Roth's theorem on 3-arithmetic progressions in the integers

Anne De Roton 1, *
Abstract : The first part of this notes is devoted to the proof of Roth's theorem on arithmetic progressions in the integers whereas a second part gives some short survey on the analogue of Roth's theorem in some infinite subsets of integers of zero density such as the subset of prime numbers. We tried to give the reader all the details needed in the first part so that a master student can read Roth's theorem proof easily. In the second part, some proofs are only sketched and we rather tried to give an idea of the issues specific to zero density subsets than to explain precisely how all the arguments work.
Type de document :
Cours
3rd cycle. Shillong - Inde, France. 2013, pp.22
Liste complète des métadonnées

https://cel.archives-ouvertes.fr/cel-00963631
Contributeur : Anne De Roton <>
Soumis le : mardi 31 mars 2015 - 11:17:59
Dernière modification le : jeudi 11 janvier 2018 - 06:25:26
Document(s) archivé(s) le : mardi 18 avril 2017 - 06:03:20

Identifiants

  • HAL Id : cel-00963631, version 2

Collections

Citation

Anne De Roton. Roth's theorem on 3-arithmetic progressions in the integers. 3rd cycle. Shillong - Inde, France. 2013, pp.22. 〈cel-00963631v2〉

Partager

Métriques

Consultations de la notice

175

Téléchargements de fichiers

219