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An introduction to dimensional analysis

David Dureisseix
Département Génie Mécanique, INSA de Lyon

November 15, 2018

This document is a short (and hopefully concise) introduction to dimensional
analysis and is not expected to be printed. Indeed, it relies on URL links (in
colored text) to refer to information sources and complementary studies, so it
does not provide a large bibliography, nor many pictures.

It has been realized with the kind help of Ton Lubrecht and Marie-Pierre
Noutary.
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1 Goals of dimensional analysis

Dimensional analysis (DA) is a wide-spread tool in fluid mechanics, but less
used for structural engineering. Nevertheless, it has been implicitly present for
a long time in certain applications. One example is stress concentration graphs
[2], another the design of small scale models (for experimental quantitative
studies) similitude.

Since these notes were initially part of a course on ‘friction and lubrica-
tion’, the mechanical components that are studied, belong to the theme of
fluid-structure interaction. As such, some applications of dimensional analy-
sis for fluids mechanics might transpose to solids mechanics. Nevertheless, not
so much applications concerning the ‘friction and lubrication’ theme are devel-
oped in these notes, since dimensional analysis application range is wider than
this particular course.

Apart for its instructional purpose on physical quantities and the system
of units, DA enables one to check the homogeneity of a formula. DA is often
used to make physical equations dimensionless and to focus on dimensionless
characteristic numbers that are useful for detecting the physical regime of the
studied phenomena (Reynolds number, Mach number...). Such an analysis may
eventually lead to a simplification of the model, a reduction of the number of
parameters, an extension of the domain of application and the use of small scale
models.

2 Physical quantities and their units

A physical quantity (a length, a pressure, a temperature...) is usually a com-
pound of two parts: (i) a value (i.e. a number), and (ii) a unit which is charac-
teristic of the kind of physical quantity that is looked at. We usually indicate
that a symbol chosen to represent this quantity is equal to the value times the
unit, e.g. a length is typically

L = 2.5 km

Such quantities are sometimes called denominate numbers.
Here we wish to point out that this is indeed a true multiplication between

the value and the unit. Changing the unit does change the value but not the
physical quantity:

L = 2.5 km = 2 500 m = 2.5× 109 µm

Moreover, we can divide by a unit to extract a value:

L/m = 2 500

(it is a true division of a physical quantity by a unit). Note that this is the
recommended notation for labeling the axis in a graph: values as tics, or table
entries, see appendix B.1). Additionally, we can imagine dividing a physical
quantity by a number:

L/2 500 = m = 1 m

To convince yourself, you can also have a look on this slot of the Khan Academy.
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name abbrev. usage remarks
knot kt unit for speed, 1 knot =

nautical 1 nautical mile per hour
horsepower hp unit of power 1 hp = 746 W
acre ac unit of area 1 acre = 4840 square yards
barrel unit for volume, now 1 barrel = 42 US gallons

much useful for oil, US
barrel unit for volume, 1 barrel = 36 gallons, or

for beer 4 firkins, or 288 pints
slug SL unit for mass, old mass which provides a force

British system of 1 pound when subjected
to an acceleration of 1 ft/s2

Table 1: Some strange units (still in use)

For the purpose of good communication, we expect that all the people work-
ing together on a project understand the same physical quantities, i.e. they are
aware of the units (and their abbreviations) used by the others. To avoid misun-
derstanding, the standardization imposes rules to denote the physical quantities
and their units1. A milestone in this standardization procedure is the 11th gen-
eral conference on weights and measures, held in 1960: This is the first advent
of the International System of units (SI).

Clearly, there are still other units in use, for instance the English units, the
Imperial units... that are now supposed to be superseded by the SI2. Other,
even less regulated units, are linked to various professions; try to guess which
professions use these somewhat strange units in table 1, after this link.

2.1 A bit of History: Definition of the meter

The first definition dates back to march 26, 1791: 1 m = 1/10 000 000 × half
the length of the earth meridian. 16 standard meters (mètres-étalons) were
made; only 4 remain today3. The idea was therefore: The value of the length of
something measured in meters, is the number of times the standard length fits
alongside. For instance, if L0 was the standard meter, then L/L0 = L/m = 2 500
(one can align 2 500 times the standard length to cover the measured distance).
Note that if the standard models where not ‘exactly’ equal, or if their length
varies in time due to temperature, hygrometry... one is running into trouble.
So, with the advent of more and more precise measurements, this ‘definition’
itself was not accurate enough. Nowadays, the meter is defined as the length of
the path traveled by light in vacuum during a time interval of 1/299 792 458 of
a second (this definition may change again in the future... see appendix A.

2.2 A simple example of computing on values and on units

Consider the case where you have to evaluate the velocity of a peripheral point
on a rotating solid. The angular velocity of the solid is ω and the distance of

1try to browse this one, this other one, or even this one
2see this link to be aware that this is not yet the case
3have a look at this, to locate this one
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Figure 1: Angle measurement

the considered point to the axis of rotation is R; you probably already know
that the particular velocity is V = Rω. Now we need a numerical application:
Say that the radius is R = 10 cm, and the angular velocity is ω = 1 500 rpm;
what is the velocity?

2.2.1 Angular measurement

First, have a look at the unit of angular velocity. rpm stands for ‘revolution per
minute’; it is a classical unit, but not as standard as the french counterpart, for
which tr/min stands for ‘tour par minute’4.

‘tour’ is actually a unit for measuring angles. This angle measurement is our
first special case: The corresponding basic SI unit is the radian (abbreviated
with rad5) and is defined as follows. Consider a circle of radius r and center O
with two points A and B defining the angle θ, figure 1. The measure of this

angle in radians is defined as the ratio of the arc length
_

AB over the radius:

θ =
_

AB/r. Therefore, the radian is a unit which is... nothing (a length divided
by a length)6. Hence the following is valid:

θ = π rad = π

nevertheless, the advice is: Keep the symbol rad to keep in memory that this is
an angle! Other angle measures (not SI) are: the ‘tour’ (tr and the ‘grad’ (gon),

1 tr = 2π rad = 400 gon

Note also that the second of arc ′′ and the minute of arc ′ are measures of angle,
not of time:

1′ = (1/60) tr, 1′′ = (1/60) ′

The basic unit for the rotation rate is therefore rad/s. This is different from
a frequency (the number of cycles per time unit) though they have formally the
same unit: The Hertz (abbreviated as Hz) is better used for the frequency,

1 Hz = 1 s−1

4note that the duration unit ‘minute’ is abbreviated as min and not mn!
5and not rd which is the ‘rad’: An old unit for radiation quantity, now superseded by the

‘gray’
6There is also a measure for the solid angle which is the steradian, defined as a surface to

surface ratio
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2.2.2 Using your favorite pocket calculator

Lets go back to the numerical application for the velocity

V = Rω

To obtain V , simply use your pocket calculator. Note that, up to now, this
kind of computer only computes using values, not yet on physical quantities
(the units are not taken into account). So we can use it as: enter the value for
the radius (10), multiply by the value for the rotation rate (1 500), ask for the
result which is hopefully 15 000.

The problem is now: What is the associated unit?
The answer is: The unit of the result is the same computing sequence applied

to the units of the input. Since we did a multiplication, the correct answer should
be:

V = (10× 1 500)(cm× tr/min) = 15 000 cm · tr/min

Though correct, this result is quite cumbersome. Better is to use a more stan-
dard unit such as m/s. To change the units, perform the following calculations:

cm = 10−2m, tr = 2π rad, min = 60 s

so

V = 15 000 cm · tr/min = 15 000× (10−2m)× (2π rad)/(60 s) = 5πm/s

2.3 Additional remarks and (funny) special cases

Note that if additions have to be made, only quantities with the same physical
meaning can be added; the following development is therefore correct:

1 m + 10 cm = (1 + 0.1) m = 1.1 m

If you consider analytical functions such as sin, log, exp... their argument
should be without unit. For angles, the rad can be perfectly used in this way!

Some units are compounds of a base unit with fractional exponents. This is
perfectly consistent with the previous use. For instance, the crack propagation
in fracture mechanics uses the stress intensity factor (in crack mode I), defined
as

KI = 1.12σ
√
πa/Φ

where σ is the tensile nominal stress, a is the crack length, and Φ is a coefficient
depending on the crack shape. You can therefore check that the unit of KI is

[KI ] = Nm−3/2

The crack growth itself is often modeled with a Paris law of the form

da/dN = C[∆KI ]m

where N is the number of cycles, and ∆KI a variation of KI during a cycle. m
is a material parameter that should have no unit, and C is a second material
parameter; you can check that the unit of C is

[C] = m(Nm)
3m/2
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(it depends itself on the value of m!).
To avoid the use of many zeros before the comma (for huge quantities) or

after it (for small quantities), some prefixes are standardized. They are merely
multiplicative values without unit. Apart the classical deca (1 da = 10), hecto
(1 h = 100), deci (1 d = 0.1), centi (1 c = 0.01), the other standard ones are
defined for each change of amplitude of 3 orders of magnitude, sometimes with
funny names.

Concerning multiplicative factors, you can also think about the percentages:
Percent merely means one over one hundred. Therefore one simply has 5% =
0.05, 4 h = 0.004...

Finally, concerning the computation on values as well as on units, the special
case where the value is zero can be mentioned. The zero property states that
anything multiplied with zero is zero, so we can write:

V = 0 m/s = 0

To be sure that this rules applies, care must be taken for the temperature
measurements... see appendix C .

3 Physical laws do not depend on a particular
system of units

even if you don’t now what exactly the laws are... (this is a consequence of the
more fundamental statement that all physical laws can be represented in a form
equally valid for all observers).

What is a physical law? It is a relationship between physical quantities
(which are products of a value and a unit). For the previous example of the
velocity, it can be expressed as

V = f(R,ω)

where f is a function of two parameters, this indicates the relation between the
physical quantities V , R, and ω. Indeed, the same function could be applied to
the values alone, and to the units alone, as exemplified before. Therefore, the
physical law f does not depend on the choice of the system of units, provided it
is consistent: Whatever this choice is for R and ω, the unit of V can be deduced.

3.1 The SI base units

The SI is first based on a set of independent base units. What is the number
of independent base units? The smallest possible. This means that each time
a physical law is identified and modeled, it is a relationship between different
physical units that are therefore not independent. For instance, the Newton is
a unit for a force, but one knows that gravity produces a force F from a mass
M and an acceleration g:

F = Mg

is a physical law. The same function applies to the units, so

N = kg ·m/s2
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which can be viewed as the definition of N. N is therefore a derived unit (not a
base one) built on kg, m and s. Today, the number of all the base units is 77.

A useful notation, though not so standard, consists in using brackets to
denote the extraction of the unit in the SI system from a physical quantity8.
For instance, [V ] = m/s, [F ] = N = kg·m·s−2. Therefore the value of a physical
quantity in the SI unit is for instance V/[V ] or F/[F ].

Now consider the initial physical law V = f(R,ω). It is valid for the units in
a consistent system of units, like SI. Therefore, one can write: [V ] = f([R], [ω]),
and it is also valid for the values in a consistent system of units, i.e. V/[V ] =
f(R/[R], ω/[ω]). This last expression relates dimensionless quantities!

3.2 Special choice of base units

For deriving a dimensional analysis, the Vashy-Buckingham Πs theorem is fa-
mous and the general approach for rigorous derivations. A simpler approach
which is used herein is the following: Since a physical law is independent of the
system of units, one can use a dedicated system of units. In the same spirit
as for the artifacts, the ‘mètres-étalons’ may be chosen in the arguments of the
physical function law itself. Indeed, the question of the values for the various
quantities is therefore how many ‘étalons’ are there in the quantity? Note that
some fundamental requirements are:

(i) the output is independent of the inputs (think of a test rig: To design
and operate it, you need to specify a certain number of input parameters,
such as lengths, velocities... and the measured outputs are the results of
the test; for a spring you can prescribe the displacement and measure the
force, or conversely, but not prescribe both),

(ii) the inputs chosen as base units should be independent, i.e. they should
provide all the units required for the physical problem that is studied.
Their number may depend on the overall physics that is studied; for in-
stance, if one studies geometry only, there is only one unit required: the
one used for length. If one deals with kinematics, there should be two
units to be able to measure length and time. If forces are also involved,
(dynamics), there should be three units that allow to measure length, time
and force (or mass, since N = kg·m·s−2).

Lets use the example of our physical law V = f(R,ω). Clearly, we need
something for the lengths, as well as for the time. Two basic units are required,
so we can try R and ω. Now we wish to write the same physical law for the
values of each involved quantity: How many R’s in R? R/R = 1, so 1 is the
value of R in this new system of units; how many ω’s in ω? ω/ω = 1, so 1 is
also the value of ω in this new system of units. Finally, what is the value of V ?
Here we can see that the choice of the two base units is enough to describe the
physics: The value of V is V/(Rω) (justified by [Rω] = m/s). The physical law
for the values in this new system of units is therefore:

V

Rω
= f

Å
R

R
,
ω

ω

ã
= f(1, 1) = constant

7see this link, or this one
8in particular, we get for an angle [θ] = rad = 1
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Without information on the detailed model for the physical law, we can never-
theless conclude that it reads

V = constant×Rω

(which is indeed consistent with the detailed result that found constant = 1).
This case is a little bit special and we can consider a more generic case:

If we consider that the solid with a rotational movement is very flexible, the
centrifugal forces may change the form of the solid, and so, the velocity that is
studied. Determining (or choosing) the input parameters is a difficult task, it
relies on the expertise of the modeler. Here, we can consider that the stiffness
of the material E (Young modulus) is an important parameter, as well as the
Poisson coefficient ν for the elastic behavior, and the density ρ. The physical
law is therefore

V = f(R,ω,E, ν, ρ)

These parameters are usually belonging to 3 possible families: (i) the geometrical
parameters, (ii) the load parameters, (iii) the material parameters. With this
new physics, 3 base units are required. Lets try to choose R, ω and E. You can
check that the same framework as before leads to

V

Rω
= f

(
1, 1, 1, ν,

ρ

ER−2ω−2

)
= f̄

(
ν,

ρ

ER−2ω−2

)
(1)

The number of arguments is reduced from 5 to only 29! The dimensional analysis
actually does not introduce additional information, but rather condenses the
information. Nothing more can be said about the expression (1) up to this point.
To particularize the unknown function f̄ some more modeling, or assumptions,
or experiments have to be made.

The initial choice of important parameters in the description of the physical
law may lead to different results. Note that for this example only one geometric
parameter, R, was in the list of arguments. This means that the final result is
only valid for a class of cases where only the size of the solid (given with the sole
parameter R) can change, and not its shape. On the other hand, if the complete
shape was to be taken into account, all the (independent) geometric parameters
defining the geometry (think of a fully parameterized geometry with a CAD
tool) should have been arguments of function f , but still only 3 parameters
could have been gotten rid of.

3.3 Does the result depend on your initial special choice?

Consider again the physical law V = f(R,ω,E, ν, ρ). But try now as base units
R, E and ρ. You can check again that this is a valid choice and that it leads to:

V√
E/ρ

= f

Ç
1,

ω

R−1
√
E/ρ

, 1, ν, 1

å
= ḡ

Ç
ω

R−1
√
E/ρ

, ν

å
(2)

Still 2 arguments, but not really the same expression as before (1)... One or
the other expression may be more or less interesting for the user, but are they

9note also that ν has not been changed. Indeed it was initially already a dimensionless
coefficient, that has the same value on every system of units!
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equivalent?

V = Rω × f̄
(
ν,

ρ

ER−2ω−2

)
=
»
E/ρ× ḡ

Ç
ω

R−1
√
E/ρ

, ν

å
?

To simplify this expression, lets denote x = (R2ω2)/(E/ρ) and y = 1/
√
x; this

can be re-casted as: Do we get

f̄(ν, x) =
1√
x
× ḡ(

1√
x
, ν) or ḡ(y, ν) =

1

y
× f̄(ν,

1

y2
) ?

Now do not forget that f̄ was an unknown function; so is ḡ. Therefore, we only
see now what is the relation between these two unknown functions... If we know
one, we now know the other one. So all is perfectly consistent.

3.4 Example of stress concentration factors (SCF)

Consider for instance the case of a cylindrical beam in traction (P is the traction
force) with a change in diameter from D to d, and with a radius at the junction
r, figure 2. You probably know [4] that the maximum stress in the material is
reached near the diameter change, and that its value is larger than that obtained
in the case of a smooth beam, i.e. a beam without diameter change, and with
the smallest diameter d:

σmax > σnom =
P

πd2/4

The question is: How to obtain this maximum stress needed for designing the
beam? One may rely on experiments, simulations... but in order to build a com-
pendium of results available to rapidly estimate the maximum stress for various
geometries, materials, forces... many tests or computations will be required. To
decrease this effort, one can try dimensional analysis.

The maximum stress is obtained with a certain physical law, once we decide
what are the input parameters. We may consider that geometry is given with d,
D, r but not the length! (we consider only diameter changes and other ‘defects’
far away one to the other, so that they do not interfere). Note that we suspect
herein that r is an influential parameter (if it is the case, and if we did not use
it as an entry, we would make a modeling mistake...) We also did not add to the
inputs the length t = (D − d)/2 since it is not independent of the other ones.

Concerning the material parameters, for an linear isotropic elastic homo-
geneous material (an additional assumption), we could use Young modulus E
and Poisson coefficient ν. We may suspect that E has no influence (at least, it
has none on σnom)... to be assumed with the user knowledge, to be checked by
experiments or simulations... A usual assumption in this case is also that for
classical range of the values of ν, it has only a small influence on the result.

Finally, concerning the load, indeed P has an influence.
Choosing the important parameters is one of the harder tasks. For now on,

we consider that
σmax = f(d,D, r, P )

The second stage is to choose the base units among the inputs. For instance:
d for length, P for force. Are these independent? [d] = m, [P ] = N = kg·m·s−2,

10



so indeed they are. Are they sufficient to describe the physics of our problem?
Let us try: [σmax] = Pa = N/m2 = [P/d2], so the physical law can be rewritten
as

σmax

Pd−2
= f

Å
1,
D

d
,
r

d
, 1

ã
= f̄

Å
D

d
,
r

d

ã
(3)

From 4 parameters, only 2 are useful! This can be depicted on a single aba-
cus with σmax/(Pd

−2) on the vertical axis, and D/d and r/d as abscissa and
parameter.

Let us look at a classical SCF chart, figure 2 (or see an other version here).
This is not exactly what was expected... Kt is plotted as a function of d/D and
r/t. But wait: The SCF is defined as

Kt = σmax/σnom = σmax/(P × 4d−2/π)

this is the dimensionless stress in equation (3) with a multiplicative constant
π/4; d/D is the inverse of D/d and r/t = r/d × 2/(D/d − 1). Therefore, we
indeed get

Kt = ḡ

Å
d

D
,
r

t

ã
=
π

4
f̄

Å
D

d
,
r

d

ã
Finally note that r has a tremendous influence on the maximum stress.

Forgetting it at the beginning would have lead to unreliable results. We can also
note that with the first dimensionless result, the maximum stress is proportional
to the load P (linear elastic regime only! see genuine assumptions).

4 Some examples for practicing dimensional anal-
ysis: Train yourself

4.1 Bone is a porous media

A porous media is the mixture of a fluid and a solid: There is a fluid that
can migrate inside the solid. Bone is a porous media10 and some consider this
phenomena as a way to address the question of bone remodeling. The following
example concerns a mice ulna [7]. A simplified (1D) case leads to the analytical
pore pressure evolution equation [5]:

∂2p

∂x2
=

τ

L2
ṗ+

α

E
σ̇

where p is the pore pressure (the pressure of the fluid inside the solid), x ∈
[0, L] is the coordinate, τ = L2/H(1/Q + α2/E) is the characteristic time,
L = 2 cm is the characteristic length, α = 0.78 is a coupling coefficient (no
dimension), E = 15 GPa is Young modulus, σ is the external mechanical load
(Pa), Q = 15 GPa is the so-called compressibility modulus or Biot modulus, and
H = 1.1× 10−13 m4/N/s the intrinsic permeability.

The problem is not well conditioned if SI units are used (see the difference
of values for E or Q and H...) hence leading to bad numerical results. The
question is therefore: Find a new system of units (a length, a mass, a time)

10Not convinced? See this image.
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Figure 2: A classical SCF chart, after [2], with permission
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such that the following quantities have a value 1: Young modulus E, intrinsic
permeability H, characteristic time τ .

For checking purpose, I found a characteristic time (for the pressure accom-
modation) of τ ≈ 0.39 s, a length ≈ 0.025 m, a mass ≈ 5.8× 107 kg.

4.2 Porous ceramics is a porous media (!)

Porous ceramic materials are sometimes used as filter for hot fluids (adding
the thermal behavior to the porous behavior). For a simplified (1D) case, the
temperature evolution is governed by a (tricky) advection-diffusion equation [6]:

∂2θ

∂x2
=
Cd

k
θ̇ − ρF cF

k
H
Pd

Ld

∂θ

∂x
− 1− 3αFT0

k
H
P 2
d

L2
d

where θ is the temperature, x ∈ [0, Ld] the coordinate. Using T0 as a reference
temperature (dimensionless temperature is θ/T0), Ld as a reference length (di-
mensionless coordinate is x/Ld), Pd as a reference pressure, the dimensionless
version of the previous equation is

∂2(θ/T0)

∂(x/Ld)2
+ Pe

ï
∂(θ/T0)

∂(x/Ld)
− ∂(θ/T0)

∂(t/τ̃T )

ò
= −Br (4)

These models involve many parameters (this is the drawback of multiphysics
coupled problems!) that are:

Reference temperature T0 = 293 K
Characteristic pore pressure Pd = 36 MPa
Characteristic length Ld = 1.4 m
Permeability of the porous media H = 2× 10−10 m3s/kg
Thermal conductivity of the porous media k = 68 W/m/K
Specific mass of the fluid ρF = 1 000 kg/m3

Specific heat of the fluid cF = 4 182 J/kg/K
Heat capacity of the porous media Cd = 2.1× 106 J/K/m3

Thermal expansion coefficient of the fluid αF = 2.6× 10−4 K−1

Pe is Péclet number (it quantifies the order of magnitude of the heat con-
vectively transported by the fluid compared to the heat supplied by diffusion).
Br is Brinkman number (it quantifies the order of magnitude of the heat source
due to the viscous dissipation compared to the heat supplied by conduction).
These are both dimensionless numbers.

The question is: Give the expression and value of the reference advection
time τ̃T in the simpler dimensionless equation (4).

For checking purpose, I found: Pe = 445, Br = 37 and τ̃T = 136 s.

4.3 For biomechanics too

Maybe you have seen a TV series named ‘on n’est pas que des cobayes’ on
channel ‘France 5’. During one episode, on march 2012, they wonder who is
stronger, man or ant. Let us study the same question, with an additional
precision: If they were of the same size, who would be stronger?

First, collect data:
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• Up to now, the strongest man on earth may well be Hossein Reza Zadeh
(Iran). He is a weighlifter and holds the world record for clean & jerk,
super heavyweight class (over 105 kg, more precisely M = 152 kg for
H = 1.86 m) with 263.5 kg lift at the 2004 Olympics Games in Athens
(25/08/2004), so he can lift approx. 1.7 times his own weight.

• The strongest insect on earth may well be the Formica Rufa (red ant)
that can lift approx. up to 60 times its own weight for a size of approx.
h = 9 mm.

So, who’s the strongest?
If we define a performance index p as being the ratio of the force needed

to lift, to the mass, p = F/M , we can use a crude dimensional analysis to get
orders of magnitude. Consider that mass is a function of size H and mean
density ρ: M = f(H, ρ), and that the lift force is a function of the size H and
of the strength limit Rp for the tendons, muscles or bones (depending which is
the first to break), F = g(H,Rp).

For the first physical law, use as base units H and ρ, for the second one, we
may use H and Rp. Try these and give an expression for the performance index
p. Now you can answer the question: What happens to the performance index
of the human if its size is reduced to that of an ant?

For checking purpose, I found that it is multiplied by a factor of approx.
200. Therefore, if the real Hussein can lift 1.7 times his own weight, the resized
one could lift 340 times his own weight.
So, who’s the strongest?

As an addendum, I recently read a related article [3] with the same flavor;
maybe you read it too?

4.4 Drag

Maybe you know about the Cx (drag) coefficient? It is related to the aero-
dynamic resistance to movement. Consider a car with a velocity V ; can we
quantify and compare the resisting horizontal force F due to the action of the
air (without wind) on the car?

The influential parameters are all that define the geometry of the car body
(say lengths li), the velocity V , the air density ρ: F = f(li, V, ρ). Usually, the
base units (need for 3) are: the projected surface on the direction of the velocity
S (‘mâıtre-couple’), the velocity V and the density ρ.

Apply the dimensional analysis to find that

F =
1

2
ρV 2SCx

where Cx is a dimensionless coefficient, called drag coefficient, function of the
adimensional geometry of the vehicle. Different cars have different drag coeffi-
cients. The world record for efficiency seems to be the PAC-Car II prototype
(Shell Eco-marathon in Nogaro, 2005) with SCx = 0.019 m2.

For fuel consumption issues, note also that the needed power at velocity V
is

P = FV =
1

2
ρV 3SCx

14

http://en.wikipedia.org/wiki/Hossein_Rezazadeh
http://en.wikipedia.org/wiki/Formica_rufa
http://www.pourlascience.fr/ewb_pages/a/article-superman-est-il-une-super-fourmi-33254.php
http://en.wikipedia.org/wiki/Drag_coefficient
http://philippe.boursin.perso.sfr.fr/pdgaero.htm
http://www.paccar.ethz.ch


so the velocity has a huge influence... Moreover, we may not be really interested
in the value of the Cx coefficient, but rather in the value of SCx, so beware of
the advertising arguments! To convince yourself, you may compare the Cx of

• the Empire state building, with a drag coefficient of 1.3 to 1.5,

• the Eiffel tower, with a larger drag coefficient of 1.8 to 2!

Certainly not the same resistance to wind... consider the values for S...

5 Using small scale models

When designing (sometimes unique) large-scale structures, one needs to perform
experiments. Nevertheless, building a real-scale prototype is often too costly,
so the question is to built a model at a reduced size, perform measurements
on this model, and deduce what would have been the same measurements on
the full-scale case. Changing the scale, and eventually other parameters, can be
assessed with dimensional analysis.

5.1 Example

Consider for instance that one wishes to design a new passenger ship hull. One is
interested in the resistant force F that needs to be overcome by the propulsion
system. The full fluid-structure with a free surface problem is complicated
enough to rely on experiments rather that on simulations. Since a passenger
ship is often a unique product design with a large cost, as for the Queen Mary II,
the prototype is the final product and experiments should be done on cheaper
small scale models. This problem is somehow more intricate than the drag force
for the car; the influential parameters could now be: the various lengths li that
parameterize the hull geometry (including the position of the free surface, the
waterline), the gravity g (that influences the waves generated by the movement),
the viscosity η and density ρ if the fluid, the velocity V . Therefore, the physical
law reads

F = f(V, li, g, η, ρ)

The chosen base units could be a particular length L, velocity V and density ρ.
Show that the dimensionless drag force is

F

ρV 2L2
= f̄

Å
li
L
,

g

L−1V 2
,
η

ρV L

ã
Since f̄ is an unknown function, the force can be estimated from a measurement
on a small scale model if the arguments of the function f̄ are the same for the
full scale problem and the model. The equality of the argument values are the
similitude conditions. The first of these conditions is to have the same non-
dimensionalized geometry lengths, meaning that the scale should be preserved
without distortion of the geometry. The second one is the equality of the non-
dimensionalized gravity (which is called the Froude number); since gravity will
be the same for the real scale and small scale cases (!), the coefficient L−1V 2

should be the same. The last one is the equality of the non-dimensionalized
viscosity (which is called the Reynolds number).
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Show that measuring the force as a function of the velocity on the small
scale model (in a towing tank, ‘bassin des carènes’, see for instance this one at
ECN), with subscript s (i.e. Fs = h(Vs) is an experimentally plotted function),
therefore provides the force as a function of the velocity on the real scale case,
with subscript r:

Fr =
ρr
ρs

Å
LrVr
LsVs

ã2
× h
Ç 

Ls

Lr
Vr

å
One can notice that equalling all the arguments may not be a trivial task: for

instance, using the same fluid would lead to have the coefficient LV equal, but
Froude said that L−1V 2 should also be equal, which is not possible (unless scale
1 is used...) Considering other influential parameters, such as surface tension
(negligible here!), would have lead to an other dimensionless condition with an
non-dimensional number (the Weber number) and would have complicated the
similitude conditions.

5.2 Large scale model as well...

The same tool can be used in the reverse direction: If a real-scale prototype is
too small to be built at the early design stage (micro-mechanisms that would
require specific manufacturing tools not available at that time of the design
process), an enlarged model can be manufactured more easily, and experiments
can be conducted on it. Going back to the real-scale case is the same problem
as before.
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Figure 3: Two plot presentations (the one on the right is standardized and less
ambiguous)

A A future change in SI basic units definition?

The future is coming: the SI roadmap planed the new unit definition to take
place in 2018, see this link.

The vote will take place on friday 16, 2018, during an open session of the 26th
General Conference on Weights and Measures (CGPM) at Versailles, France.
The base units will not be defined by objects anymore, but with values of
fundamental constants of nature. The session could be followed in streaming at
youtube.com/thebipm channel.

Finally, for having a moment of fun, you can read the article [1] of Gérard
Berry concerning the ‘Pavillon des Poids et Mesures’.

B Some not-so-clear uses and alternative solu-
tions

B.1 Graphs and tables

You may have seen that scientists often use 2D plots or tables of values for
giving some physical quantities. On a 2D-plot, figure 3, the axis are gradu-
ated with values and you would certainly find that repeating for each the same
unit is cumbersome. Therefore, only values are given. But we have to specify
somewhere the unit that is used! You will sometimes find the units only in the
caption of the figure, or eventually in the form ‘R (m)’ for designing a radius R
expressed in meters... and if one wishes to give the decimeter values? Will it
use ‘R (0.1 m)’? The standards recommend to use the same consistent and un-
ambiguous notation as herein: The value of R when the meter is used as a unit,
is R/m. Therefore, the corresponding axes should mention R/m, R/(0.1 m) or
R/dm, etc.

Same thing for different values given in a table, see table 2.

B.2 Physical law valid for special units only

You may sometimes find some expressions that are only valid for a certain choice
of units. This does not mean that they are not a physical law, but only that,
for practical purpose, they are tuned for using special units. Though easy to
use, they nevertheless require some practice to avoid mistakes. On the other
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velocity (×10 m/s) error (%) velocity / (10 m/s) error / %
1.0 10.1 1.0 10.1
2.1 15.0 2.1 15.0
4.2 18.1 4.2 18.1
6.1 22.5 6.1 22.5

Table 2: Two table presentations (the one on the right is standardized and less
ambiguous)

hand; the true expression conforming to a general physical law may be more
cumbersome and require some coefficients with their own units.

For instance, a lathe (a machine tool) requires to tune the rotation rate N to
obtain a good cutting velocity V depending on the material of the tool and on the
part to be cut, to create a good cylinder of diameter d. The practical expression
is N = 1 000 × V/(πd), valid only if V is given in m·s−1, N in tr·s−1 and d in
mm. The correct corresponding relation with our development is N/(tr/s) =
1 000 (V/(m/s))/(π(d/mm)), or N = 1 000 (mm× tr/s)/(πm/s)V/d = V/(d/2)
that does not involve any units; therefore this is the true physical law.

B.3 Not-so-clear abbreviations for units

Some compound units may be a combination of many base unit. When the units
are multiplied and divided in various arrangements, using exponents may clarify
the case. For instance, a specific heat capacity is measured with an energy per
unit of mass and per unit of temperature: The notation J.kg−1.K−1 is less
ambiguous than, and therefore preferred to, J/ kg.K, or J/(kg.K), or J/kg/K.

Concerning the mechanical torque, the case is delicate. Indeed a torque is
a force (for which a SI unit is the Newton, abbreviated as N) multiplied with a
length. Therefore its unit is N·m. A first remark is: Avoid permutation of these
two units, since m·N could be read as ‘milli Newton’ (mN)! The second remark
is that a force times a distance is also a mechanical work, for which the unit is
the Watt (abbreviated as W). Formally, a torque and a work are homogeneous,
but advice is: keep the symbol N·m for the torque, and W for the work to keep
in mind the nature of the physical quantities that are manipulated.

C The temperature case

Care must be taken when dealing with temperatures. Indeed, the absolute tem-
perature should be measured in Kelvin (K)11. Other units, such as degrees
Celsius (◦C) and Fahrenheit (°F) are used only for relative temperatures (i.e.
temperature differences). If one tries to use these for an absolute temperature,
the multiplication rule between value and unit does not hold anymore: a ‘for-
mula’ for the conversion would be ◦C = (5/9) × (°F − 32) = K − 273.15. On
the other hand, for a temperature difference, one gets: ◦C = (5/9) °F = K which
is consistent.

11Note that no ° symbol is used with K.
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D For LATEX or pdfLATEX fans

Consider using the recent siunitx package. It has been used to typeset this
document.
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