2], where z1 = α

2 , and z2 = 2M with M large enough to ensure G(x) ≤M Id for all
x. Under (6.90), the generator L is the generator associated to the process Yt solution
the stochastic differential equation (SDE)

dYt = F (Yt)dt+ σ(Yt)dBt, (6.91)

with initial datum
Y0 = y ∈ Rd, (6.92)

where (Bt) is a d-dimensional Wiener process. In the next sections, where we will study
the stochastic integral and stochastic differential equations, we will show the following
result.

Theorem 6.12. Let f : Rd → Rd and σ : Rd → Rd×d be Lipschitz continuous func-
tions. Then (6.91)-(6.92) has a unique solution Yt(y) in the space of adapted processes
in C([0, T ];L2(Ω;Rd)). The process (Yt(y)) is a Markov process on Rd. Its generator
generator A contains the unbounded generator A0, defined by:

D(A0) =

{
ϕ ∈ C2

b (Rd); sup
x∈Rd

[
|x|‖Dϕ(x)‖L(Rd;Rd) + |x|2K‖D2ϕ(x)‖L(Rd×Rd;Rd)

]
< +∞

}
,

A0ϕ = Lϕ,

where L is defined in (6.56).

Using Theorem 6.12, we obtain the following result.

Theorem 6.13 (Diffusion-approximation in finite dimension). Assume that m satisfies
(6.8), (6.9), (6.10). Assume that g satisfies (6.64). Then (Xε)ε>0, the solution to (6.4)-
(6.5), is converging in law on C([0, T ];Rd) to the solution (Yt(x)) to (6.91) with initial
condition Y0(x) = x.

Remark 6.3 (Terminology). The solution to a SDE like (6.91) is called a diffusion. The-
orem 6.13 states that (Xε

t ), the solution to (6.4)-(6.5), can be approached (in law) by
the diffusion Yt(x). This is a result of diffusion-approximation.
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Proof of Theorem 6.13. Let (Π]
t)t≥0 denote the semi-group of transition operators asso-

ciated to (Yt(y)). By8 Theorem 5.10, we have

E
[
ϕ(Xs+t)

∣∣∣FXt ] = Π]
sϕ(Xt), (6.93)

for all s, t ≥ 0, for all ϕ ∈ Cb(Rd). Taking t = 0 in (6.93), we see that Πsϕ(x) = Π]
sϕ(x)

for all ϕ ∈ Cb(Rd), where Πsϕ(x) := Eϕ(Xs). This identity shows that the law of Xs(x)
and the law of Ys(x) coincide when tested against functions in Cb(Rd). Since Cb(Rd) is

a separating class, they are identical. Consequently Πs = Π]
s. As in the end of the proof

of Proposition 6.3, we can show that (6.93) holds true when ϕ ∈ BM(Rd). This shows
that (Xt) is Markov. Since (Xt(x)) and (Yt(x)) have same law at time t = 0, it follows
from Proposition 4.1 that the processes (Xt(x)) and (Yt(x)) have same law. We have
shown that (Xε

t )ε∈εN has a subsequence converging in law, and that the limit is uniquely
determined: it is Yt(x). By uniqueness of the limit, the whole sequence is converging:
(Xε

t )→ (Yt(x)) in law on C([0, T ];Rd).

7 Stochastic integration

Let (β(t)) be a one dimensional Wiener process over (Ω,F ,P). Let K be a separable
Hilbert space and let (g(t)) be a K-valued stochastic process. The first obstacle to the
definition of the stochastic integral

I(g) =

∫ T

0
g(t)dβ(t) (7.1)

is the lack of regularity of t 7→ β(t), which has almost-surely a regularity 1/2−: for all
α ∈ [0, 1/2), almost-surely, β is in Cα([0, T ]) and not in C1/2([0, T ]). Young’s integration
theory can be used to give a meaning to (7.1) for integrands g ∈ Cγ([0, T ]) when γ >
1/2, but this not applicable here, since the resolution of stochastic differential equation
requires a definition of I(β). In that context, one has to expand the theory of Young’s
or Riemann – Stieltjes’ Integral, this is one of the purpose of rough paths’ theory, cf.
[FH14]. Below, it is the martingale properties of the Wiener process which are used to
define the stochastic integral (7.1).

7.1 Stochastic integration of elementary processes

Let (Ft)t≥0 be a given filtration, such that (β(t)) is (Ft)-adapted, and the increment
β(t) − β(s) is independent on Fs for all 0 ≤ s ≤ t. Let (g(t))t∈[0,T ] be an K-valued
stochastic process which is adapted, simple and L2, in the sense that

g(ω, t) = g−1(ω)1{0}(t) +
n−1∑
i=0

gi(ω)1(ti,ti+1](t), (7.2)

8since A may not be L (we do not want to investigate the domain of L), we have to adapt slightly
the proof of Theorem 5.10: we consider first test-functions ϕ ∈ D(A0), and obtain (6.93), then we use
the fact that D(A0) is π-dense in Cb(Rd) to get the general result
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where 0 ≤ t0 ≤ · · · ≤ tn ≤ T , g−1 is F0-measurable, each gi, i ∈ {0, . . . , n − 1} is Fti-
measurable and in L2(Ω;K). For such an integrand g, we define I(g) as the following
Riemann sum

I(g) =
n−1∑
i=0

(β(ti+1)− β(ti))gi. (7.3)

Remark 7.1. Let λ denote the Lebesgue measure on [0, T ]. For g as in (7.2), we have

g(ω, t) =
n−1∑
i=0

gi(ω)1(ti,ti+1](t),

for P × λ-almost all (ω, t) ∈ Ω × [0, T ] since the singleton {0} has λ-measure 0. We
include the term g−1(ω)1{0}(t) in (7.2) to be consistent with the definition of the pre-
dictable σ-algebra in the next section 7.2. Consistency here is in the sense that the
predictable σ-algebra PT as defined in Section 7.2 is precisely the σ-algebra generated
by the elementary processes.

Note that g as in (7.2) belongs to L2(Ω× [0, T ],P× λ) and that∫ T

0
E‖g(t)‖2Kdt =

n−1∑
i=0

(ti+1 − ti)E
[
‖gi‖2K

]
. (7.4)

In (7.3), gi and the increment β(ti+1) − β(ti) are independent. Using this fact, we can
prove the following proposition.

Proposition 7.1 (Itō’s isometry). We have I(g) ∈ L2(Ω;K) and

E [I(g)] = 0, E
[
‖I(g)‖2K

]
=

∫ T

0
E‖g(t)‖2Kdt. (7.5)

Proof of Proposition 7.1. We develop the square of the norm of I(g):

‖I(g)‖2K =

n−1∑
i=0

|β(ti+1)− β(ti)|2‖gi‖2K

+ 2
∑

0≤i<j≤n−1

(β(ti+1)− β(ti))(β(tj+1)− β(tj))〈gi, gj〉K . (7.6)

By independence, the expectancy of the second term (cross-products) in (7.6) vanishes,
while the expectancy of the first term gives

n−1∑
i=0

(ti+1 − ti)E
[
‖gi‖2E

]
=

∫ T

0
E‖g(t)‖2Edt

since E
[
|β(ti+1)− β(ti)|2

]
= (ti+1−ti). This shows that I(g) ∈ L2(Ω;K) and the second

equality in (7.5). The first equality follows from the identity

E [(β(ti+1)− β(ti))gi] = E [(β(ti+1)− β(ti))]E [gi] = 0,

for all i ∈ {0, . . . , n− 1}.
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7.2 Extension

Let ET denote the set of L2-elementary predictable functions in the form (7.2). This is a
subset of L2(Ω× [0, T ];K) (the measure on Ω× [0, T ] being the product measure P×λ).
The second identity in (7.5) shows that

I : ET ⊂ L2(Ω× [0, T ];K)→ L2(Ω;K) (7.7)

is a linear isometry. The stochastic integral I(g) is the extension of this isometry to the
closure ET of ET in L2(Ω× [0, T ];K). It is clear that (7.5) (Itō’s isometry) is preserved
in this extension operation. To understand what is I(g) exactly, we have to identify the
closure ET , or, at least certain sub-classes of ET . For this purpose, we introduce PT , the
predictable sub-σ-algebra of F × B([0, T ]) generated by the sets F0 × {0}, Fs × (s, t],
where F0 is F0-measurable, 0 ≤ s < t ≤ T and Fs is Fs-measurable. We have denoted
by B([0, T ]) the Borel σ-algebra on [0, T ]. It is clear that each element in ET is PT
measurable. We will admit without proof the following propositions (Proposition 7.2
and Proposition 7.3).

Proposition 7.2. Assume that the filtration (Ft) is complete and continuous from the
right. Then the σ-algebra generated on Ω×[0, T ] by adapted left-continuous (respectively,
adapted continuous processes) coincides with the predictable σ-algebra PT .

Proof of Proposition 7.2. Exercise, or see [RY99, Proposition 5.1, p. 171].

A PT -measurable process is called a predictable process. Denote by P∗T the completion
of PT . By Proposition 7.2, any adapted a.s. left-continuous or continuous process is
P∗T -measurable.

Proposition 7.3. Assume that the filtration (Ft) is complete and continuous from the
right. Define

1. the optional σ-algebra to be the σ-algebra O generated by adapted càdlàg processes,

2. the progressive σ-algebra to be the σ-algebra Prog generated by the progressively
measurable processes (Definition 4.14).

Then we have the inclusion
PT ⊂ O ⊂ Prog ⊂ P∗T , (7.8)

and the identity
ET = L2(Ω× [0, T ],P∗T ;K). (7.9)

Proof of Proposition 7.3. See [CW90, Lemma 2.4] and [CW90, Chapter 3].
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In what follows we will always assume that the filtration (Ft) is complete and continuous
from the right.

Note that a function is in L2(Ω× [0, T ],P∗T ;K) if it is equal P× λ-a.e. to a function of
L2(Ω× [0, T ];K) which is PT -measurable.

A consequence of Proposition 7.2 and Proposition 7.3 is that we can define the stochastic
integral I(g) of processes (g(t)) which are either adapted and left-continuous or contin-

uous or càdlàg or progressively measurable. We will use the notation
∫ T

0 g(t)dβ(t) for
I(g).

Exercise 7.1. Show that (in the case K = R)

1. if (g(t)) is an adapted process such g ∈ C([0, T ];L2(Ω)), then∫ T

0
g(t)dβ(t) = lim

|σ|→0

n−1∑
i=0

g(ti)(β(ti+1)− β(ti)), (7.10)

where σ = {0 = t0 ≤ · · · ≤ tn = T} and σ = sup0≤i<n(ti+1 − ti).

2. Show that the result (7.10) holds true if (g(t)) is a continuous adapted process
such that supt∈[0,T ] E|g(t)|q is finite for a q > 2.

3. If g ∈ L2(0, T ) is deterministic, then
∫ T

0 g(t)dβ(t) is a gaussian random variable
N (0, σ2) of variance

σ2 =

∫ t

0
|g(t)|2dt.

The solution to Exercise 7.1 is here.

7.3 Continuity and martingale property

Lemma 7.4 (Conditional Itô’s isometry). Assume that the filtration (Ft) is complete
and continuous from the right. Then the identity

E

[∣∣∣∣∫ t

s
g(σ)dβ(σ)

∣∣∣∣2 | Fs
]

= E
[∫ t

s
|g(σ)|2 dσ | Fs

]
, (7.11)

is satisfied for all g ∈ L2(Ω× [0, T ],P∗T ;R) and all 0 ≤ s ≤ t ≤ T .

The proof of (7.11) is a variant of the proof of the Itô’s isometry. We will use Lemma 7.4
to compute the quadratic variation of the stochastic integral.

Proposition 7.5. Assume that the filtration (Ft) is complete and continuous from the
right. Let g ∈ L2(Ω× [0, T ],P∗T ;R). Then the stochastic integral

M(g)t =

∫ t

0
g(s)dβ(s) (7.12)
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is a continuous (Ft)-martingale with quadratic variation

〈M(g),M(g)〉t =

∫ t

0
|g(s)|2ds. (7.13)

Proof of Proposition 7.5. Let (gn) be a sequence of elementary predictable functions
that converges to g in L2(Ω× [0, T ]). By the Itô isometry, we have

E|M(gn)t −M(g)t|2 =

∫ t

0
|gn(s)− g(s)|2ds→ 0, (7.14)

for every t ∈ [0, T ]. Before we begin the study of (M(g)t), let us remark that we have
the consistency relation

M(g)t =

∫ T

0
1[0,t]g(s)ds. (7.15)

Indeed, (1[0,t]gn) is a sequence of elementary predictable functions that converges to
1[0,t]g in L2(Ω× [0, T ]) and if

g =
n−1∑
i=0

gi1(ti,ti+1]

is simple, then

1[0,t]g =
n−1∑
i=0

gi1(t∧ti,t∧ti+1],

hence

M(1[0,t]g)T =

n−1∑
i=0

gi(β(t ∧ ti+1)− β(t ∧ ti)) = M(g)t, (7.16)

since (t ∧ ti)0,n is a subdivision of [0, t] according to which g|[0,t] has a decomposition of
elementary predictable function. If g is elementary, (7.16) shows that (M(g)t)t∈[0,T ] is
a continuous (Ft)-martingale. By the Doob inequality (5.13) and the Itô isometry, we
have the bound

E sup
t∈[0,T ]

|M(gn)t −M(gp)t|2 = E sup
t∈[0,T ]

|M(gn − gp)t|2

≤ 4E|M(gn − gp)T |2 = 4E
∫ T

0
|gn − gp|2dt, (7.17)

for n, p ≥ 0. The estimate (7.17) shows that (M(gn)t) satisfies a Cauchy condition in
the complete space F = L2(Ω;C([0, T ];R)). Consequently, the sequence (M(gn)t) is
convergent in this space, and since convergence in F implies the simple convergence
(7.14), the limit is (M(g)t). This shows that (M(g))t is a continuous martingale. To
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compute the quadratic variation of (M(g))t, we use Proposition 5.6: let σ = (ti)0,n be a
subdivision of [0, T ]. By (7.11) we have

V̄ (2)
σ (t) :=

n−1∑
i=0

E
[
|M(g)t∧ti+1 −M(g)t∧ti |2|Fti

]
=

n−1∑
i=0

E
[∫ t∧ti+1

t∧ti
|g(s)|2ds|Fti

]
. (7.18)

From (7.18), we deduce that, at fixed time t, g 7→ 〈M(g),M(g)〉t is continuous L2(Ω)→
L1(Ω). Indeed, if V̄

(2)
σ (t) and W̄

(2)
σ (t) are the discrete quadratic variation associated to

the integrands g and h respectively, then

E
∣∣∣V̄ (2)
σ (t)− W̄ (2)

σ (t)
∣∣∣ ≤ n−1∑

i=0

∫ t∧ti+1

t∧ti
E||g(s)|2 − |h(s)|2|ds =

∫ t

0
E||g(s)|2 − |h(s)|2|ds

≤
[∫ t

0
E|g(s)− h(s)|2ds

]1/2 [∫ t

0
E|g(s) + h(s)|2ds

]1/2

.

Consequently, we may assume without loss of generality that g is bounded. Then we
can prove that

(7.18) =

n−1∑
i=0

∫ t∧ti+1

t∧ti
|g(s)|2ds+ o(1) =

∫ t

0
|g(s)|2ds+ o(1),

when [|σ| → 0], where the o(1) is in L2(Ω) (same proof as Step 1. of the proof of
Proposition 5.9, cf. (5.51)). This gives the result.

7.4 Itô’s Formula

Proposition 7.6 (Itô’s Formula). Assume that the filtration (Ft) is complete and con-
tinuous from the right. Let g ∈ L2(Ω× [0, T ],P∗T ;R), f ∈ L1(Ω× [0, T ],P∗T ;R), let x ∈ R
and let

Xt = x+

∫ t

0
f(s)ds+

∫ t

0
g(s)dβ(s).

Let u : [0, T ]× R→ R be a function of class C1,2
b . Then

u(t,Xt) = u(0, x) +

∫ t

0

[
∂u

∂s
(s,Xs) +

∂u

∂x
(s,Xs)f(s) +

1

2

∂2u

∂x2
(s,Xs)|g(s)|2

]
ds

+

∫ t

0

∂u

∂x
(s,Xs)g(s)dβ(s), (7.19)

for all t ∈ [0, T ].

Proof of Proposition 7.6. We do the proof in the case where u is independent on t and
f ≡ 0 since the more delicate (and remarkable) term in (7.19) is the Itô’s correction

104



involving the second derivative of u. By approximation, it is also sufficient to consider
the case where u is in C3

b and g is the elementary process

g =
m−1∑
l=0

gl1(sl,sl+1],

where (sl)0,m is a subdivision of [0, T ] and gl is a.s. bounded: |gl| ≤M a.s. Let σ = (ti)0,n

be a subdivision of [0, T ] which is a refinement of (sl). Let us consider the case t = T
only (for general times t, replace ti by ti ∧ t in the formulas below). We decompose

u(XT )− u(x) =
n−1∑
i=0

u(Xti+1)− u(Xti),

and use the Taylor formula to get

u(XT )− u(x) =

n−1∑
i=0

u′(Xti)(Xti+1 −Xti) +
1

2
u′′(Xti)(Xti+1 −Xti)

2 + r1
σ, (7.20)

where

|r1
σ| ≤

1

6
‖u(3)‖Cb(R)

n−1∑
i=0

|Xti+1 −Xti |3. (7.21)

Since Xti+1 −Xti = g(ti)δβ(ti), δβ(ti) := β(ti+1) − β(ti), we deduce from (7.20)-(7.21)
that

u(XT )− u(x) =
n−1∑
i=0

u′(Xti)g(ti)δβ(ti) +
1

2
u′′(Xti)|g(ti)|2|δβ(ti)|2 + r1

σ, (7.22)

and that

E|r1
σ| ≤

1

6
‖u(3)‖C(R)M

n−1∑
i=0

E|δβ(ti)|3 = O

(
n−1∑
i=0

(ti+1 − ti)3/2

)
= O(|σ|1/2). (7.23)

By (7.22), we get

u(XT )− u(x) =

∫ T

0
u′(Xt)g(t)dβ(t) +

∫ T

0

1

2
u′′(Xt)|g(t)|2dt+ r3

σ + r2
σ + r1

σ, (7.24)

where the remainder r3
σ and r2

σ are such that

n−1∑
i=0

u′(Xti)g(ti)δβ(ti) =

∫ T

0
u′(Xt)g(t)dβ(t) + r3

σ,

and
n−1∑
i=0

1

2
u′′(Xti)|g(ti)|2|δβ(ti)|2 =

∫ T

0

1

2
u′′(Xt)|g(t)|2dt+ r2

σ. (7.25)
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By Itô’s Isometry, we have the estimate

E|r3
σ|2 =

n−1∑
i=0

E
∫ ti+1

ti

|u′(Xt)− u′(Xti)|2|g(ti)|2dt

≤M2‖u′′‖2Cb(R)

n−1∑
i=0

∫ ti+1

ti

E|Xt −Xti |2dt.

Since E|Xt −Xti |2 = E|g(ti)|2(t− ti) ≤M2(t− ti), we deduce that

E|r3
σ|2 ≤M4‖u′′‖2Cb(R)

n−1∑
i=0

(ti+1 − ti)2 = O(|σ|). (7.26)

Some similar estimates show that we can replace Xt by the step function equal to Xti

on (ti, ti+1] in the right-hand side of (7.25) and that this contributes to an error of order
|σ|: r2

σ = r4
σ + r5

σ, where E|r4
σ|2 = O(|σ|), where the remainder term r5

σ is defined by

r5
σ =

n−1∑
i=0

1

2
u′′(Xti)|g(ti)|2[|δβ(ti)|2 − (ti+1 − ti)].

Since (ti+1− ti) = E[|δβ(ti)|2|Fti ], cancellations occur when we develop the square of r5
σ

and take the expectation: only the pure squares remain, and we get

E|r5
σ|2 ≤ ‖u′′‖2Cb(R)M

4
n−1∑
i=0

E||δβ(ti)|2 − (ti+1 − ti)]|2 = O(|σ|). (7.27)

Using (7.23), (7.26), (7.27), we can pass to the limit |σ| → 0 in (7.24) to get (7.19) in
our simplified case.

7.5 Generalization in infinite dimension

We have defined the stochastic integral of an Hilbert-valued integrand against a one-
dimensional Wiener process. In this section we explain briefly how to generalize this
construction and the Itô Formula to higher dimension.

7.5.1 Finite dimension

Let d ≥ 1. A d-dimensional Wiener process (B(t))t≥0 admits the decomposition

B(t) =

d∑
k=1

βk(t)ek, (7.28)

where (ek) is the canonical basis of Rd and β1(t), . . . , βd(t) are independent one-di-
mensional processes. Let (Ft)t≥0 be a given filtration, such that, for all k, (βk(t)) is
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(Ft)-adapted, and the increment βk(t) − βk(s) is independent on Fs for all 0 ≤ s ≤ t.
Let K be a separable Hilbert space. Let (g(t)) be a process with values in L(Rd;K)
such that

g ∈ L2(Ω× [0, T ],P∗T ;L(Rd;K)).

We set ∫ T

0
g(t)dB(t) =

d∑
k=1

∫ T

0
g(t)ekdβk(t). (7.29)

This defines an element of L2(Ω;K) and, using the independence of β1(t), . . . , βd(t), we
have the Itô isometry

E
∥∥∥∥∫ T

0
g(t)dB(t)

∥∥∥∥2

K

=

d∑
k=1

∫ T

0
E‖g(t)ek‖2Kdt. (7.30)

Let us examine the generalization of the Itô Formula. We refer to the proof of Proposi-
tion 7.6. If u ∈ C3

b (K;R), we have the Taylor expansion (which generalizes (7.20))

u(Xti+1)−u(Xti) = Du(Xti)·(Xti+1−Xti)+
1

2
D2u(Xti)·(Xti+1−Xti)

⊗2+O(|Xti+1−Xti |3).

The increment being here Xti+1 −Xti =
∑

1≤k≤d g(ti)ekδβk(ti), we have to examine in
particular the term ∑

1≤k,l≤d
D2u(Xti) · (g(ti)ek, g(ti)el)δβk(ti)δβl(ti). (7.31)

Ii is treated like the left-hand side of (7.25), with the additional fact that the indepen-
dence of β1(t), . . . , βd(t) comes into play and that the off-diagonal terms in (7.27), the
sum over k 6= l, is negligible when |σ| → 0. We obtain the Itô Formula

u(t,Xt) = u(0, x) +

∫ t

0

[
∂u

∂s
(s,Xs) +Du(s,Xs) · f(s)

]
ds

d∑
k=1

1

2

∫ t

0
D2u(s,Xs) · (g(s)ek, g(s)ek)ds+

∫ t

0
Du(s,Xs) · g(s)dB(s), (7.32)

for

Xt = x+

∫ t

0
f(s)ds+

∫ t

0
g(s)dB(s), (7.33)

where D in (7.32) means Dx. In (7.32), u : [0, T ]×K → R is of class C1,2
b . In (7.32) and

(7.33), the integrands are in the following classes:

f ∈ L1(Ω× [0, T ],P∗T ;K), g ∈ L2(Ω× [0, T ],P∗T ;L(Rd;K))).

A standard instance of (7.32) and (7.33) is when K is finite dimensional, K = Rm (often
with m = d). Then g(t) ∈ L(Rd;Rm) is assimilated with its matrix representation (d×m
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matrix) in the canonical bases of Rd and Rm, D2u(t, x), which is a bilinear form on Rm
is assimilated to a m×m matrix, and the Itô correction term rewritten

d∑
k=1

1

2
D2u(s,Xs) · (g(s)ek, g(s)ek) =

1

2
Trace(g(s)∗D2u(s,Xs)g(s)). (7.34)

7.5.2 Infinite dimension

Cylindrical Wiener process Let H be a separable Hilbert space with an orthonor-
mal basis (ek)k≥1. Let U be an other Hilbert space such that H ↪→ U with Hilbert-
Schmidt injection. Recall (see [Bre11, p. 497]) that an operator Φ: H → K (K is an
other Hilbert space here) is said to be Hilbert-Schmidt if∑

k≥1

‖Φek‖2K < +∞. (7.35)

We denote by L2(H;K) the class of Hilbert-Schmidt operators from H to K. This is a
Hilbert space9 for the scalar product

〈Φ,Ψ〉L2(H;K) =
∑
k≥1

〈Φek,Ψek〉K . (7.36)

The scalar product, and thus the norm ‖Φ‖2L2(H;K) in (7.35), is independent on the

choice of the orthonormal basis (ek)k≥1 on H (see [Bre11, p. 497] again). Let (βk(t))k≥1

be independent one-dimensional Wiener processes. If Φ ∈ L2(H;K), we set

W (t) =
∑
k≥1

βk(t)ek, ΦW (t) =
∑
k≥1

βk(t)Φek. (7.37)

A formal computation, using independence, gives, for t > 0,

E‖W (t)‖2H =
∑
k≥1

E|βk(t)|2‖ek‖2H =
∑
k≥1

t = +∞.

Therefore, the process W (t) is not well defined in H. However, ΦW (t) is well defined
as a process over K. More exactly, it is well defined in the space L2(Ω;K) since, using
independence,

E

∥∥∥∥∥∥
∑
p≤k≤q

βk(t)Φek

∥∥∥∥∥∥
2

K

= t
∑
p≤k≤q

‖Φek‖2K ,

which gives a Cauchy condition in L2(Ω;K) for the series defining ΦW (t). Taking p = 1
and sending q to +∞, we see also that

E‖ΦW (t)‖2K = t‖Φ‖2L2(H;K).

Since the injection H ↪→ U is Hilbert-Schmidt by hypothesis, W (t) is well defined in
L2(Ω;U). We call W (t) a cylindrical Wiener process.

9a separable Hilbert space, with orthonormal basis (Φkl)k,l≥1 = (ek ⊗ fl)k,l≥1, Φk,lu = 〈u, ek〉Hfl,
where (fl)l≥1 is an orthonormal basis of K
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Stochastic integral We generalize (7.29) into∫ T

0
g(t)dW (t) =

∑
k≥1

∫ T

0
g(t)ekdβk(t), (7.38)

where g ∈ L2(Ω× [0, T ],P∗T ;L2(H;K)). This defines an element of L2(Ω;K). We have
the Itô isometry

E
∥∥∥∥∫ T

0
g(t)dW (t)

∥∥∥∥2

K

=
∑
k≥1

∫ T

0
E‖g(t)ek‖2Kdt =

∫ T

0
E‖g(t)‖2L2(H;K)dt. (7.39)

The generalization of (7.32) is

u(t,Xt) = u(0, x) +

∫ t

0

[
∂u

∂s
(s,Xs) +Du(s,Xs) · f(s)

]
ds

∑
k≥1

1

2

∫ t

0
D2u(s,Xs) · (g(s)ek, g(s)ek)ds+

∫ t

0
Du(s,Xs) · g(s)dW (s), (7.40)

for

Xt = x+

∫ t

0
f(s)ds+

∫ t

0
g(s)dW (s), (7.41)

where u ∈ C1,2
b ([0, T ] ×K;R). Note that the stochastic integral in (7.40) makes sense

since L2(H;K) is a left ideal: Du(s,Xs) ∈ L(K) and D2u(s,Xs) · g(s) ∈ L2(H;K).
Note also that we have a formula analogous to (7.34):∑

k≥1

1

2
D2u(s,Xs) · (g(s)ek, g(s)ek) =

1

2
Trace(g(s)∗D2u(s,Xs)g(s)), (7.42)

where an operator T in L(K;K) is said to be trace-class if, for a given orthonormal
basis (e′k) of K, the series of general term 〈Te′k, e′k〉 is absolutely convergent, with the
definition

Trace(T ) =
∑
k≥1

〈Te′k, e′k〉.

8 Stochastic differential equations

Let H, K be some separable Hilbert spaces, let (W (t)) be a cylindrical Wiener process
as in (7.37). For some general integrands

f ∈ L1(Ω× [0, T ];K), g ∈ L2(Ω× [0, T ],P∗T ;L2(H;K))),

we use the differential notation

dXt = f(t)dt+ g(t)dW (t) (8.1)
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to mean that (7.41) is satisfied for all t ∈ [0, T ], for a given x ∈ K. The meaning of

dXt = f(Xt)dt+ g(Xt)dW (t), t ∈ [0, T ] (8.2)

X0 = x, (8.3)

is therefore

Xt = x+

∫ t

0
f(Xs)ds+

∫ t

0
g(Xs)dW (s), (8.4)

for all t ∈ [0, T ]. We will study the Cauchy Problem (8.2)-(8.3) in the case where x is
a given F0-measurable random variable. Since x rather stands for an arbitrary point in
Rd. We denote by

X0 = ξ (8.5)

the Cauchy condition, and consider (8.2)-(8.5) under the integral form

Xt = ξ +

∫ t

0
f(Xs)ds+

∫ t

0
g(Xs)dW (s), (8.6)

8.1 Resolution

We will solve (8.2) first in the case where f and g are two Lipschitz continuous functions.
With some applications and the theory of ordinary differential equations in mind, it
would be natural, then, to study the case of locally Lipschitz functions f and g. We
refer to10 on that subject. We are more interested in the case where f is a (linear)
differential operator. In a second time therefore, we will consider the case where f is
the sum of an unbounded operator and of a Lipschitz continuous function, g being a
Lipschitz continuous function.

8.2 The global Lipschitz case

Definition 8.1 (Solution to the Cauchy Problem). Let f : K → K, g : K → L2(H;K)
be some Lipschitz continuous functions. Let ξ ∈ L2(Ω;F0). An adapted process X ∈
C([0, T ];L2(Ω;K)) is said to be solution to (8.2)-(8.5) if, for all t ∈ [0, T ], (8.6) is satisfied
a.s.

If X ∈ C([0, T ];L2(Ω;K)) is adapted, then

f(X) ∈ C([0, T ];L2(Ω;K)), g(X) ∈ C([0, T ];L2(Ω;L2(H;K)))

are adapted. In particular, they are admissible integrands in (8.4). They define some
adapted processes which are also in the class C([0, T ];L2(Ω;K)). Indeed, assuming

f(0) = 0, g(0) = 0, (8.7)

10TODO ref.
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we have, for 0 ≤ s ≤ t ≤ T ,

E
∥∥∥∥∫ t

s
f(Xσ)dσ

∥∥∥∥2

K

≤ (t− s)
∫ t

s
E‖f(Xσ)‖2Kdσ ≤ (t− s)2Lip(f)2 sup

σ∈[0,T ]
E‖Xσ‖2K , (8.8)

and

E
∥∥∥∥∫ t

s
g(Xσ)dW (σ)

∥∥∥∥2

K

=

∫ t

s
E‖g(Xσ)‖2L2(H;K)dσ ≤ (t− s)Lip(g)2 sup

σ∈[0,T ]
E‖Xσ‖2K .

(8.9)

If (8.7) is not satisfied, the estimate (8.8) holds true if we replace Lip(f)2 by 2Lip(f)2 +
2‖f(0)‖2K , and similarly for (8.9) .

Theorem 8.1 (The Cauchy problem for SDEs, global Lipschitz case). Let H, K be
some separable Hilbert spaces, let (W (t)) be a cylindrical Wiener process as in (7.37).
Let f : K → K, g : K → L2(H;K) be some Lipschitz continuous functions. Let ξ ∈
L2(Ω;F0). Then the Cauchy Problem (8.2)-(8.5) has a unique solution

X ∈ C([0, T ];L2(Ω;K)).

Two solutions X and X̃ issued from two data ξ and ξ̃ satisfy the estimate

E‖X(t)− X̃(t)‖2K ≤ CE‖ξ − ξ̃‖2K , (8.10)

for all t ∈ [0, T ], where C is a constant depending on T , Lip(f), Lip(g).

Proof of Theorem 8.1. Let T (X)t denote the right-hand side of (8.6). By (8.8), (8.9),
this defines an element of the Banach space E constituted of the adapted functions
X ∈ C([0, T ];L2(Ω;K)). Let us consider the norm, for M > 0,

‖X‖E = sup
t∈[0,T ]

e−Mt
(
E‖Xt‖2K

)1/2
on E. Instead of (8.8), we write

E
∥∥∥∥∫ t

0
[f(Xσ)− f(X̃σ)]dσ

∥∥∥∥2

K

≤ tLip(f)2

∫ t

0
E‖Xσ − X̃σ‖2Kdσ

≤ t(e2Mt − 1)

2M
Lip(f)2‖X − X̃‖2E

≤ T

2M
Lip(f)2‖X − X̃‖2E .

Similarly, we have

E
∥∥∥∥∫ t

0
[g(Xσ)− g(X̃σ)]dW (σ)

∥∥∥∥2

K

≤ Lip(g)2

∫ t

0
E‖Xσ − X̃σ‖2Kdσ

≤ (e2Mt − 1)

2M
Lip(g)2‖X − X̃‖2E .
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We multiply the previous estimates by e−2Mt and take the sup over t ∈ [0, T ]. It follows
that T is a k-contraction on E, with

k = M−1 max(1,
√
T )
√

Lip(f)2 + Lip(g)2.

For M large enough, k < 1 and the Banach fixed-point theorem gives the result. The
estimate (8.10) is obtained by the Grönwall Lemma.

Remark 8.1 (Iteration). By construction, the solution (Xt(ξ)) to (8.2)-(8.5) is the limit
in C([0, T ];L2(Ω;K)) of the iterative sequence (Xn

t (ξ)) defined by Xn+1
t (ξ) = T (Xn

t (ξ)),
X0
t (ξ) = ξ.

Exercise 8.2. Compute the solutions to the following SDEs

1. Ornstein-Uhlenbeck:
dXt = −Xt +

√
2dBt,

with initial condition X0 = x ∈ Rd (Hint: use Duhamel’s integral formula). Show
that Xt is a Gaussian variable, and give the parameters (Note: you may use the
result of Question 3. of Exercise 7.1). Find the limit in law of Xt when [t→ +∞].

2. the equation
dXt = σXtdβt,

with initial condition X0 = x ∈ R, where σ > 0 (Hint: apply Itô’s Formula to
ln(|Xt|)).

The solution to Exercise 8.2 is here.

8.3 Markov property, generator

Theorem 8.2. Under the hypotheses of Theorem 8.1, let Xt(ξ) be the unique solution
to the Cauchy Problem (8.2)-(8.5). Then (Xt(ξ)) is a Markov process relatively to (Ft)
with transition semi-group (Πt) given by Πtϕ(x) = Eϕ(Xt(x)) for all ϕ ∈ BM(K).

Proof of Theorem 8.2. Let us denote by X(t, s; ξ) the value at time t of the solution to
(8.2) issued from ξ at time s (ξ ∈ L2(Ω;Fs)):

X(t, s; ξ) = ξ +

∫ t

s
f(X(σ, s; ξ))dσ +

∫ t

s
g(X(σ, s; ξ))dW (σ).

By uniqueness, we have the semi-group property

X(t+ s, 0;x) = X(t+ s, s; y), y = X(s, 0;x). (8.11)

Our aim is to prove that, for 0 ≤ s, t

E [ϕ(X(t+ s, 0;x))|Fs] = (Πtϕ)(X(s, 0;x)), (8.12)
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where ϕ ∈ BM(K) is given. Consider first the case ϕ ∈ Cb(K). Using the semi-group
property (8.11), the Markov property (8.12) amounts to

E [ϕ(X(t+ s, s; ξ))|Fs] = (Πtϕ)(ξ), (8.13)

in the special case ξ = X(s, 0;x). We will show that (8.13) is actually true for all
square integrable, σ(X(s, 0;x))-measurable random variable ξ. By (8.10), Πt is Feller:
Πt : Cb(K) → Cb(K). Indeed, if ψ ∈ Cb(K), then ψ(Xt(y)) → ψ(Xt(x)) a.s. if y → x
in Rd (we use (8.10) and the continuity of ψ). Since ψ is bounded, we deduce that
Eψ(Xt(y)) → Eψ(Xt(x)) by dominated convergence. Consequently, it is sufficient to
establish (8.13) for a dense subset of L2(Ω;σ(X(s, 0;x))). We consider the set of simple
functions. Let

ξ =
n∑
k=1

xk1Ak , xk ∈ Rd, Ak ∈ σ(X(s, 0;x)).

Then

X(t+ s, s; ξ) =

n∑
k=1

X(t+ s, s;xk)1Ak a.s. (8.14)

To prove (8.14), we can assume s = 0 for simplicity. Remind that X(t, 0; ξ) is the limit
of the iterative sequence (Xn

t (ξ)), defined by Xn+1
t (ξ) = T (Xn

t (ξ)), X0
t (ξ) = ξ (see

Remark 8.1). It is sufficient therefore to check (8.14) on the members of the sequence
(Xn

t (ξ)), and this is not difficult, using recursion on n. By (8.14), we have

E [ϕ(X(t+ s, s; ξ))|Fs] =
n∑
k=1

E [ϕ(X(t+ s, s;xk))] 1Ak . (8.15)

Admit that
E [ϕ(X(t+ s, s;x))] = E [ϕ(X(t, 0;x))] = Πtϕ(x). (8.16)

Then (8.13) follows from (8.15). The basic reason for (8.16) is that (β(t + s))t≥0 and
(β(t))t≥0 have the same increments. To prove (8.16), we can once again consider the
iterative sequence (Xn). We want to prove that Law(Xn(t+s, s;x)) = Law(Xn(t, 0;x)).
We establish this identity by recursion on n. It is true for n = 0 since both random
variables are equal to x then. If this is true at rank n, then we consider Xn+1(t+s, s;x).
It is given as

Xn+1(t+ s, s;x) = x+

∫ t+s

s
f(Xn(r, s;x))dr +

∫ t+s

s
g(Xn(r, s;x))dβ(r).

Since r 7→ Xn(r, s;x) ∈ C([0, T ];L2(Ω;K)), Xn+1(t + s, s;x) is the limit when |σ| → 0
of

Xn+1
σ (t+ s, s;x) := x+

m−1∑
i=0

(ti+1 − ti)f(Xn(ti + s, s;x))

+
m−1∑
i=0

(β(ti+1 + s)− β(ti + s))g(Xn(ti + s, s;x)).
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where σ = (ti)0,m is a subdivision of [0, t]. We have

(β(ti+1 + s)− β(ti + s), Xn(ti + s, s;x))
Law
= (β(ti+1)− β(ti), X

n(ti, 0;x))

because the components are independent and identical in law. We deduce, with obvious
notations, that

Xn+1
σ (t+ s, s;x)

Law
= Xn+1

σ (t, 0;x).

At the limit |σ| → 0, we obtain the desired result. Consequently, (8.12) is established
for ϕ ∈ Cb(E). The end of the proof is as in Section 6.2.2 and follows four steps:

1. like in Lemma 6.4, we prove first that (Πt) satisfies the points 1, 2, 3 of Defini-
tion 4.5 (this uses only the definition Πtϕ(x) = Eϕ(X(t, 0;x))),

2. then we use (8.12) and an argument of separating class to obtain the semi-group
property for (Πt),

3. Proposition 4.3 shows that (Πt) is a Markov semi-group,

4. we deduce (8.12) for general ϕ ∈ BM(Rd) by an argument of separating class .

This concludes the proof of Theorem 8.2.

Remark 8.2 (Stochastic continuity). Since (Xt) ∈ C([0, T ];L2(Ω;K)), t 7→ Πtϕ(x) is
continuous on R+ for all ϕ ∈ Cb(E).

Proposition 8.3. Under the hypotheses of Theorem 8.1, let (Xt(x)) be the unique so-
lution to the Cauchy Problem (8.2)-(8.3), (Πt) its transition semi-group. Let L be the
generator associated to (Πt). Let L0 be the unbounded operator defined by its domain

D(L0) =

{
ϕ ∈ C2

b (K); sup
x∈K

[
‖x‖K‖Dϕ(x)‖L(K;K) + ‖x‖2K‖D2ϕ(x)‖L(K×K;K)

]
< +∞

}
,

(8.17)
and its value

L0ϕ(x) = Dϕ(x) · f(x) +
1

2
Trace(g(x)∗D2ϕ(x)g(x)), (8.18)

for ϕ ∈ D(L0). Then L ⊃ L0.

Proof of Proposition 8.3. Let ϕ ∈ D(L0). We will prove that

Πtϕ(x) = ϕ(x) + tL0ϕ(x) + tηt(x), (8.19)

where (ηt) is π-converging when t → 0 on K. We apply the Itô Formula (7.40), using
the notation (7.42). Taking the expectation, we obtain

Πtϕ(x) = ϕ(x) +

∫ t

0
E [Lϕ(Xs(x))] ds

= ϕ(x) + tLϕ(x) + tηt(x), ηt(x) :=

∫ 1

0
E [Lϕ(Xst(x))− Lϕ(x)] ds.

Since ϕ ∈ D(L0), the function Lϕ is bounded, continuous. Since Xst(x) → x almost
surely, and for almost all s ∈ [0, 1] when t → 0, we obtain ηt

π−→ 0 by dominated
convergence.
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A Maximal coupling

Let (F, d) be a metric space which is separable and complete. If µ and ν are two Borel
probability measures on F , the total variation of the signed measure µ− ν is

‖µ− ν‖TV = sup
A
|µ(A)− ν(A)|, (A.1)

where the sup is taken over Borel subsets A of F . If X,Y are two random variables with
respective law µ and ν, then

‖µ− ν‖TV ≤ P(X 6= Y ). (A.2)

Indeed, if A is a Borel set in F , then

µ(A) = P(X ∈ A) = P(X ∈ A and X = Y ) + P(X ∈ A and X 6= Y )

≤ P(Y ∈ A) + P(X 6= Y ) = ν(A) + P(X 6= Y ).

If the equality in (A.2) is realized, then (X,Y ) is said to be a maximal coupling of (µ, ν).

Example Let µ be the uniform measure on [0, 1], ν the uniform measure on [0, 1/2].
What is ‖µ−ν‖TV? Let Y be a random variable of law ν and B an independent Bernoulli
random variable: P(B = ±1) = 1

2 . With Y and B, construct a maximal coupling (X,Y )
of (µ, ν) (cf. Exercise 2.15).

Theorem A.1 (Dobrushin’s maximal coupling theorem). There exists a maximal cou-
pling (X,Y ) of (µ, ν).

Proof of Theorem A.1. Let λ = µ + ν. Then µ and ν are absolutely continuous with
respect to λ. By the Radon-Nikodym theorem, µ and ν admits some densities f and g,
respectively, with respect to λ. Since all the measures are positive, and since µ(F ) =
ν(F ) = 1, we have

f, g ≥ 0 λ− a.e.,

∫
F
fdλ =

∫
F
gdλ = 1. (A.3)

Let A = {f ≥ g} and B = {f < g}. By definition of the total variation distance (A.1),
we have

‖µ− ν‖TV = max

[∫
A

(f − g)dλ,

∫
B

(g − f)dλ

]
.

By the normalization condition (A.3), the two quantities in the max are equal. Therefore

‖µ− ν‖TV =

∫
A

(f − g)dλ =

∫
B

(g − f)dλ. (A.4)

Using the formula (f − g)+ = f − f ∧ g and the normalization property (A.3) on f , we
have also the equation

‖µ− ν‖TV =

∫
A

(f − g)dλ =

∫
F

(f − g)+dλ = 1− κ, κ :=

∫
F
f ∧ gdλ. (A.5)
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If κ = 0, then µ and ν are mutually singular and any coupling is a maximal coupling. We
consider the non-trivial case κ > 0. Let U, η, ξ, ζ be some independent random variables
with the following laws: U has the uniform law on [0, 1],

η ∼ 1

κ
f ∧ ∧g, ξ ∼ f − g

1− κ
1A =

f − f ∧ g
1− κ

, ζ ∼ g − f
1− κ

1B =
g − f ∧ g

1− κ
.

Draw U, η, ξ, ζ. If U ≤ κ, set X = Y = η. Otherwise, set X = ξ, Y = ζ. Then, if D is a
Borel subset of F , we have

P(X ∈ D) = P(X ∈ D|U ≤ κ)P(U ≤ κ) + P(x ∈ D|U > κ)P(U > κ)

= κP(η ∈ D) + (1− κ)P(ξ ∈ D)

=

∫
D
f ∧ gdλ+

∫
D

(f − f ∧ g)dλ =

∫
D
fdλ = µ(A).

Similarly, we show that Y has law ν. Since A and B are disjoint, X = Y if, and only if,
U ≤ κ and thus

‖µ− ν‖TV = 1− κ = P(X 6= Y ).
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B Solution to the exercises

Solution to Exercise 2.2.

1. Ω = {1, . . . , 6}, P({i}) = 1
6 , A = {2, 4, 6}. The experiment is rolling a dice, A is

the event “the outcome is an even number”.

2. Ω = {H,T}2, P({ω}) = 1
4 for each ω ∈ Ω, A = {(H,T ), (H,H)}. The experiment

is tossing two times a unbiased coin (T stands for “tail” then, and H for “head”).
The event A is “the result of the first tossing is head”.

3. Ω = {γ ∈ C([0, T ];R2); γ(0) = 0}, P =to be seen later,

A = {γ ∈ Ω;∃t ∈ [0, T ], γ(t) ∈ D},

where D is a closed subset of R2 (e.g. D is the closed disk of radius 1 and center
(2, 0)). The experiment is drawing a curve in the plane. The event A is “the curve
intersects D”.

To answer to the last question of the exercise about the choice of the σ-algebra F .
One natural choice is to consider the Borel σ-algebra. Indeed, endowed with the
norm

‖γ‖ = sup
t∈[0,T ]

|γ(t)|,

where | · | is the euclidean norm on R2, the space Ω is a Banach space. The
probability measure P on Ω which we will consider is the Wiener measure. See
Section 3.3 on those topics.

Back to Exercise 2.2.

Solution to Exercise 2.4.

1. Ω = {1, . . . , 6}, P({i}) = 1
6 , A = {2, 4, 6}. Let X =number on the dice. Then

A = {X even}.

2. Ω = {H,T}2, P({ω}) = 1
4 for each ω ∈ Ω, A = {(H,T ), (H,H)}. Let X =“result

of the first tossing”. Then A = {X = H}.

3. Ω = {γ ∈ C([0, T ];R2); γ(0) = 0}, P =to be seen later,

A = {γ ∈ Ω;∃t ∈ [0, T ], γ(t) ∈ D},

where D is a closed subset of R2 (e.g. D is the closed disk of radius 1 and center
(2, 0)). Let τ (we use the letter τ , more common in that context, instead of X) be
defined by

τ = inf {t ∈ [0, T ]; γ(t) ∈ D} ,
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with the convention that τ = +∞ if γ does not intersects D. Note that τ is
a random variable if we take for F the σ-algebra described in the correction of
Exercise 2.2 above (i.e. the topology of the uniform convergence is considered on
Ω). Indeed,

τ = lim
n→+∞

inf {t ∈ {t1, . . . , tn}; γ(t) ∈ D} ,

where {ti, i ≥ 1} is a dense subset of [0, T ]. The random variable τ is the hitting
time of D. The event A is now {τ < +∞}.

Back to Exercise 2.4.

Solution to Exercise 2.8.

1. That µ0 = δ0 means that X0 always take the value 0 (X0 is deterministic). We
have then X1 = ±1 with equi-probability, so

µ1 =
1

2
δ−1 +

1

2
δ+1,

which is an example of Bernoulli’s Law b(1
2). We have then

P(X2 = −2) =
1

4
, P(X2 = 0) =

1

2
, P(X2 = +2) =

1

4
.

The law of X2 is therefore

µ2 =
1

4

[
δ−3/2 + δ−1/2 + δ1/2 + δ3/2

]
.

2. The law µN is

µN =
1

2N+1
δ−2 +

∑
−2N−1<k<2N−1

1

2N
δ k

2N−2
+

1

2N+1
δ−2. (B.1)

3. The answer is that µ0 is the uniform law on [−2, 2]:

µ0(A) =
1

4
|A ∩ [−2, 2]|,

where |A| is the Lebesgue measure of a Lebesgue set A ⊂ R (see the proof below
for µ∞). This answer can be simply guessed by examination of the evolution of
the process (Xn). An other way to find the right µ0 is to look at µN for large N .
Indeed, finding µ0 such that µN = . . . = µ1 = µ0 is finding an equilibrium to the
equation of evolution of (µN ) (we will not write this latter equation here). Such a
µ0 is called an invariant measure. A usual way to find an equilibrium for a system
in evolution is to look as the behaviour for large times: if there is convergence
to a limit object, this will most probably be an equilibrium of the system. Here,
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for example, one can look at the evolution starting from the binomial b(1/2) with
values in {−2,+2}, as in Question 2. If ϕ ∈ Cb(R), then∫

R
ϕdµN =

∑
−2N−1<k<2N−1

1

2N
ϕ

(
k

2N−2

)
+ o(1)

=
1

4

∑
−2N−1<k<2N−1

1

2N−2
ϕ

(
k

2N−2

)
+ o(1).

We recognize a Riemann sum, which converges to∫
R
ϕdµ∞ :=

1

4

∫ 2

−2
ϕ(x)dx.

The limit law µ∞ is an invariant measure for good. Indeed, if X0 ∼ µ∞, then, by
the formula of total probability,

P(X1 ∈ A) = P(X1 ∈ A|Z1 = −1)P(Z1 = −1) + P(X1 ∈ A|Z1 = +1)P(Z1 = +1)

=
1

2
P(X1/2 ∈ A+ 1) +

1

2
P(X1/2 ∈ A− 1),

for any Borel subsets A of R. This gives

8P(X1 ∈ A) = |A+ ∩ [−2, 2]|+ |A− ∩ [−2, 2]|, A± := 2A± 2.

We compute, thanks to the invariance by translation of the Lebesgue measure and the
change of variable formula,

|A+ ∩ [−2, 2]| = |2A ∩ [−4, 0]| = 2|A ∩ [−2, 0], |A− ∩ [−2, 2] = 2|A ∩ [0, 2]|.

If follows that P(X1 ∈ A) = 1
4 |A ∩ [−2, 2]| = µ∞(A): X1 has law µ∞.

Back to Exercise 2.8.

Solution to Exercise 2.9. Any A ∈ σ(X) has the form X−1(B). Hence

P(A) = P(X−1(B)) = µX(B).

Back to Exercise 2.9.

Solution to Exercise 2.11. Since the events Ai form a partition (up to a negligible
event) of Ω, the sets A ∩ Ai form a partition (up to a negligible event) of A. Therefore
P(A) is the sum of the probabilities P(A ∩ Ai), which are equal to P(A|Ai)P(Ai) by
definition of the conditional probability. If P(Ai) = 0, then P(A|Ai) is not defined, but
the formula of the total probabilities remain true if we set P(A|Ai)P(Ai) = 0.

Back to Exercise 2.11.
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Solution to Exercise 2.13. We list the outcomes corresponding to A1 and A2:

A1 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}.

Hence P(A1) = 5
36 , P(B) = 1

6 and P(A1 ∩B) = 1
36 6= P(A)P(B). In A2, there are the six

elements (1, 6), (2, 5),... (6, 1) and we obtain P(A2) = 1
6 , P(A2 ∩B) = 1

36 = P(A2)P(B).

Back to Exercise 2.13.

Solution to Exercise 2.15. Draw Ŷ = Y . Draw a random variable Z ∈ {−1,+1} of
law b(1/2) independently on Y (this corresponds to the tossing of a coin). Set X̂ = Y
if Z = +1 and X̂ = Y + 1/2 if Z = −1. Then X̂ has the law of X and P(X̂ = Ŷ ) = 1

2 .
The last assertion is clear, since

P(X̂ = Ŷ ) = P(Z = +1) =
1

2
.

This is the maximal probability that X = Y since {X = Y } ⊂ {X ∈ [0, 1/2]}. Let us
prove that X̂ has the law of X. We use the formula of total probabilities: if A is a Borel
subset of R, then

P(X̂ ∈ A) = P(X̂ ∈ A|Z = +1)P(Z = +1) + P(X̂ ∈ A|Z = −1)P(Z = −1)

=
1

2
P(Y ∈ A) +

1

2
P(Y ∈ A− 1/2).

The first term 1
2P(Y ∈ A) is |A ∩ [0, 1/2]|. The second one is

|(A− 1/2) ∩ [0, 1/2]| = |A ∩ [1/2, 1]|

by invariance by translation of the Lebesgue measure. This gives P(X̂ ∈ A) = |A∩ [0, 1]|

Back to Exercise 2.15.

Solution to Exercise 2.16. Since Xn ≥ 0, the L1(Ω,P)-norm of Xn is the integral∫
Ω
XndP =

∫
{Xn=1}

XndP = P(Xn = 1) =
1

n
.

Therefore Xn → 0 in L1(Ω,P). Let A be the event {Xn → 0}. Using the ε − n0

characterization of the convergence with ε = k−1 < 1, we obtain the usual description

A =
⋂
k≥1

⋃
n∈N

⋂
p≥n
{|Xp| < k−1}.

Since Xn takes the values 1 or 0 only, this gives

A =
⋃
n∈N

⋂
p≥n
{Xp = 0}.

120



Since n 7→
⋂
p≥n{Xp = 0} is decreasing, the probability of A is

P(A) = lim
n→+∞

P

⋂
p≥n
{Xp = 0}

 .

We introduce the intermediate sets
⋂
m≥p≥n{Xp = 0}, which are decreasing with respect

to m and the independence of the random variables (Xn) to obtain

P(A) = lim
n→+∞

lim
m→+∞

m∏
p=n

P(Xp = 0).

Since P(Xp = 0) = 1 − 1
p , the product is divergent (use the log and compare to the

harmonic series to justify this):

lim
m→+∞

m∏
p=n

P(Xp = 0) = 0,

for all n. Consequently, P(A) = 0.

Note that our aim was initially to prove P(A) < 1. We obtain much more: P(A) = 0!
According to the Kolmogorov’s zero-one law, this was the only possible alternative.

Back to Exercise 2.16.

Solution to Exercise 2.17. We still have (2.12) by independence, where now Ai
is a Borel subset of Ei. Also, the σ-algebra generated by the measurables rectangles
A = A1×· · ·×An is, by definition [Tao11, Section 1.7.4], the product σ-algebra B(E1)×
· · · × B(En). To conclude, we have to show that the product Borel σ-algebra coincides
with the Borel σ-algebra B(E1× · · · ×En) on the product. The proof is again similar to
[Bil95, Example 18.1], replacing intervals by balls.

Back to Exercise 2.17.

Solution to Exercise 2.18. Let X = X1 + · · · + Xn. By iteration of Theorem 2.4
and Formula (2.13), we have∫

R
hdµX =

∫
R
· · ·
∫
R
h(x1 + · · ·+ xn)dµ(x1) · · · dµ(xn), (B.2)

for all h ∈ Cb(R), where µ = pδ1 + (1− p)δ0. To compute the right-hand side of (B.2),
we have to count the numbers of elements (x1, . . . , xn) ∈ {0, 1}n whose sum is a given
number k ∈ {0, n}. Such elements have a contribution pk(1 − p)n−k in the right-hand
side of (B.2). The question is therefore to evaluate the number of ways to pick up k
elements (the xi’s with value 1) among n. There are

(
n
k

)
of those elements, therefore∫

R
hdµX =

n∑
k=0

(
n

k

)
pk(1− p)n−kh(k).

The law of X is the Binomial law B(n, p).

Back to Exercise 2.18.

121

https://en.wikipedia.org/wiki/Kolmogorov's_zero-one_law


Solution to Exercise 2.20. We have

P(Xn = [xn]) =

(
n

[xn]

)
p[xn](1− p)[xn].

Taking the ln of both sides gives

ln[P(Xn = [xn])] = ln(n!)− ln([xn]!)− ln((n− [xn])!) + [xn] ln(p) + (n− [xn]) ln(1− p).

We use the asymptotic development ln(n!) = n ln(n)− n+ o(n) to obtain, after simpli-
fications,

ln[P(Xn = [xn])] =n

[
− [xn]

n
ln

(
[xn]

n

)
−
(

1− [xn]

n

)
ln

(
1− [xn]

n

)
+

[xn]

n
ln(p) +

(
1− [xn]

n

)
ln(1− p) + o(1)

]
.

This gives (2.17) with the rate function

H(x; p) = x ln

(
x

p

)
+ (1− x) ln

(
1− x
1− p

)
.

We have H(p; p) = 0 and H(x; p) > 0 if x 6= p by strict convexity of − ln:

H(x; p) > − ln

[
x
p

x
+ (1− x)

1− p
1− x

]
= ln(1) = 0.

Back to Exercise 2.20.

Solution to Exercise 2.24. By induction, it is sufficient to consider the case n = 2.
Setting Yi = Xi − E(Xi) if necessary, we can also assume E(Xi) = 0. Consider first the
case whereH = R. We have then E(X1X2) = E(X1)E(X2) = 0 by (2.27). Developing the
square E|X1 +X2|2, we obtain the result. In the general case, let (en) be an orthonormal
basis of H. Using Parseval’s identity, we decompose, for Z ∈ {X1, X2, X1 +X2},

Var(Z) = E‖Z‖2H = E
∑
n

|〈Z, en〉H |2 =
∑
n

Var(〈Z, en〉)

and use the real case to conclude.

Back to Exercise 2.24.

Solution to Exercise 2.27. For ϕ ∈ Cb(R), we have

Eϕ(Xn) = ϕ(0)P(Xn = 0) + ϕ(1)P(Xn = 1)→ ϕ(0).

To answer the second question, we may consider Ω̃ = [0, 1] with the σ-algebra F̃ of
Borel sets and the Lebesgue measure on [0, 1] as probability measure P̃. Then we set
X̃n = 1[0,n−1], X̃ = 0. The identity of the laws is realized and X̃n → 0 P̃-almost-surely.

Note that the family {X̃n;n ∈ N∗} is not independent.

Back to Exercise 2.27.
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Solution to Exercise 2.30. Here is a proof using the characterization (2.32) of conver-
gence in law. Let F be a closed subset of E. Let ε > 0 and δ > 0. There exists an n0 such

that P(‖Xn−Yn‖E > δ) < ε for all n ≥ n0. We have then P(Yn ∈ F ) < ε+P(Xn ∈ F
δ
),

where F
δ

denotes the δ-neighbourhood of F :

F
δ

= {x ∈ E; d(x, F ) ≤ δ} , d(x, F ) = min
y∈F
‖x− y‖E .

Since F
δ

is closed, we obtain

lim sup
n→+∞

P(Yn ∈ F ) ≤ ε+ µX(F
δ
).

Since (F
δ
) ↓ F when δ ↓ 0 (because F is closed), we obtain lim supn→+∞ P(Yn ∈ F ) ≤

ε + µX(F ) at the limit δ → 0. Since ε is arbitrary, this gives the result. Note that we
have repeated, more or less, the arguments of the proof of Proposition 2.8 and, indeed,
we can use Proposition 2.8 and also the lines of the proof of Proposition 2.11 to write,
for ϕ uniformly continuous and bounded, with a modulus of continuity denoted by ωϕ,
that |Eϕ(Yn)− Eϕ(X)| is bounded by the sum of |Eϕ(Xn)− Eϕ(X)| with

E
[
|ϕ(Xn)− ϕ(Yn)|1‖Xn−Yn‖E>δ

]
+ E

[
|ϕ(Xn)− ϕ(Yn)|1‖Xn−Yn‖E≤δ

]
≤ ‖ϕ‖Cb(E)P(‖Xn − Yn‖E > δ) + ωϕ(δ).

We choose first δ small, then n large to conclude.

Back to Exercise 2.30.

Solution to Exercise 2.31. For δ > 0, set χδ(s) = δ−1(δ − s)+. Then ϕδ : (x, y) 7→
χδ(‖x− y‖E) is continuous on E × E and we have

P(‖Xn −X‖E ≤ δ) = E1‖Xn−X‖E≤δ ≥ Eϕδ(Xn, X).

the right-hand side is converging to ϕδ(Y, Y ) = 1 by hypothesis, which gives the result.
Note that the result is true also when E is infinite dimensional.

Back to Exercise 2.31.

Solution to Exercise 2.33.

1. Let Kn = [−n, n]. We have R = ∪n∈NKn (increasing union), hence 1 = µ(R) =
limn→+∞ µ(Kn). For all ε > 0, there exists an n such that µ(Kn) > 1− ε.

2. Same proof as in 1.

3. Note that tightness of {µ} is equivalent to the inner regularity of µ. If E is finite
dimensional, then we can use Item 2. (E si equal to the increasing union of the close
balls of centred at 0 with radius n, which are compact). In the infinite-dimensional
case, we use the following characterization of compact sets in separable, complete,
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metric (i.e. Polish) spaces: a set K is relatively compact if, and only if, for all
r > 0, it can be covered by a finite number of balls with radius r. Let (rn) ↓ 0
(sequence of radii) and let also (δn)→ 0. By separability of E, there is a countable
set (Bk

n)k∈N of balls of radius rn covering E (take the balls centred at each points
xk of a dense countable set). Therefore

1 = µ(E) = lim
k→+∞

µ(Dk
n), Dk

n :=
k⋃
j=0

Bj
n,

and there exists kn such that µ(Dkn
n ) > 1− δn. Let K be the closure of the set

A =
⋂
n∈N

Dkn
n .

Then K is compact and

µ(Kc) ≤ µ(Ac) ≤
∑
n∈N

µ(Dkn
n ) <

∑
n∈N

δn.

Taking δn such that
∑

n∈N δn = ε, we obtain the result.

4. By the Markov inequality, we have

P(‖Xn‖H1(Td) > R) ≤ 1

R
E‖Xn‖H1(Td) ≤

C

R
.

This means, for R > C, µn(KR) ≥ 1− C
R , where

KR = {u ∈ L2(Td); ‖u‖H1(Td)≤R

is compact since the injection H1(Td) ↪→ L2(Td) is compact. If ε > 0, we choose
R > Cε−1 to obtain µn(KR) > 1− ε for all n. This gives the result.

5. If we assume supn E‖Xn‖F < +∞ with F ↪→ E compact, we have the same result
(with same proof): the family {µXn ;n ∈ N} is tight on E.

6. Reflected random walk. We can write Xn+1 −Xn = 2ξn − 1 + 1Xn=0, where ξn is
a Bernoulli of parameter p. By summing over n, this gives

Xn = 2
(
Sn −

n

2

)
+ Yn, Sn =

n∑
k=0

ξk, Yn =
n−1∑
k=0

1Xk=0. (B.3)

If p > 1
2 , we use the weak law of large number (Theorem 2.19): Sn

n → p in
probability, therefore (since Yn ≥ 0), Xn → +∞ in probability, in the sense that,
for all R > 0, P(Xn ≥ R)→ 1. If p = 1

2 , we use the Central Limit Theorem:

P
(
Sn −

n

2
≥ σ
√
n
)
→ c > 0,
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where σ =
√
p(1− p) and c = P(Z ≥ 1) for Z ∼ N (0, 1). Again we obtain

Xn → +∞ in probability. Note that discarding the term Yn in (B.3) because it
is non-negative amounts to consider the non-reflected random walk. When p < 1

2
now, we may compare (Xn) with the stationary solution (X∗n). The stationary
solution (invariant measure) is such that

P(X∗n = k) = P(X∗n+1 = k) = pP(X∗n = k − 1) + qP(X∗n = k + 1), (B.4)

if k > 0 (and P(X∗n = 0) = P(X∗n+1 = 0) = q(P(X∗n = 0) + P(X∗n = 1))). We can
solve (B.4) explicitly to find P(X∗n = k) = (1−A)Ak, A := p

q . Now we notice that

P(X0 = k) ≤ CP(X∗n = k) for C large enough (C = (1 − A)−1 actually). This
implies P(Xn = k) ≤ CP(X∗n = k) for all n. It follows that (Xn) is tight.

Back to Exercise 2.33.

Solution to Exercise 2.34. In Example 2.10, one has to test (2.43) only for A = Ω,
which is satisfied then with E(X|G) = E(X). In Example 2.11, we start from the fact
that a G-measurable function is of the form α1B +β1Bc . Tested with A = B (resp. Bc),
the condition 2.43 gives αP(B) = E(1BX) (resp. βP(Bc) = E(1BcX). In Example 2.12,
we have to prove that

E [1AX] = E [1AE(X|G)] ,

for all A ∈ H. But this is of course true sinceH ⊂ G. The identity (2.45) in Example 2.13
is a direct consequence of (2.43) with A = Ω. At last, let us consider Example 2.14 By
Theorem 2.1 we know that E(Φ(X + Y )|σ(X)), being σ(X)-measurable, is of the form
f(X). Any σ(X)-measurable set is of the form A = X−1(B) where B is a Borel subset
of E. In that case, we have 1A = 1B(X) and

E(1B(X)Φ(X,Y )) =

∫
E×E

1B(x)Φ(x, y)dµ(X,Y )(x, y) by (2.30),

=

∫
E×E

1B(x)Φ(x, y)d(µX × µY )(x, y) by independence,

=

∫
E

1B(x)

[∫
E

Φ(x, y)dµY (y)

]
dµX(x) by Fubini’s Theorem,

= E[1B(X)f(X)], f(x) := EΦ(x, Y ) by (2.30) again.

Back to Exercise 2.34.

Solution to Exercise 2.36. We apply first (2.46) in an obvious way to obtain

E(Xn+1|σ(Xn)) = gn(Xn), gn(x) := Ef(x, Yn+1) =

∫
F
f(x, y)dµYn+1(y).

Then we note that Fn = σ(Z), Z = (Yi)1,n and that Xn+1 = Φ(Z, Yn+1) to obtain, by
(2.46),

E(Xn+1|Fn) = h(Z), h(z) = EΦ(z, Yn+1) =

∫
F

Φ(z, y)dµYn+1(y).
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Since Φ(z, y) = f(. . . f(f(x0, z1), z2), . . . , zn), we obtain Φ(Z, y) = f(Xn, y), which gives
the result.

Back to Exercise 2.36.

Solution to Exercise 2.37. The statement of Theorem 2.6 is

µn(A)→ µ(A) (B.5)

for all A of the form (a, b), where µn = µZn and µ is the law of a N (0, 1) random variable.
Let G be an open set in R. Then G is the disjoint union of open intervals Ak, k ∈ N.
Let ε > 0. There exists K ∈ N such that µ(G) ≤ µ(GK) + ε, where GK is the union of
the intervals Ak over k ∈ {0, . . . ,K}. Then (B.5) is true for A = GK and we deduce

µ(G) ≤ lim
n→+∞

µn(GK) + ε ≤ lim sup
n→+∞

µn(G) + ε.

Since ε is arbitrary, this yields (2.33).

Back to Exercise 2.37.

Solution to Exercise 2.38. Let Z = piϕ(Xn+1)−Yiϕ(Xn). We use (2.45) to obtain
E(Z) = E(E(Z|σ(Yi))). By (2.46) then, we have

E(Z|σ(Yi)) = f(Yi), f(y) := E[piϕ(X(i)
n + y + 1)− yϕ(X(i)

n + y)]

and

E(Z) = E(f(Yi)) = f(0)P(Yi = 0) + f(1)P(Yi = 1) = (1− pi)f(0) + pif(1).

This gives (2.55).

Back to Exercise 2.38.

Solution to Exercise 3.8. Let A ∈ Fcyl be a non-empty set, and let J be a countable
subset of [0, T ], B an element of the cylindrical σ-algebra on EJ such that A = π−1

J (B).
Let t′ ∈ [0, T ] \ J and let x′ be an arbitrary element of E. If Y ∈ A, then Y ′ defined by

Y ′ = Y on [0, T ] \ {t′}, Y ′(t′) = x′

is also in A since the values Yt for t ∈ J are not affected by the modification of the
value Yt′ . It is clear then that neither A1 nor A2 can be in Fcyl. In the case of A1, a
contradiction is obtained by considering any x′ 6= 0. In the case of A2, a contradiction
is obtained by considering any x′ 6= Yt′ .

Back to Exercise 3.8.
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Solution to Exercise 3.9. Let B denote the Borel σ-algebra on C([0, T ];E). Since
each projection πt from C([0, T ];E) onto E is continuous, the cylindrical sets are Borel
sets, hence Fcts ⊂ B. To prove the converse inclusion, we consider an open ball B(u, r)
in C([0, T ];E). It can be described as

B(u, r) = {v ∈ C([0, T ];E);∀n ∈ N, |v(tn)− u(tn)| < r} ,

where (tn)n∈N is a dense subset of [0, T ]. This shows that B(u, r) ∈ F◦ ∩ C([0, T ];E),
where F◦ is the σ-algebra generated by the sets introduced in (3.6). But we have shown
that F◦ = Fcyl. Therefore all open balls are in Fcts, i.e. B ⊂ Fcts.

We have then A2 = C([0, T ];E), the whole space, while A1 is the singleton {0}, a closed
set. Therefore A1, A2 ∈ Fcts.

Back to Exercise 3.9.

Solution to Exercise 3.11.

1. In both cases Xt = Wt or Xt = Nt, the law of Xt and the law of Xt+σ are different
(N (0, t) versus N (0, t + σ) in the case of the one-dimensional Wiener process;
P(λt) versus P(λ(t + σ)) in the case of the Poisson process). Therefore (3.12) is
not satisfied when n = 1: the processes are not stationary.

2. Again, we consider (3.12) for n = 1: it shows that the law of a stationary process
is constant in time.

3. Note that we initialize the process with the measure µ0 which is the invariant
measure found in Exercise 2.8.

(a) Let µn be the law of Xn. Let ϕ ∈ Cb(R). For n = 1, we have

〈µ1, ϕ〉 = Eϕ(X1) = Eϕ(2−1X0 + Z1)

=

∫∫
R2

ϕ(2−1x+ z)dµ(X0,Z1)(x, z)

=

∫∫
R2

ϕ(2−1x+ z)dµX0(x)dµZ1(z) by independence

=
1

4
× 1

2

∫ 2

−2

[
ϕ(2−1x− 1) + ϕ(2−1x+ 1)

]
dx

=
1

8

[
2

∫ 0

−2
ϕ(y)dy + 2

∫ 2

0
ϕ(y)dy

]
= 〈µ0, ϕ〉.

By iteration of this computation, we obtain µn = µ0 for all n ∈ N.

(b) Let 0 ≤ k1 < · · · < kn ∈ N and l ∈ N. Let B1, . . . , Bn be some Borel subsets
of R. We want to show that

P(Xk1 ∈ B1, . . . , Xkn ∈ Bn) = P(Xk1+l ∈ B1, . . . , Xkn+l ∈ Bn). (B.6)
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We just showed the case n = 1. Assume n = 2. Intuitively, the identity
(B.6) comes from the fact that the probability that, first Xk1 and Xk1+l are
in B1 are the same, and, second, that, knowing that Xm ∈ B1, the fact that
Xm+p ∈ B2 depends uniquely on the drawing of (Zm+1, . . . , Zp), which has
the same law as (Zm+1+l, . . . , Zp+l). Note also that Equation (3.13) may be
replaced by the more general relation Xn+1 = f(Xn, Zn+1), the reasoning
would be the same. The proof is the following one:

P(Xk1+l ∈ B1, Xk2+l ∈ B2) = E(1B2(Xk2+l)1B1(Xk1+l))

= E (E [1B2(Xk2+l)|σ(Xk1+l)] 1B1(Xk1+l)) .
(B.7)

For ϕ ∈ R → R measurable and bounded. By (2.46) applied to X = Xk1+l,
Y = (Zk1+l+1, . . . , Zk2+l) we have

E [ϕ(Xk2+l)|σ(Xk1+l)] = Pk2,k1ϕ(Xk1+l),

where11

Pk1,k2ϕ(x) := Eϕ(f(f(. . . f(x, Zk1+l+1), . . . , )Zk2+l−1, Zk2+l))).

Since (Zk1+l+1, . . . , Zk2+l) has the same law as (Zk1+1, . . . , Zk2), it makes
sense to denote a dependence on k1, k2 solely in Pk1,k2ϕ(x). Coming back to
(B.7), we obtain

P(Xk1+l ∈ B1, Xk2+l ∈ B2) =E (Pk2,k11B2(Xk1+l)1B1(Xk1+l))

=

∫
R

(Pk1,k21B2(x)1B1(x)dµ0(x),

since Xk1+l has the law µ0. This last expression is independent on l: this
gives the desired result. The case of general n in (B.6) is obtained similarly
by induction on n.

Back to Exercise 3.11.

Solution to Exercise 3.14. Consider the non-negative function

f =

∞∑
n=0

1An .

By hypothesis, and thanks to Fubini’s Theorem, we have

Ef =

∫
Ω
fdP =

∞∑
n=0

P(An) < +∞.

Consequently, f is finite almost-surely. Equivalently, almost-surely, a finite number of
the An’s is realized.

Back to Exercise 3.14.
11the operator Pk1,k2 is the transition operator, see Section 4
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Solution to Exercise 3.15. Let (δk) ↓ 0. We apply the Borel-Cantelli lemma to the
sets Akn = {‖Xn‖E > δk}: there exists Ωk ⊂ Ω of probability 1 such that all ω ∈ Ωk is
in a finite number of Akn’s: there exists nk(ω) such that, for n ≥ nk(ω), ω /∈ Akn. Let
Ω̃ = ∩kΩk. Then P(Ω̃) = 1 and if ω ∈ Ω̃ and ε > 0, then choosing k such that δk < ε,
we have ‖Xn(ω)‖E < ε for n ≥ nk(ω). This means Xn(ω)→ 0.

Back to Exercise 3.15.

Solution to Exercise 3.16. Just take the modification furnished by the Kolmogorov
Theorem and set

ζ = C1/p
σ,p

[∫ T

0

∫ T

0

‖X̃(t′)− X̃(s′)‖pE
|t′ − s′|1+σp

ds′dt′

]1/p

,

where 1
p < σ < 1+δ

p , σ := α+ 1
p . We have E|ζ|p < +∞ (same computation as in (3.22))

and (3.28) thanks to (3.27).

Back to Exercise 3.16.

Solution to Exercise 3.17.

1. We will apply Lemma 2.12. By the Markov inequality, we have P(‖Yn‖E > δ) ≤
δ−2E‖Yn‖2E for δ > 0, so (Yn) is converging to 0 in probability. Therefore it is
sufficient to show that ηn := (a− an)Xn is converging to 0 in probability. For this
we use the tightness of (Xn) (this is the “easy” part of the Prohorov theorem):
given ε > 0, there exists a compact K such that P(Xn ∈ K) ≥ 1 − ε for all n.
There exists R > 0 such that K ⊂ B̄(0, R). It follows that

P(‖ηn‖E > δ) ≤ ε+ P(|a− an| > R−1δ).

For n large enough, P(|a−an| > R−1δ) = 0 (since (an) is deterministic here). This
concludes the proof.

2. Clear with (2.11) (we use the generalization proved in Exercise 2.17).

Back to Exercise 3.17.

Solution to Exercise 4.3. See the correction of Exercise 3.11 for a proof in the
time-discrete case. Since (Xt)t≥0 is an homogeneous Markov process, (4.12) reads

µt1,...,tn = (Ptn−tn−1)∗ ⊗ · · · (Pt2−t1)∗ ⊗ µt1 .

If µt1 is independent on t1, it is clear then that µt1,...,tn = µt1+s,...,tn+s for all s ≥ 0:
(Xt)t≥0 is stationary.

Back to Exercise 4.3.
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Solution to Exercise 4.9. Assume Y is non trivial. Then, for t > 0, FXt = σ(Y ) and
thus F0+ = σ(Y ) is distinct from {∅,Ω} = F0, although (Xt) has continuous trajectories.

Back to Exercise 4.9.

Solution to Exercise 4.11.

1. We have Pn = Pn1 as a consequence of P0 = id, the relation Pn+1 = P1 ◦ Pn and
recursion on n.

2. The collection of all sets of the form E = B ∩D ∩ {N(t) = m}, m ∈ N, B ∈ FXm ,
D ∈ FNt form a π-system that generates Ft. Therefore, by [Bil95, Theorem 3.3],
it is sufficient to prove (4.28) for E as above. We have then

E
[
1Eϕ(Xn+N(t))

]
=E

[
1B∩D∩{N(t)=m}ϕ(Xn+m)

]
=P(D ∩ {N(t) = m})E [1Bϕ(Xn+m)] (independence)

=P(D ∩ {N(t) = m})E [1BQnϕ(Xm)]

=E
[
1B∩D∩{N(t)=m}Qnϕ(Xm)

]
(independence again)

=E
[
1EQ

nϕ(XN(t))
]
.

3. It follows from (4.28) that E
[
ϕ(Xn+N(t))|Ft

]
= Qnϕ(XN(t). We decompose

E[ϕ(XN(t+s))|Ft] =
∞∑
n=0

E[ϕ(XN(t+s))1N(t+s)−N(t)=n|Ft]

and use independence to obtain

E[ϕ(XN(t+s))|Ft] =

∞∑
n=0

P(N(t+ s)−N(t) = n)E[ϕ(XN(t)+n)|Ft]

=
∞∑
n=0

e−s
sn

n!
Qnϕ(XN(t))

=(Πsϕ)(XN(t)),

with Pt defined by (4.30). It is clear that L = Q1 − Id.

Back to Exercise 4.11.

Solution to Exercise 4.13.

1. If {τ < t} ∈ Ft for all t ≥ 0 then {τ ≤ t} = ∩n≥1{τ < t+n−1} ∈ Ft+. Conversely,
if {τ ≤ t} ∈ Ft+ for all t ≥ 0, then {τ < t} = ∪n≥1{τ ≤ t(1− n−1)} is in Ft.
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2. By decomposing

{τ ∧ s ≤ t} =
(
{τ ∧ s ≤ t}

⋂
{τ ≤ s}

)⋃(
{τ ∧ s ≤ t}

⋂
{τ > s}

)
,

we obtain

{τ ∧ s ≤ t} = {τ ≤ s ∧ t}
⋃(
{s ≤ t}

⋂
{τ > s}

)
∈ Ft∧s.

If A ∈ Fτ∧s then A = A ∩ {tau ∧ s ≤ s} ∈ Fs. Therefore Fτ∧s ⊂ Fs.

3. We have τA ≤ t if, and only if, mins∈[0,t] d(Xt, A) = 0 since A is closed and t 7→ Xt

is continuous. We deduce that

{τA ≤ t} =
⋂
n≥1

⋃
s∈Q∩[0,t]

{d(Xt, A) < n−1} ∈ Ft.

This shows that τ ∧ s is a stopping time and that it is a Fs-measurable random
variable.

4. We have
{τA < t} =

⋃
s<t

{Xs ∈ A} =
⋃

s∈Q,s<t
{Xs ∈ A}. (B.8)

The first equality in (B.8) is clear: τA ≥ t means that Xs does not meet A for
all s < t. The second equality in (B.8) uses the fact that A is open and (Xt) is
right-continuous: if Xs ∈ A, then Xs ∈ B where B is an open ball contained in A.
Since Xσ → Xs when σ ↓ s, there exists σ ∈ Q∩ (s, t) such that Xsigma ∈ B ⊂ A.
By (B.8), we have {τA < t} ∈ Ft+. By Question 1, we deduce that τA is an
(Ft+)-stopping time.

5. We use the notation (and result) of Remark 4.6. Let Y (t) = X(t ∧ τ). We have

Y (t) =
m∑
i=1

X(t ∧ τ)1τ=ti =
m∑
i=1

X(t ∧ ti)1τ=ti ,

which shows that Y (t) is a random variable and that, for B ∈ B(E),

{Y (t) ∈ B} =
m⋃
i=1

{X(t ∧ ti) ∈ B} ∩ {τ = ti}.

Back to Exercise 4.13.
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Solution to Exercise 5.2. For 0 ≤ s ≤ t, we have Xt = Xs+δ, where δ is independent
from Fs, i.e. E[δ|Fs] = E[δ] = 0. Consequently, E[Xt|Fs] = Xs: (Xt)t≥0 is a martingale
for (Ft)t≥0. We also have

X2
t = (Xs + δ)2 = X2

s + 2δXs + δ2.

Taking the conditional expectancy with respect to Fs and using independence again, we
obtain

E[X2
t |Fs] = X2

s + E[δ2]. (B.9)

Taking expectation in (B.9) gives E[X2
t ] = E[X2

s ] +E[δ2], hence E[X2
t ] ≥ E[X2

s ], but also
(replacing E[δ2] by E[X2

t ]− E[X2
s ] in (B.9))

E[X2
t |Fs]− E[X2

t ] = X2
s − E[X2

s ].

This shows that (X2
t − E[X2

t ])t≥0 is a martingale.

Back to Exercise 5.2.

Solution to Exercise 5.3.

1. The function ϕ∗ is the sup of affine functions. It is convex on R consequently,
and thus continuous. This gives (a). Since ϕ∗ is continuous, any countable dense
subset D of R will do: we obtain (b). For p ∈ D, we have E[pX − ϕ∗(p)|G] =
pE[X|G]− ϕ∗(p) a.s. That X 7→ E[X|G] is monotone non-decreasing is clear from
the definition (2.43) since 1A is non-negative. Therefore E[ϕ(X)|G] ≥ pE[X|G] −
ϕ∗(p) a.s. Taking the sup on p ∈ D, we obtain the result (c). That (ϕ(Xt)) is a
sub-martingale is then a direct consequence of (5.1).

2. Note first that E is separable since E∗ is separable, [Bre11, Theorem 3.26]. Let D
be a countable dense subset of the closed unit ball B̄∗ of E∗. We have

‖x‖E = sup
p∈B̄∗
〈p, x〉 = sup

p∈D
〈p, x〉. (B.10)

The first identity in (B.10) is [Bre11, Corollary 1.3]. Note that (B.10) is the identity
ϕ = ϕ∗∗ for ϕ(x) = ‖x‖E . Indeed, it is easy to compute

ϕ∗(p) := sup
x∈E

[〈p, x〉 − ϕ(x)] =

{
0 if ‖p‖E∗ ≤ 1,

+∞ if ‖p‖E∗ > 1.

Once we have (B.10), the proof follows as in 1.

3. Consequence of (5.2).

Back to Exercise 5.3.
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Solution to Exercise 5.4. Assume that Y can be decomposed as Y = M + A as
required. We have then E[Mn+1|Fn] = Mn by the martingale property of M . Replacing
M by Y −A, we obtain E[Yn+1|Fn]−An+1 = Yn −An since An+1 is Fn-measurable. It
is sufficient therefore to define (An) recursively by the formula

A0 = 0, An+1 = An + E[Yn+1|Fn]− Yn,

to obtain the desired decomposition. We see that A is non-decreasing precisely because
Y is a submartingale. The uniqueness of the decomposition comes from the fact that a
predictable martingale is constant.

Back to Exercise 5.4.

Solution to Exercise 5.5. The answer is given by Exercise 5.2, where we have shown
that 〈M,M〉t = E|Mt|2 if (Mt) is a continuous martingale with independent increments.
For the one-dimensional Wiener process (Bt), we obtain 〈B,B〉t = t.

Back to Exercise 5.5.

Solution to Exercise 5.6. Let ε > 0 and let δ be the modulus of uniform continuity
of t 7→ X(t) associated to ε. Using the identity (cf. (5.32))

E
∑
k

|ζ(tk)|2 = |X(tK)|2 − |X(0)|2 ≤M2, (B.11)

we have
E|D|2 ≤M2ε2 +

∑
k

1|ζ(tk)|≥ε|ζ(tk)|4. (B.12)

Let N > 0. Let γN denote the stopping time

γN = min

{
tk;

k∑
i=1

1|ζ(ti)|≥ε = N

}
∪ {tK}

and let κN be such that γN = tκN . We have (same proof as (5.40))

E|D|2 ≤M2ε2 +M2P(γN < tK) +M2NP(δ < |σ|),

Taking N large, then |σ| small gives the result.

Back to Exercise 5.6.

Solution to Exercise 5.7. We consider the quantity E
[
|Xti+1 −Xti |2|Fti

]
for ti+1−ti

small. Let us discuss the occurrence of jumps between ti and ti+1. Denote by Bk the
event corresponding to the occurrence of exactly k jumps of the Poisson process between
ti and ti+1 and set B+

2 = ∪k≥2Bk. We have

E
[
|Xti+1 −Xti |2|Fti

]
= E

[
|Xti+1 −Xti |21B0 |Fti

]
+ E

[
|Xti+1 −Xti |21B1 |Fti

]
+ E

[
|Xti+1 −Xti |21B+

2
|Fti

]
.
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Since |Xti+1−Xti |21B0 = 0 and P(B+
2 ) = O(|ti+1−ti|2), the only term that matters is the

one corresponding to the occurrence of exactly one jump ti and ti+1. By independence,
and since P(B1) = ti+1 − ti, we have

E
[
|Xti+1 −Xti |21B1 |Fti

]
= (〈ϕ, ν〉 − ϕ(Xti))(ti+1 − ti)

where ϕ is the function x 7→ x2, i.e.

E
[
|Xti+1 −Xti |21B1 |Fti

]
= (Lϕ)(Xti)(ti+1 − ti).

Therefore, we infer the limit ∫ t

0
(Lϕ)(Xs)ds

for V̄
(2)
σ (t). Compare with the statement of Theorem 5.8 (Dynkin’s formula).

Back to Exercise 5.7.

Solution to Exercise 7.1.

1. The elementary process

gσ :=
n−1∑
k=0

g(tk)1(tk,tk+1] (B.13)

is converging to g in L2(Ω× [0, T ]). Indeed,∫ T

0
E|g(t)− gσ(t)|2dt =

n−1∑
k=0

∫ tk+1

tk

E|g(tk)− g(t)|2dt ≤ Tω(g; |σ|),

where the modulus of continuity

ω(g; δ) = sup
{
E|g(t)− g(s)|2; s, t ∈ [0, T ], |s− t| < δ

}
tends to 0 when δ → 0.

2. We will show that g ∈ C([0, T ];L2(Ω)) and apply Question 1. Let ε > 0, let δ be
a (random) modulus of continuity associated to ε. We have, for t ∈ (0, T ), and |s|
smaller than min(t, T − t),

E|g(t+ s)− g(t)|2 =E
[
1s<δ|g(t+ s)− g(t)|2

]
+ E

[
1s≥δ|g(t+ s)− g(t)|2

]
≤ ε2 + (E [|g(t+ s)− g(t)|q])2/q P(s ≥ δ)

q−2
2

≤ ε2 + (2C)2/q P(s ≥ δ)
q−2
2 , C = sup

t∈[0,T ]
E|g(t)|q.

This gives the result since P(s ≥ δ)→ 0 when s→ 0. We use the same reasoning
when t = 0 or t = T .
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3. Since C([0, T ]) is dense in L2(0, T ), we may assume that g is continuous. Then use
Question 1. Since

n−1∑
k=0

g(tk)(β(tk+1)− β(tk))

is a linear combination of independent Gaussian random variables, it is a Gaussian
random variables and the limit in L2(Ω) of Gaussian random variables is a Gaussian
random variable. The value of σ2 follows from the Itô isometry.

Back to Exercise 7.1.

Solution to Exercise 8.2.

1. We have

Xt = e−tx+
√

2

∫ t

0
e−(t−s)dBs.

This is a Gaussian random variable with mean e−tx and (by independence of the
components of the d-dimensinoal Wiener process) diagonal covariance σ2Id, where,
using Itô’s isometry, we have

σ2 = E
∣∣∣∣√2

∫ t

0
e−(t−s)dBs

∣∣∣∣2 = 2

∫ 2

0
e−2(t−s)ds = 1− e−2t.

It follows that Xt → N (0, Id) in law when [t→ +∞].

2. Itô’s Formula gives, for Yt = ln |Xt|,

dYt = −σ
2

2
dt+ σdBt.

We obtain Yt = Y0 − σ2

2 t+ σBt and

Xt = x exp

(
−σ

2

2
t+ σBt

)
.

Back to Exercise 8.2.

C The end
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1990.

[DPZ92] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, En-
cyclopedia of Mathematics and its Applications, vol. 44, Cambridge University
Press, Cambridge, 1992.

[Dur84] R. Durrett, Brownian motion and martingales in analysis, Wadsworth Math-
ematics Series, Wadsworth International Group, Belmont, CA, 1984.

[EK86] S. N. Ethier and T. G. Kurtz, Markov processes, Wiley Series in Probability
and Mathematical Statistics: Probability and Mathematical Statistics, John
Wiley & Sons Inc., New York, 1986, Characterization and convergence.

[Eva10] Lawrence C. Evans, Partial differential equations, second ed., Graduate Stud-
ies in Mathematics, vol. 19, American Mathematical Society, Providence, RI,
2010. MR 2597943

[FH14] Peter K. Friz and Martin Hairer, A course on rough paths, Universitext,
Springer, Cham, 2014, With an introduction to regularity structures. MR
3289027

136



[JS03] J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, second
ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Princi-
ples of Mathematical Sciences], vol. 288, Springer-Verlag, Berlin, 2003.
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