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Elements of mathematics and logic

for computer program analysis

Frédéric Blanqui (INRIA)

12 March 2013

These notes have been written for a 7-days school organized at the Institute
of Applied Mechanics and Informatics (IAMA) of the Vietnamese Academy of
Sciences and Technology (VAST) at Ho Chi Minh City, Vietnam, from Tues-
day 12 March 2013 to Tuesday 19 March 2013. The mornings were dedicated
to theoretical lectures introducing basic notions in mathematics and logic for
the analysis of computer programs (these notes). The afternoons were practi-
cal sessions introducing the OCaml programming language and the Coq proof
assistant (see the companion notes [11] and [10]).
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1 Introduction

In order to be able to rigorously prove the correctness of a program, one must
have a formal definition of:

• what is a program, syntactically;

• how it is evaluated, that is, what is its semantics;

• how to formulate the properties we are interested in;

• and how to prove them.

All this requires to understand some basic mathematical notions like in-
duction, terms, formulas, deduction, etc. These notes are intended to give an
introduction to some of these notions.

2 Induction and sequences

2.1 Induction on natural numbers

Induction is a very important tool in mathematics and computer science. We
are going to see various induction principles in the course of these notes.

Let N be the set of natural numbers 0, 1, 2, . . . and P (x) be a property on
natural numbers (x ∈ N) (we will see a more formal definition of what P is
later).

The induction principle on natural numbers is a way to prove that P (x)
holds for all natural number x, i.e. (∀x)P (x), by showing:
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1. P (x) holds for x = 0: P (0);

2. P (x) is preserved by taking the successor, i.e. if x is any natural num-
ber for which P (x) holds (induction hypothesis), then P (x + 1) holds too:
(∀x)P (x) ⇒ P (x+ 1) (*).

Indeed, since that P (0) holds then, by (*), P (1) holds and, by (*) again,
P (2) holds, etc.

Example 1 Let Σn
i=0i be the sum of all integers i from 0 to n ≥ 0, and assume

that we want to prove that Σn
i=0i = n(n + 1)/2. To do so, we can prove by

induction on n the property P (n) = ((Σn
i=0i) = n(n+ 1)/2).

1. We first check P (0) holds: Σ0
i=0i = 0 and 0(0 + 1)/2 = 0.

2. Now, let k be any natural number such that P (k) holds, i.e. Σk
i=0 = k(k+1)/2

(induction hypothesis), and let’s try to prove that P (k+1) holds, i.e. Σk+1
i=0 i =

(k+1)(k+2)/2. We have Σk+1
i=0 i = Σk

i=0i+ (k+1) = k(k+1)/2+ (k+1) by
induction hypothesis, and k(k + 1)/2 + (k + 1) = (k(k + 1) + 2(k + 1))/2 =
(k + 1)(k + 2)/2.

2.2 Words and sequences

Programs are texts or sequences of characters from some alphabet X (a set
whose elements are called letters). How to define sequences of letters (words)
formally?

We can see a word w of length |w| = n ≥ 0 as a finite map w : n → X,
identifying 0 with the empty set ∅ and n ≥ 1 with the set {0, 1, . . . , n − 1}.
Then, w(i) or wi is the (i+1)-th character of w if i < |w|. We often write ε for
the empty word.

Another definition is as follows. Assume that there is an (infinite) set U
closed by pairing, i.e. if x and y are elements of U , then the pair (x, y) is also
an element of U . Assume also that U contains all the letters (X ⊆ U). Then,
we can define the set of words on X, written X∗, as the smallest subset S of
U that satisfies the properties (1) and (2) below, i.e. the intersection of the all
the subsets S ⊆ U that satisfy the properties (1) and (2) below:

X∗ =
⋂

{S ⊆ U | S satisfies (1) and (2)}.

where the properties (1) and (2) are:

1. the empty word ε belongs to S (ε ∈ S);

2. if x is a letter (x ∈ X) and w is a word (w ∈ S), then (x,w) is a word
((x,w) ∈ S).

Is X∗ well defined? To this end, we need to check that there is at least one
set S ⊆ U satisfying the properties (1) and (2). If we assume that ε ∈ U (U is
not empty), then U itself satisfies (1) and (2) since it is closed by pairing.
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Words are similar to chained lists in programming. In the following, we write
xw instead of (x,w). For instance, if X = {a, b, c}, then X∗ = {ε, a, b, c, aa, ab,
ababc, . . .}.

Why do we need to take the smallest subset? There are many sets satisfying
(1) and (2), including U itself! But we want a word to be only empty or of
the form (x,w) with x a letter and w another word, and U contains (infinitely)
many elements that are not words (e.g. (ε, ε)).

2.3 A digression on set theory

Why do we need to consider a set U? To avoid logical consistencies, you cannot
form any set. Consider for instance the set x of all the sets y that do not belong
to themselves (y /∈ y): x = {y | y /∈ y}. Do we have x ∈ x or x /∈ x? If x ∈ x
then, by definition of x, x /∈ x, which is a contradiction. Otherwise, x /∈ x. But,
then, by definition of x, x ∈ x! This problem is called Russel’s paradox [43]
(but it has been found independently by Zermelo). To avoid it, the formation
of sets is restricted:

• You have the empty set ∅.

• Given two sets x and y, you can form the set {x, y} whose elements are x
and y. If x = y, then {x, y} is the singleton set {x}.

• More generally, given a set x, you can take the union of its elements:
⋃
x =⋃

y∈x y = {z | (∃y)z ∈ y ∧ y ∈ x}. A particular case is the binary union:
x∪y =

⋃
{x, y}, which can be used to define the (ordered) (Kuratowski) pair

(x, y) = {{x}, {x, y}} (you can check that (x, y) 6= (y, x) if x 6= y).

• Given a set x, you can also form the set of all its subsets P(x) = {z | z ⊆ x} =
{z | (∀y)y ∈ z ⇒ y ∈ x}.

• But, given a property P on sets, you can form the set {z | P} only if P is of
the form z ∈ x ∧Q, and we generally write {z ∈ x | Q}.

Is that all? Well, not exactly, but this is another story. . . However, it is
enough to define many other standard constructions:

• The binary intersection x ∩ y = {z ∈ x | z ∈ y}.

• The generalized intersection of a non-empty family x 6= ∅ of subsets of some
set A:

⋂
x =

⋂
y∈x y = {z ∈ A | (∀y)y ∈ x⇒ z ∈ y}.

• The (cartesian) binary product x × y = {z ∈ P(P(x ∪ y)) | (∃a)(∃b)z =
(a, b) ∧ a ∈ x ∧ b ∈ y} that is the set of pairs (a, b) made of an element a ∈ x
and an element b ∈ y.

How to get a set U closed by pairing? Starting from any set X, you can
define S0(X) = X and Sn+1(X) = Sn(X) ∪ P(Sn(X)). Then, let U = S(X) =⋃

i∈N
Si(X).
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2.4 Induction on words

Now, how can we reason about words? Let for instance P (w) be a property
on words. How to prove that P (w) holds for all words ((∀w)P (w))? We could
use the induction principle on natural numbers by considering the length of the
word, that is, we could prove by induction on n ∈ N the property:

Q(n) = (∀w ∈ X∗)|w| = n⇒ P (w).

We can also remark that, P (w) holds for all words iff (if and only if):

{w ∈ X∗ | P (w)} = X∗,

that is, iff P satisfies the following properties (Exercise 1):

(P1) P (ε) holds

(P2) if x is a letter and w is a word such P (w) holds (induction hypothesis), then
P ((x,w)) holds.

This is the induction principle on words. This easily extends to any set
defined as the smallest set satisfying some properties.

Note that this gives a justification to the induction principle on natural
numbers by seeing N as the smallest set S ⊆ U such that:

1. 0 ∈ S,

2. if x ∈ S, then x+ 1 ∈ S.

Now, how to define sets, relations or functions on words? For instance, the
concatenation u◦v of two words u and v? In this case, we would like to proceed
as follows:

• If u = ε, then u ◦ v = v.

• Otherwise, there are x and u′ such that u = (x, u′). Then, we would like to
say that u ◦ v = (x, u′ ◦ v).

But why is it valid? A function is nothing but a relation, which is nothing
but a set of pairs. And a relation R is a function if it satisfies the following
property: if x is in relation with both y and y′ (xRy and xRy′), then y = y′

(*), that is, an element x in the domain of R is mapped to a unique element
that we then usually write R(x). Now, we could define ◦ as the smallest set S
such that:

• ((ε, v), v) ∈ S,

• if ((u′, v), w) ∈ S then, for all x ∈ X, ((xu′, v), xw) ∈ S.
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We remark that the two cases are disjoint (u = ε and u = (x, u′)), cover all
possible cases and that (x, u′) ◦ v is defined from u′ ◦ v, like in the induction
principle P ((x, u′)) is proved from P (u′). In the following, we will directly admit
such inductive definitions.

Before moving to another subject, note that (X∗, ◦) is a semi-group (Exercise

2), that is:

• it admits ε as neutral element: ε ◦ v = v ◦ ε = v,

• and it is associative: (u ◦ v) ◦ w = u ◦ (v ◦ w).

Hence, we do not need to write parentheses. So, in the following, we will
simply write concatenation by juxtaposition, that is, uv instead of u ◦ v.

2.5 Grammar rules and string rewriting

Now, programs are not arbitrary character sequences. There are grammatical
rules to respect for a program to be accepted by a computer. For instance,
arithmetical expressions are for instance defined (not counting spaces and com-
ments) as a number or two arithmetical expressions around an infix operator
symbol. This can be described by giving generating or production rules:

E → N
E → E O E
E → ( E )
O → +
O → ∗
N → D N
D → 0
D → 1

. . .

All syntactically correct programs can then be generated by following these
rules. For instance, E → EOE → NOE → NON → 1ON → 1 + N → 1 + 1.
This can be defined more formally by considering the notion of string rewrite
system. A string rewrite rule is a pair of words (l, r), written l → r. Given a set
R of string rewrite rules, we say that a word w rewrites to another word w′ if
there is a rule l → r ∈ R and two words w1 and w2 (the rule context) such that
w = w1lw2 and w′ = w1rw2. In other words, if a word contains the left-hand
side of a rule l → r ∈ R, then it can be rewritten by replacing l by r. Note
that, a priori, a word can be rewritten at different positions and with different
rules.
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3 Terms

3.1 Definition of terms

We have seen how to formalize the notion of text, possibly following some gram-
mar. But it is almost impossible to define the semantics (meaning) of a program
if we consider a program as merely a sequence of characters. In general, space,
new lines, comments, etc. are not meaningful. It is therefore necessary to ab-
stract these syntactic details away. This is the purpose of the notion of abstract
syntax tree or term to make the grammatical structure apparent. For instance,
the text “x*(y+2)”, which is the sequence of characters ’x’, ’*’, ’(’, ’y’, ’+’, 2’
and ’)’, corresponds to the term:

*

❅❅��
x +

❙❙✓✓
y 2

A term is a tree (connected graph with no cycle) whose nodes are labeled.
Again, a term can be defined as a map from the set of nodes to the set of labels.
But it is more convenient to define the set of terms inductively as follows. Given
a set F of symbols, let the set of terms over F be the smallest set (included in
U1) such that:

• if f ∈ F is a symbol and t1, . . . , tn is a sequence of terms, then (f, t1, . . . , tn)
is a term that we usually write f(t1, . . . , tn) and simply f if n = 0.

What is the induction principle on terms? Proceeding as before, we get that
a property P holds for all term t if the following property is satisfied:

• if f ∈ F is a symbol and t1, . . . , tn is a sequence of terms such that P (t1), . . . ,
P (tn) hold, then P (f(t1, . . . , tn)) holds.

Note that there is (apparently) no base case!. . . In fact, there is one hidden:
when n = 0. In this case, we have: if f ∈ F is a symbol, then P (f) holds.

The task of converting a sequence of characters into a tree is called parsing.
There are tools (e.g. yacc [12]) that generate a parser from a grammar. For
more details about that and compilation, see for instance [1, 2].

3.2 Knaster-Tarski’s fixpoint theorem

We are going to see other ways to understand/define the set of terms.

Exercise 3 Consider the function f : P(U) → P(U) such that f(X) = X ∪
{f(t1, . . . , tn) | f ∈ F , t1, . . . , tn ∈ X}. Prove that the set T of terms over

1We will not mention it anymore.
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F is a fixpoint of f , i.e. f(T ) = T , and prove also that f is monotone, i.e.
f(X) ⊆ f(Y ) if X ⊆ Y .

Exercise 4 Prove that, for any set U , the set P(U) of all subsets of U , is a
complete lattice for set inclusion, that is, any subset E of P(U) has a least upper

bound lub(E) ∈ P(U) and a greatest lower bound glb(E) ∈ P(U) both wrt to set
inclusion, where lub(E) is a least upper bound of E if:

• lub(E) is an upper bound of E : lub(E) is bigger wrt set inclusion than every
element of E , i.e. every element of E is included in lub(E);

• lub(E) is smaller wrt set inclusion than any upper bound of E : if U is an
upper bound of E , i.e. if every element of E is included in U , then lub(E)
itself is included in U ;

and, dually (change ⊆ to ⊇), glb(E) is a greatest lower bound of E if:

• glb(E) is a lower bound of E : glb(E) is smaller wrt set inclusion than every
element of E , i.e. glb(E) is included in every element of E ;

• glb(E) is bigger wrt set inclusion than any lower bound of E : if L is a lower
bound of E , i.e. L is included in every element of E , then L is included in
glb(E) itself.

Finally, prove that lub(P(U)) = glb(∅) = U is the greatest/biggest element of
P(U) and that glb(∅) = lub(P(U)) = ∅ is the lowest/smallest elements of P(U).

Example: the Hasse diagram of the lattice P({1, 2, 3, 4})2:

2Picture taken from http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/

hogg96a-html/node4.html, HTML version of Quantum Computing and Phase Transitions in

Combinatorial Search, Tad Hogg (Xerox Palo Alto Research Center), in Journal of Artificial

Intelligence Research 4:91-128, 1996.
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Knaster and Tarski proved in 1927 that, for any set U , anymonotone function
f : P(U) → P(U) admits a fixpoint, i.e. there is X ⊆ U such that f(X) = X
[36]. Later, Tarski extended this to any complete lattice, i.e. any set U equipped
with an ordering relation ≤ and having arbitrary lub’s and glb’s [45].

3.3 Kleene’s fixpoint theorem

Exercise 5 Let f0 be the identity on P(U) and fn+1 = f ◦ fn. Prove that
T =

⋃
n∈N

fn(∅) and that f is ω-continuous, that is, for all N-indexed family
(Si)i∈N of elements of P(U), f(

⋃
i∈N

Si) =
⋃

i∈N
f(Si).

Lattice theory and Knaster, Tarski and Kleene fixpoint theorems [34] are
the basis of abstract interpretation, a powerful technique for detecting common
bugs in programs invented by Patrick and Radhia Cousot in 1977 [17]. See for
instance the web page of the Astrée software: “In Nov. 2003, Astrée was able
to prove completely automatically the absence of any run-time error (RTE) in
the primary flight control software of the Airbus A340 fly-by-wire system, a
program of 132,000 lines of C analyzed in 1h20 on a 2.8 GHz 32-bit PC using
300 Mb of memory.”

More can be found on lattice theory for instance in [9]. For abstract inter-
pretation, see for instance [18] and the web page of Patrick Cousot.

3.4 Pattern matching and term rewriting

Now that we have a formal representation of a program as a term, how can we
formalize program transformations? For instance, before compiling a program
into binary code, it may be interesting to transform it in order to do some
optimizations. Assume for instance that a program contains an arithmetic ex-
pression of the form t × 2. Then, we can simply replace it by shift(t), which is
more efficient.

How to formalize such term transformations? Forms of terms or patterns

can be defined as terms with holes that can be replaced by any term and, to
refer to these terms, we can use term variables:

*

❙❙✓✓
x 2

→ shift

x

For representing patterns, we therefore extend the algebra of terms with
some set X of (term) variables. A term or pattern is now either a variable
x ∈ X or a symbol f ∈ F applied to some sequence of terms t1, . . . , tn. We say
that a term is closed or ground if it contains no variable. A map from variables
to terms is called a substitution. Applying a substitution σ to a term t consists
in replacing in t every variable x by σ(x). This gives the map σ̂ from terms to
terms such that σ̂(x) = σ(x) and σ̂(f(t1, . . . , tn)) = f(σ̂(t1), . . . , σ̂(tn)). But, for
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the sake of simplicity, we often write σ instead of σ̂. Hence, a (closed) term t
matches a pattern p if there is a substitution σ such that t = σ(p).

Many term transformation can then be represented by extending string
rewriting to terms [37]. Let a term rewrite rule be a pair of terms (l, r) written
l → r. Given a set R of rewrite rules, a term t rewrites to a term t′, written
t →R t′, if there are a term C (the context) with a unique occurrence of some
variable x, a rule l → r ∈ R and a substitution σ such that t = C{x 7→ σ(l)}
and t′ = C{x 7→ σ(r)}.

Exercise 6 Define a function match which, given a pattern p and a term t,
returns ⊥ (fails) if t does not match p, or some substitution σ such that t = σ(p)
otherwise. Prove its correctness. What is its complexity wrt (with respect to)
the size of its inputs?

Exercise 7 Prove that variable names are not significant in rules. Let l → r ∈ R
be a rule, π be a permutation on variables, and let S = R ∪ {π(l) → π(r)}.
Then, the two relations →R and →S are equivalent.

More on term rewriting can be found for instance in [6, 46].

3.5 Models of a term algebra

In general, a term has no meaning in itself although, in practice, we often give
informative names to symbols and variables. We can give some meaning or
semantics to a term by interpreting its variables in some particular set and its
function symbols by operations in this set. For the sake of simplicity, assume
that a function symbol f is always applied to the same fixed number αf ≥ 0 of
arguments called its arity. A model of the term algebra over F is given by a
set A and, for each function symbol f of arity n, a function fA : An → A. The
interpretation of a term t in A wrt a valuation map µ : X → A, written [[t]]µ,
can then be defined inductively as follows: [[x]]µ = µ(x) and [[f(t1, . . . , tn)]]µ =
fA([[t1]]µ, . . . , [[tn]]µ). Remark how term substitution is a particular case of term
interpretation (Exercise 8).

In the following, we will only consider function symbols of fixed arity. More
general notions of terms and patterns can otherwise be considered. For instance,
in XML, function symbols are called of flexible arity since they can be applied
to any number of arguments, and the order of arguments is not significant.
In Xpath, a notion of pattern and pattern-matching is defined that is more
complicated than the one for terms.

Exercise 9 Prove that, for all term t, substitution σ and valuation µ, we have
[[σ(t)]]µ = [[t]]µ◦σ.
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4 Lambda-calculus

4.1 Definition of λ-calculus

We are going to see a notation for representing arbitrary “computable” functions
introduced by Alonzo Church at the end of 1920’s [13, 16]. The idea is simple.
It consists in considering the term algebra over the set of symbols made of the
symbol app of arity 2 for function application and, for each variable x, of the
symbol absx of arity 1 for abstraction (function formation). A term app(t, u)
is intended to represent the application of the function t to an argument u
and is usually simply written by juxtaposition tu. A term absxt is intended
to represent the function mapping x to t and is usually written λxt. Hence,
λ-terms are usually defined as follows:

t = x | λxt | tt

Then, the only computation rule, called β-reduction, consists in, when ap-
plying an abstraction λxt to a term u, replacing by u every occurrence of x in
t:

(λxt)u→β t{x 7→ u}

However, substitution has to be defined differently than previously. Indeed,
in some cases, we need to rename variables bound by a λ to avoid that a variable
that was not bound becomes bound (variable capture). Consider for instance
the case where t = λyx and u = y. The term λxt is intended to represent
the function that maps x to the function that maps y to x which, in some
sense, is equivalent to the function that maps (x, y) to x. And we apply it to
an argument called y. Informally, we know that the function that maps (x, y)
to x is the same as the one that maps (x′, y′) to x′: variable names are not
significant. So, applied to x′ = y, we should get the function that maps y′ to
y, i.e. the constant function equal to y. But, if we do not do this renaming, we
get the function that maps y to y, i.e. the identity function.

We therefore need to define substitution carefully and consider that two
terms equal after renaming of their bound variables are equivalent (a relation
called α-equivalence, α-conversion or α-congruence). Then, whenever it is nec-
essary, the bound variables of a λ-term can be assumed disjoint from any finite
set (assuming that the set X of variables is infinite) and that functions and
properties used on this λ-term are indeed invariant (stable) by α-equivalence.

Here is a possible definition due to Curry and Feys [19]. They first define
what are the free (i.e. unbound) variables in a term t:

• FV(x) = {x}

• FV(tu) = FV(t) ∪ FV(u)

• FV(λxt) = FV(t)− {x}

11



Then, assuming an enumeration of variables, i.e. a bijection x : N → X ,
they define the substitution of x by v in a term t, written t{x 7→ v}:

• x{x 7→ v} = v

• y{x 7→ v} = y if x 6= y

• (tu){x 7→ v} = (t{x 7→ v})(u{x 7→ v})

• (λxt){x 7→ v} = λxt

• (λyt){x 7→ v} = λz((t{y 7→ z}){x 7→ v}) if x 6= y, where:

– z = y if x /∈ FV(λyt) and y /∈ FV(v)

– z = xi where i is the smallest integer such that xi /∈ FV(λyt) ∪ FV(v).

One can extend this definition to the simultaneous substitution σ of a finite
number of variables x1, . . . , xn by the corresponding terms v1, . . . , vn. In this
case, let FV(σ) = FV(v1) ∪ . . . ∪ FV(vn).

Finally, they define α-equivalence as the smallest relation =α on terms such
that:

• λxt =α λy(t{x 7→ y}) if y /∈ FV(t)

• t =α t
′ and u =α u

′ implies tu =α t
′u′

• t =α t
′ implies λxt =α λxt

′

• t =α t

• t =α u implies u =α t

• t =α u and u =α v implies t =α v

Exercise 10 Prove that FV is invariant by α-equivalence.

Exercise 11 We define the set of immediate subterms of t as follows: Sub(x) =
∅, Sub(λxt) = {t} and Sub(tu) = {t, u}. Prove that Sub is not stable by
α-equivalence.

4.2 Church-computable functions

Surprisingly, this language is powerful enough to express arbitrary computable
functions. This is due to the fact that there is no restriction on abstraction and
application. For instance, a variable can be applied to itself! So, the following
λ-terms are valid: xx, (λxx)(λxx), λxxx, (λxxx)(λxxx), (λxy(xx))(λxy(xx)).

Exercise 12 What are the β-reducts of these terms, i.e. the terms that we can
get by β-rewriting them as long as possible?

12



But what does “computable” mean after all? Difficult question. . .Well, his-
torically, λ-calculus was the first attempt to give a mathematical definition of
the intuitive notion of “computability”. This has been done by Kleene, a stu-
dent of Church, in his PhD in 1934 [33]. Soon later, other definitions have been
proposed and, in particular, Turing’s definitions in 1936 [47], but they all have
been proved equivalent to Church λ-calculus. Kleene himself provided an al-
ternative definition called the “µ-recursive functions”. That’s why most people
think that we found the right mathematical definition of the intuitive notion of
“computability” (Church-Turing’s thesis). To know more on the history of the
notion of computability, see for instance [35].

But how to represent numbers in λ-calculus? The idea is to use function
iteration: we represent n ∈ N by the λ-term n̂ = λfλxf(f(. . . (fx))) (Church’s
numeral) where f is applied n times to x. So, 0̂ = λfλxx, 1̂ = λfλxfx,
2̂ = λfλxf(fx), etc. Then, for instance, we can define the addition on Church’s
numerals: +̂ = λpλqλfλxpf(qfx).

Exercise 13 Check that +̂2̂2̂ rewrites (or reduces) in zero or more β-steps into
4̂, written +̂2̂2̂ →∗

β 4̂.

Exercise 14 Define multiplication on Church’s numerals, i.e. define a λ-term
×̂ such that, for all p, q ∈ N, ×̂p̂q̂ →∗

β p̂× q.

Exercise 15 Define a λ-term ifzero such that ifzero tuv →∗
β u if t →∗

β 0̂, and
ifzero tuv →∗

β v otherwise.

Exercise 16 How to represent pairs? Define λ-terms pair, π1 and π2 such that,
for all λ-terms u and v, π1(pair uv) →

∗
β u and π2(pair uv) →

∗
β v.

A total function f : Nn → N (n ≥ 0), i.e. a function that is defined on all

elements of Nn, is Church-computable (or λ-definable) if there is a λ-term f̂

such that, for all k1, . . . , kn ∈ N, f̂ k̂1 . . . k̂n →∗
β

̂f(k1, . . . , kn). More generally,
a partial function f : Nn → N is Church-computable (or λ-definable) if there

is a λ-term f̂ such that, for all (k1, . . . , kn) in the domain of f , f̂ k̂1 . . . k̂n →∗
β

̂f(k1, . . . , kn) and, for all (k1, . . . , kn) not in the domain of f , f̂ k̂1 . . . k̂n does not
terminate, i.e. can be β-reduced for ever.

But what about functions on other data structures (lists, trees, graphs, etc.)?
Well, once we can encode pairs, we can encode any finite data structure. The
empty list can be encoded by 0 and a non empty list (x1, . . . , xn) can be encoded
by the pair (x1, (x2, . . . (xn, 0) . . .)). Etc.

More on pure λ-calculus can be found for instance in [7, 38]. Examples of
programming languages based on pure λ-calculus: Lisp, Scheme.
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4.3 Kleene-computable functions

Kleene defines the set of (partial) recursive or computable functions as the
smallest set of functions from Nn to N (for any n ≥ 0) containing:

• the projection functions: (x1, . . . , xn) 7→ xi for all i ∈ [1, n];

• the constant functions equal to 0: (x1, . . . , xn) 7→ 0;

• the successor function: x 7→ x+ 1;

and closed by:

• composition: if h : Nm → N is computable and g1 : Nn → N, . . . , gm : Nn →
N are computable, then (x1, . . . , xn) 7→ h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))
is computable;

• recursion: if g : Nn → N is computable and h : Nn+2 → N is computable,
then the function f : Nn+1 → N such that:

– f(x1, . . . , xn, 0) = g(x1, . . . , xn),

– f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)),

is computable;

• minimization: if g : Nn+1 → N is computable, then the function f : Nn → N

such that f(x1, . . . , xn) is the least integer y ∈ N such that g(x1, . . . , xn, y) =
0 (this is a partial function if there is no such y), is computable.

Exercise 17 Given three functions f, g, h : Nn → N, let ifzeronf,g,h : Nn → N be
the function such that ifzeronf,g,h(x1, . . . , xn) = g(x1, . . . , xn) if f(x1, . . . , xn) =
0, and ifzeronf,g,h(x1, . . . , xn) = h(x1, . . . , xn) otherwise. Show that addition,
multiplication and ifzeron are Kleene-computable.

But what about functions on other data structures (lists, trees, graphs, etc.)?
Well, once we can encode pairs of natural numbers, we can encode any finite data
structure. So, how to encode pairs? It suffices to find a computable bijection
from N2 to N − {0}, whose inverses π1 and π2 are computable too. Take for
instance the function

p; q = (p+ q)(p+ q + 1)/2 + p+ 1

Using this function, any pair of numbers (p, q) can be seen as a number p; q,
and any number l 6= 0 can be seen as pair of numbers (p, q). And once we can
encode pairs, we can encode lists, trees, etc.
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4.4 Turing-computable functions

Turing’s definition looks more like an automaton, a discrete dynamical sys-
tem, or a computer. A (multi-tape) Turing machine3 is defined by:

• a finite set Σ of symbols (alphabet) containing at least the following three
distinct symbols: � (start), 0 (blank) and 1;

• a number k ≥ 1 of (memory) tapes;

• a finite set Q of (control) states containing at least two different states qi
(initial) and qf (final);

• a finite (partial) transition function (program) δ : Σk × (Q − {qf}) → Σk ×
Q× {−1, 0, 1} describing what the machine should do at each step.

At each moment, the configuration of a Turing-machine is then given by:

• the symbols written on the tapes, i.e. for each tape i, a function mi : N → Σ;

• the position h ∈ N of the head;

• its state q ∈ Q.

We now describe how a Turing machine M = (Σ, k,Q, qi, qf , δ) evolves.
Assume that at time t ∈ N, it is in the configuration ct = (m,h, q) and that
δ((m1(h), . . . ,mk(h)), q) = ((b1, . . . , bk), q

′, r). Then, at time t+ 1, it moves to
the configuration ct+1 = (m′, h + r, q′) (we consider discrete times in N) with
m′

i(h) = bi and m′
i(l) = mi(l) if l 6= h, that is, mi(h) is replaced by bi, q is

replaced by q′, and the head is moved to the left if r = −1 and h > 0, to the
right if r = 1, and stay at the same position otherwise. Note that, if q′ = qf
then the machine cannot evolve anymore: it stops.

3Picture taken from http://science.slc.edu/~jmarshall/courses/2002/fall/cs30/

Lectures/week08/Computation.html, a web page of Jim Marshall (Sarah Lawrence College,
Bronxville, NY, USA).
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Then a function f : Nn → N is Turing-computable if there is a Turing-
machineM = (Σ, k,Q, qi, qf , δ) such that k ≥ n+1 and, for all tuple (k1, . . . , kn)
∈ Nn, starting from the initial configuration c0 = (m, 0, qi) where mi(0) = � if
i ∈ [1, n+ 1], mi(l) = 1 if i ∈ [1, n] and l ∈ [1, ki], and mi(l) = 0 otherwise:

• if f(k1, . . . , kn) is defined then the machine stops in configuration (m′, 0, qf )
where m′

n+1(0) = �, m′
n+1(l) = 1 if l ∈ [1, f(k1, . . . , kn)], and m

′
n+1(l) = 0

otherwise;

• if f(k1, . . . , kn) is undefined then the machine never reaches state qf .

Exercise 18 Prove that Kleene-computability implies Turing-computability.

Exercise 19 Prove that Turing-computability implies Kleene-computability.

An important question about computability is the following: is there a total
function (i.e. defined on all inputs) that is not computable? The answer is yes.
In particular, Turing proved that the total boolean function halt : N2 → N saying
if a Turing machine halts on some input (where false = 0 and true = 1) is not
computable. Indeed, a Turing machine M can be encoded by a natural number
M̂ so that any natural number n corresponds to a Turing machine. Then,
halt(x, y) returns true if the Turing machine corresponding to x halts on input
y, and returns false otherwise. We now prove that halt is not computable by
showing that it is different from any possible computable function f : N2 → N.
Given any computable function f : N2 → N, let Gf : N → N be the function
such that Gf (x) = false if f(x, x) = false, and Gf (x) is undefined otherwise.
Since Gf is computable, there is a Turing machine MGf

that computes it. Let

then k = M̂Gf
be the natural number representing it. We now prove that

f(k, k) 6= halt(k, k). There are two cases:

• f(k, k) = false. Then, Gf (k) = false and, by definition, halt(k, k) = true.

• f(k, k) is undefined or f(k, k) 6= false. Then, Gf (k) is undefined and, by
definition, halt(k, k) = false.

Turing machines provide also a way to measure and compare the time and
memory needed to compute a function. You can find more information about
this subject in textbooks on computational complexity like [39, 44, 5].

5 Simply-typed lambda-calculus

5.1 Curry-style simply-typed λ-calculus

In this section, we are going to see some restriction of λ-calculus based on the
use of types. Types like int, string, float, etc. are common in programming.
This is an important tool to avoid some programming errors. But they have
been first introduced by logicians in order to avoid inconsistencies. Indeed, since
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there is no restriction on abstraction and application, we can encode Russell’s
paradox in λ-calculus: if you represent set formation by λ-abstraction (λxt is
the set of x’s satisfying t) and membership by application (tu means that u ∈ t),
and take δ = λx¬(xx), then we have δδ =β ¬(δδ).

In the simple type discipline, we assume given a non-empty set B of type
constants (e.g. int, . . . ). Then, a type is either a type constant B ∈ B or an
arrow or function type U → V where U and V are types, representing the type
of functions from U to V . Hence, a type is nothing but a term on the set of
symbols F = B∪{→} with type constants of arity 0, → of arity 2 and → (T, U)
written T → U . For instance, B → B is the type of functions that take as
argument a value of type B and return a value of type B; B → (B → B), also
written B → B → B (assuming that → “associates” to the right) is the type
of functions that take two arguments of type B and return a value of type B;
(B → B) → B if the type of functions that take a function of type B → B as
argument and return a value of type B.

Then, a λ-term of type U → V can only be applied to an argument of type
U . For instance, a function of type int → int cannot be applied to a value of
type float. Formally, we represent this by inductively defining a subset ⊲ of
the set E × L × S where L is the set of λ-terms, S is the set of simple types,
and E is the set of finite maps from X to S, declaring what are the types of
variables, and we write E ⊲ t : T if (E, t, T ) ∈ ⊲, and say that t has type T in
typing environment E:

(var)
(x, T ) ∈ E

E ⊲ x : T

(abs)
E ∪ {(x, U)}⊲ v : V x /∈ dom(E)

E ⊲ λxv : U → V

(app)
E ⊲ t : U → V E ⊲ u : U

E ⊲ tu : V

This means that ⊲ is the smallest set of tuples (E, t, T ) such that:

(var) A variable x has type T in typing environment E if x is mapped to T in E,
i.e. is declared to have type T in E.

(abs) An abstraction λxv has type U → V in typing environment E if, assuming
that x has no declared type in E (which can always be done by α-conversion),
the body v has type V in typing environment E extended by declaring x of
type U .

(app) An application tu has type V in typing environment E if there is a type U
such that t is of type U → V in E, and u is of type U in E.

Exercise 20 What are the types of λxx and λxxx?
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Exercise 21 Given two environments E and F , a substitution σ is of type E in
F , written F ⊲σ : E if, for all (x, T ) ∈ E, F ⊲σ(x) : T . Prove that, if F ⊲σ : E
and E ⊲ t : T , then F ⊲ σ(t) : T .

Exercise 22 Prove that ⊲ is invariant by α-equivalence.

Is typing decidable? That is, given E, t and T , is it decidable to know
whether E ⊲ t : T or not? Said again otherwise, is there a computable boolean
function that, given E, t and T , returns true if E ⊲ t : T , and false otherwise?
Another similar problem is type inference (as opposed to type checking): given t,
can we find E and T such that E⊲t : T? It is not easy to answer these problems
because, in the case of an abstraction λxv, we have to find some type U for x.
What types are possible for a bound variable x depends on the terms to which
λxv is applied and of which λxv is the argument. Moreover, we have seen that
a term may have infinitely many types in some fixed environment. However, it
seems that all these types follow the same pattern. But is it always the case?
If this is the case, then does there exist a most general pattern from which all
other types can be deduced? To solve these problems, we will introduce the
notion of unification [30, 42].

5.2 Unification

Let a unification problem be a finite set of equations between terms, an equation
being a pair of terms (t, u) written t =? u. A solution to a unification problem
{t1 =? u1, . . . , tn =? un} is a substitution σ such that, for all i, σ(ti) = σ(ui).

Exercise 23 Prove that this problem is decidable, that is, there is a function
which, given a unification problem P , returns ⊥ (fails) if P has no solution, and
some solution σ otherwise. Prove its correctness. What is its complexity?

Given a set X of variables, we say that a substitution σ is more general than
another substitution θ on X, written σ ≤X θ, if there is a substitution ρ such
that θ =X ρ̂◦σ, i.e. θ(x) = ρ(σ(x)) for all x ∈ X. We say that two substitutions
σ and θ are equivalent on X, written σ ≃X θ, if σ ≤X θ and θ ≤X σ.

Exercise 24 Prove that≤X is a quasi-ordering, that is, a reflexive and transitive
relation. Prove that ≃X is an equivalence relation, that is, a reflexive, symmetric
and transitive relation.

Exercise 25 Prove that σ ≃X θ iff there is a permutation π : {FV(θ(x)) | x ∈
X} → {FV(σ(x)) | x ∈ X} such that σ =X π̂ ◦ θ.

Exercise 26 Prove that a solvable unification problem has a most general
solution σ, that is, σ is more general than any other solution.

5.3 Type inference

We now have all the necessary tools to prove that type inference is decidable and
that any typable term has a most general type and, finally, that type checking
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also is decidable.

Exercise 27 Prove that type inference is decidable, and define a function com-
puting the most general type of a term.

Exercise 28 Is typing decidable? That is, is there a computable boolean func-
tion that, given E, t and T , returns true if E ⊲ t : T , and false otherwise?

5.4 Church-style simply-typed λ-calculus

To make type checking and type inference simpler (as in programming languages
like C, Java, etc), and decidable in more complex type systems (e.g. Coq), it
is necessary to annotate bound variables with their types. In this case, λ-terms
are defined as follows: t = x | λxT t | tt, and the typing rule for abstraction has
to be replaced by:

(abs)
E ∪ {(x, U)}⊲ v : V x /∈ dom(E)

E ⊲ λxUv : U → V

Exercise 29 Prove that with type annotations, a λ-term can have at most one
type in a given typing environment.

More on typed λ-calculus can be found for instance in [8].

6 First-order logic

6.1 Formulas and truth

We now have all the tools to define logical formulas. Given a family (Fn)n∈N of
function symbols of fixed arity, a family (Pn)n∈N of predicate symbols of fixed
arity, and an infinite set X of variables, let T be the set of (object) terms on
(Fn)n∈N, and let the set L of (logical) formulas be the smallest set such that:

• if P is a predicate symbol of arity n, i.e. P ∈ Pn, and t1, . . . , tn are (object)
terms, then P(t1, . . . , tn) is a formula;

• ⊥ and ⊤ are formulas;

• if φ is a formula, then ¬φ is a formula;

• if φ and ψ are formulas, then φ ∨ ψ, φ ∧ ψ, φ⇒ ψ and φ⇔ ψ are formulas;

• if x is a variable and φ is a formula, then ∀xφ and ∃xφ are formulas.

So, L can be seen as the set of terms on the set of symbols P∪{⊥,⊤,¬,∧,∨,⇒
,⇔, ∀x, ∃x} with the elements of P ∪ {⊥,⊤} of arity 0, ¬, ∀x, ∃x of arity 1, and
∧,∨,⇒,⇔ of arity 2. Moreover, as in λ-calculus, formulas are identified modulo
renaming of their bound variables: ∀xP(x) =α ∀yP(y).
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Now, how to define the truth (true or false) of a formula in a model (A, (fA)f∈F

of the object terms? We need an interpretation PA : An → Bool where
Bool = {true, false} (or, equivalently, a subset PA ⊆ An) for each predicate
symbol P of arity n. Then, given a finite valuation µ : X → A, the interpreta-
tion of a formula φ, written [[φ]]µ, can be defined as follows:

• [[P(t1, . . . , tn)]]µ = PA([[t1]]µ, . . . , [[tn]]µ)

• [[⊥]]µ = false

• [[⊤]]µ = true

• [[¬φ]]µ = not([[φ]]µ)

• [[φ ∨ ψ]]µ = or([[φ]]µ, [[ψ]]µ)

• [[φ ∧ ψ]]µ = and([[φ]]µ, [[ψ]]µ)

• [[φ⇒ ψ]]µ = impl([[φ]]µ, [[ψ]]µ)

• [[φ⇔ ψ]]µ = equiv([[φ]]µ, [[ψ]]µ)

• [[∀xφ]]µ = forall({[[φ]]µ∪{x,a} | a ∈ A}) if x /∈ dom(µ)

• [[∃xφ]]µ = exists({[[φ]]µ∪{x,a} | a ∈ A}) if x /∈ dom(µ)

where the boolean functions not, or, . . . are defined as usual, and forall, exists :
P(Bool) → Bool are defined as follows:

• forall(S) = true iff false /∈ S

• exists(S) = true iff true ∈ S

Given a formula φ with free variables x1, . . . , xn, its universal closure ∀φ =
∀x1 . . . ∀xnφ and its existential closure ∃φ = ∃x1 . . . ∀xnφ.

Then, we say that a formula φ is satisfiable if there is a model A = (A,
(fA)f∈F , (PA)P∈P) in which [[∃φ]] = true, and that φ is valid if, in every model
A, [[∀φ]] = true.

A formula ψ is a semantical consequence of another formula φ, written φ |= ψ,
if φ ⇒ ψ is valid. Two formulas φ and ψ are semantically equivalent, written
φ ≡ ψ, if φ |= ψ and ψ |= φ, i.e. if φ⇔ ψ is valid.

Exercise 30 Prove that φ⇒ φ is valid, φ⇒ ψ ≡ ¬φ ∨ ψ and ¬(∀xφ) ≡ ∃x¬φ.

In fact, we could simplify the definition of the logic because many connectors
are definable from others.
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6.2 Provability and deduction systems

How to know that a formula is valid or not? For a formula of the form ∀xφ, we
cannot check that φ is valid in all models. Instead, we generally use the rules
of logic to prove that a formula is true or not. For instance, to prove that some
property P implies another property Q, we may try to prove Q assuming that P
holds. And if we prove later that P holds, then we can deduce that Q holds too.
Etc. There are different ways to formalize these practices. One is Gentzen’s
natural deduction system invented in 1935 [23, 41], where each connector has
one or two (for ∨) introduction rules (except ⊥ of course), explaining how to
prove a formula headed by this connector, and one or two (for ∧) elimination
rules explaining how to use a formula headed by this connector.

Gentzen’s provability relation ⊢ on pairs (Γ, φ) where Γ is a finite set of
formulas (the assumptions) and φ a formula, is the smallest relation ⊢ satisfying
the following properties, where (Γ, φ) ∈ ⊢ is written Γ ⊢ φ:

(axiom)
φ ∈ Γ

Γ ⊢ φ

(⊥-elim)
Γ ⊢ ⊥

Γ ⊢ φ

(⇒-intro)
Γ ∪ {φ} ⊢ ψ

Γ ⊢ φ⇒ ψ

(⇒-elim)
Γ ⊢ φ⇒ ψ Γ ⊢ φ

Γ ⊢ ψ

(∧-intro)
Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ∧ ψ

(∧-elim-left)
Γ ⊢ φ ∧ ψ

Γ ⊢ φ

(∧-elim-right)
Γ ⊢ φ ∧ ψ

Γ ⊢ ψ

(∨-intro-left)
Γ ⊢ φ

Γ ⊢ φ ∨ ψ

(∨-intro-right)
Γ ⊢ ψ

Γ ⊢ φ ∨ ψ

(∨-elim)
Γ ⊢ φ ∨ ψ Γ ∪ {φ} ⊢ χ Γ ∪ {ψ} ⊢ χ

Γ ⊢ χ

(∀-intro)
Γ ⊢ φ x /∈ FV(Γ)

Γ ⊢ ∀xφ
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(∀-elim)
Γ ⊢ ∀xφ

Γ ⊢ φ{x 7→ t}

(∃-intro)
Γ ⊢ φ{x 7→ t}

Γ ⊢ ∃xφ

(∃-elim)
Γ ⊢ ∃xφ Γ ∪ {φ} ⊢ χ x /∈ FV(Γ) ∪ FV(χ)

Γ ⊢ χ

(EM) Γ ⊢ φ ∨ ¬φ

We say that φ is provable under the assumptions Γ if Γ ⊢ φ holds. Note
that, since ⊢ is defined inductively, if Γ ⊢ φ holds, then there must be some
witness/proof of this fact that can be represented by a deduction tree.

Exercise 31 Prove that this deduction system is correct, i.e. ⊢ ⊆ |=, by inter-
preting a finite set of formulas Γ = {φ1, . . . , φn} by φ1 ∧ . . .∧φn. That is, if one
can deduce φ from Γ, then φ is a semantical consequence of Γ. In particular, if
one can deduce φ using no assumption, then φ is valid.

And does the converse hold? That is, if φ is valid, then φ is provable.
In 1929, Gödel proved that this is indeed the case when no axiom is assumed
(empty theory) [26, 27]. But he also proved in 1931 that this does not hold when
some axioms powerful enough to do arithmetic are assumed [28]. In particular,
the consistency of a theory powerful enough to do arithmetic cannot be deduced
using arithmetic only.

We have introduced a notion of provability but is it decidable, that is, is there
a computer program that can tell us in finite time whether any mathematical
theorem is provable or not? Said otherwise, is there a computable boolean
function that, for all Γ and φ, returns true if Γ ⊢ φ, and false otherwise. The
answer is again no, if the language is rich enough to do arithmetic, because then
we can encode the halting problem as a formula [15, 47].

However, it is decidable to check that a candidate deduction tree is correct
or not, by checking that each rule is correctly applied and every side condition
is fulfilled. This is what proof assistants like Coq do: they provide tools to build
correct deduction trees.

6.3 Proof terms and Curry-Howard correspondence

But there is another way to represent deduction proofs. Indeed, it has been
progressively discovered that formulas can be seen as types and proofs as λ-
terms, so that, verifying the correctness of a deduction tree reduces to type-
checking that a λ-term has a given type, a relation called the Curry-Howard
correspondence [32].

For instance, the simply-typed λ-calculus corresponds to the logic with con-
nectors restricted to ⇒. In this correspondence:
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• type constants correspond to atomic propositions, i.e. formulas of the form
P(t1, . . . , tn);

• the type T → U corresponds to the formula T ⇒ U ;

• a typing environment E = {(x1, T1), . . . , (xn, Tn)} corresponds to the set of
assumptions {T1, . . . , Tn} where every assumption Ti is given a name xi;

• the application tu corresponds to the application of the rule (⇒-elim);

• the abstraction λxt corresponds to the application of the rule (A-intro).

Hence, for instance, λxx can be seen as a proof of φ⇒ φ. So, λ-calculus can
not only be used to define functions: it can also be used to represent proofs.

The Coq proof assistant is based on this correspondence. Its language is
in fact some extension of the λ-calculus with a rich type system. When trying
to prove some formula φ, the user in fact builds a λ-term that, in the end, is
type-checked against φ to verify its correctness.

More on typed λ-calculus and logic can be found for instance in [25, 38].

7 To go further

To go further, I recommend to read the following books or articles.

• On the foundations of programs and proofs: [20].

• On computational complexity: [39, 44, 5].

• On the operational semantics of programs: [40].

• On the denotational semantics of programs: [50, 29].

• On Hoare’s logic and the Why3 software: [31, 21, 22].

• On abstract interpretation and the Astrée software: [18].

• On program compilation: [1, 2].

• On rewriting theory: [6, 46].

• On typed λ-calculus: [25, 38, 8].

• On pure λ-calculus: [7].
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8 Solutions to exercises

8.1 Section 2: Induction and sequences

Solution of Exercise 1

Let S = {w ∈ X∗ | P (w)}. By definition, we have S ⊆ X∗. Now, X∗ ⊆ S if
S satisfies the properties (1) and (2):

1. ε ∈ S, i.e. P (ε). That is (P1).

2. If x is a letter and w ∈ S, i.e. P (w), then xw ∈ S, i.e. P (xw). That is (P2).

Solution of Exercise 2

We have ε ◦ v = v by definition. We can prove that v ◦ ε = v by induction
on v. If v = ε, then v ◦ ε = ε = v. Assume now that v ◦ ε = v and let x be a
letter. Then, (xv) ◦ ε = x(v ◦ ε) = xv.

For the associativity, we can proceed by induction on u. If u = ε, then
(u ◦ v) ◦ w = v ◦ w = u ◦ (v ◦ w). Assume now that (u ◦ v) ◦ w = u ◦ (v ◦ w)
and let x be a letter. Then, ((xu) ◦ v) ◦ w = (x(u ◦ v)) ◦ w = x((u ◦ v) ◦ w) =
x(u ◦ (v ◦ w)) = (xu) ◦ (v ◦ w).

8.2 Section 3: Terms

Solution of Exercise 3

By definition T is the smallest subset S of U satisfying the property P (S):
for all f ∈ F and t1, . . . , tn ∈ S, f(t1, . . . , tn) ∈ S, i.e. T =

⋂
{S ⊆ U | P (S)}.

By definition of f , f(T ) = T ∪ {f(t1, . . . , tn) | f ∈ F , t1, . . . , tn ∈ T }. Thus,
T ⊆ f(T ) and we are left to prove that f(T ) ⊆ T . Since T is the smallest
subset of U satisfying P , we have f(T ) ⊆ T if, for all S ⊆ U satisfying P (S),
f(T ) ⊆ S. So, let t ∈ f(T ). By definition of f , there are two cases:

• t ∈ T . Then, t ∈ S by definition of T .

• t = f(t1, . . . , tn) with f ∈ F and t1, . . . , tn ∈ T . Since T ⊆ S, we have
t1, . . . , tn ∈ S. Since S satisfies P , we have t ∈ S.

Note that this proof is in fact a proof by induction on t ∈ f(T ) that t ∈ S.
We now check that f is monotone. Assume that X ⊆ Y and let t ∈ f(X). By
definition of f , there are two cases:

• t ∈ X. Since X ⊆ Y and Y ⊆ f(Y ), we have t ∈ f(Y ).

• t = f(t1, . . . , tn) with f ∈ F and t1, . . . , tn ∈ X. Since X ⊆ Y , we have
t1, . . . , tn ∈ Y . Thus, by definition of f , t ∈ f(Y ).

Solution of Exercise 4

Take lub(E) =
⋃

E , glb(∅) = U and glb(E) =
⋂
E if E 6= ∅. Why the greatest

lower bound of ∅ is U? U is a lower bound of ∅ since it is smaller than any
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element of ∅ for there is no element in ∅! In fact, any subset of U is a lower
bound of ∅. And if L is a lower bound of ∅, i.e. if L is any subset of U , then L
is included in U .

Solution of Exercise 5

Let A =
⋃

n∈N
fn(∅) ⊆ T . We first prove that fn(∅) ⊆ T by induction on

n ∈ N. For n = 0, this is trivial. Assume that fn(∅) ⊆ T and let t ∈ fn+1(∅).
By definition of f , there are two cases:

• t ∈ fn(∅). By induction hypothesis, fn(∅) ⊆ T . So, t ∈ T .

• t = f(t1, . . . , tn) with f ∈ F and t1, . . . , tn ∈ fn(∅). By induction hypothesis,
fn(∅) ⊆ T . So, t1, . . . , tn ∈ T and, since f(T ) ⊆ T , we have t ∈ T .

Therefore, A ⊆ T . We now prove that T ⊆ A. Since T is the smallest set
S satisfying P (S): for all f ∈ F and t1, . . . , tn ∈ S, f(t1, . . . , tn) ∈ S, i.e.

T =
⋂
{S ⊆ U | P (S)}, it suffices to prove that A satisfies P . Let f ∈ F

and t1, . . . , tk ∈ A. By definition of A, for each i, there is ni such that ti ∈
fni(∅). Now, remark that (fn(∅))n∈N is an increasing sequence of sets, i.e.

fn(∅) ⊆ fn+1(∅) (easy proof). Therefore, for each i, ti ∈ fn(∅) where n is the
maximum of {n1, . . . , nk, 0} (we add 0 to make the set non empty). Hence,
t ∈ fn+1(∅) ⊆ A.

Solution of Exercise 6

Let a pattern-matching problem P be a set of pairs (p, t) made of a pattern
p and a term t. A substitution σ is a solution of P = {(p1, t1), . . . , (pn, tn)} if
σ(p1) = t1, . . . , σ(pn) = tn.

Let now match be the function defined as follows:

• match({(f(t1, . . . , tm), g(u1, . . . , un))}∪P ) = match({(t1, u1), . . . , (tm, um)}∪
P ) if f = g and m = n,

• match({(f(t1, . . . , tm), g(u1, . . . , un))} ∪ P ) = ⊥ if f 6= g or m 6= n,

• match({(x, t), (x, u)} ∪ P ) = ⊥ if t 6= u.

If match(P ) = ⊥, then P has no solution. Otherwise, match(P ) = {(x1, t1),
. . ., (xn, un)} with ti = tj if xi = xj , that is, match(P ) is the unique solution of
P .

Solution of Exercise 7

We have →R⊆→S . Assume now that t→S t
′. Then, there are C, l → r ∈ S

and σ, such that t = C{x 7→ σ(l)} and t′ = C{x 7→ σ(r)}. If l → r ∈ R, then we
are done. Otherwise, there is a rule g → d ∈ R such that l → r = π(g) → π(d).
Hence, t→R t′ since t = C{x 7→ (σ ◦ π−1)(g)} and t′ = C{x 7→ (σ ◦ π−1)(d)}.

Solution of Exercise 8

The model is the set A of terms itself with the interpretation function
fA(x1, . . . , xn) = f(x1, . . . , xn).

Solution of Exercise 9
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By induction on t. If t = x, then [[σ(t)]]µ = [[σ(x)]]µ = (µ ◦ σ)(x) = [[x]]µ◦σ.
Otherwise, t = f(t1, . . . , tn), [[σ(t)]]µ = [[f(σ(t1), . . . , σ(tn))]]µ = fA([[σ(t1)]]µ, . . .,
[[σ(tn)]]µ). By induction hypothesis, [[σ(ti)]]µ = [[ti]]µ◦σ. Therefore, [[σ(t)]]µ =
[[t]]µ◦σ.

8.3 Section 4: Lambda-calculus

Solution of Exercise 10

We prove by induction on t that, for all t′ such that t =α t′, we have
FV(t) = FV(t′).

• Case t = x. Then, t′ = x and FV(t) = FV(t′).

• Case t = uv. Then, t′ = u′v′ with u =α u′ and v =α v′. By induction
hypothesis, FV(u) = FV(u′) and FV(v) = FV(v′). Therefore, FV(t) =
FV(u) ∪ FV(v) = FV(u′) ∪ FV(v′) = FV(t′).

• Case t = λxu. Then, t′ = λyv with y /∈ FV(λxu) and u =α v{y 7→ x}.
We have FV(t) = FV(u) − {x} and FV(t′) = FV(v) − {y}. By induction
hypothesis, FV(u) = FV(v{y 7→ x}). If y = x, then FV(u) = FV(v) and
we are done. Otherwise, FV(u) = (FV(v)− {y}) ∪ {x}. Therefore, FV(t) =
FV(t′).

Solution of Exercise 11

We have λxx =α λyy but Sub(λxx) = {x} and Sub(λyy) = {y}.

Solution of Exercise 12

• xx, λxxx have no β-reduct: they are in normal form.

• (λxx)(λxx) →β λxx.

• (λxxx)(λxxx) β-rewrites to itself: (λxxx)(λxxx) →β (λxxx)(λxxx).

• (λxy(xx))(λxy(xx)) is a fixpoint of y: (λxy(xx))(λxy(xx))
→β y((λy(xx))(λy(xx))) →β y(y((λy(xx))(λy(xx)))) →β . . .

Solution of Exercise 13

+̂2̂2̂ →∗
β λfλx2̂f(2̂fx) →

∗
β λfλx2̂f(f(fx)) →

∗
β λfλxf(f(f(fx))) = 4̂.

Solution of Exercise 14

Note that p̂fx→∗
β f(f(. . . (fx))) (f applied p times to x) and that p× q =

q + q + . . .+ q (p times). So, we can take ×̂ = λpλqλfλxp(+̂q)0̂fx.

Solution of Exercise 15

We can take ifzero = λtλuλvtu(λzv) where z is any variable not occurring
in v (λzv is then the constant function equal to v). The term ifzero n̂uv iterates
n times λzv on u. If n = 0, then we get u (λzv is never applied). Otherwise,
we get v (λzv is applied at least once).
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Solution of Exercise 16

We can take pair = λuλvλzifzerozuv, π1 = λpp0̂ and π2 = λpp1̂.

Solution of Exercise 17

To make things easier, we can give names to the functionals used to de-
fine K-computable functions. Let πn

i be the function mapping (x1, . . . , xn)
to xi, 0

n be the function mapping (x1, . . . , xn) to 0, s be the function map-
ping x to x + 1, compnm(h, g1, . . . , gm) be the function mapping (x1, . . . , xn) to
h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)), rec

n(g, h) the function f such that f(x1,
. . . , xn, 0) = g(x1, . . . , xn) and f(x1, . . . , xn, y+1) = h(x1, . . . , xn, y, f(x1, . . . , xn,
∗y)), and minn(g) be the function f such that f(x1, . . ., xn) is the least integer
y such that g(x1, . . . , xn, y) = 0.

Addition can be defined by recursion as follows: x+0 = x and x+(y+1) =
(x+ y)+ 1. Hence, the addition is add = rec1(g, h) where g(x) = x, i.e. g = π1

1 ,
and h(x, y, z) = z + 1, i.e. h = comp31(s, π

3
3). Therefore, the addition is K-

computable.
Multiplication can be defined by recursion too: x× 0 = 0 and x× (y+ 1) =

x + (x × y). Hence, the multiplication is mul = rec1(g, h) where g = 01 and
h(x, y, z) = x+ z, i.e. h = comp32(add, π

3
1 , π

3
2).

The function ifzeronf,g,h can be defined by doing a recursion on f(x1, . . . , xn),
i.e. ifzeronf,g,h(x1, . . . , xn) = k(x1, . . . , xn, f(x1, . . . , xn)), i.e. ifzero

n
f,g,h = compnn+1

(k, πn
1 , . . . , π

n
n , f), where k is defined by recursion as follows: k(x1, . . . , xn, 0) =

g(x1, . . . , xn) and k(x1, . . . , xn, y + 1) = h(x1, . . . , xn), ie k = recn(g, h′) where
h′(x1, . . . , xn, y, z) = h(x1, . . . , xn), i.e. h

′ = compn+2
n (h, πn+2

1 , . . . , πn+2
n ).

Solution of Exercise 18

We proceed by induction on the way K-computable functions are defined.
Turing machine for πn

i . The machine has to copy the 1’s that are on the i-th
tape to the (n + 1)-th tape and go back to position 0 before stoping. To this
end, we will use two new states qc (copy) and qb (back):

• δ((x1, . . . , xn+1), qi) = ((x1, . . . , xn+1), qc, 1) (we start by moving the head to
the right and change to state qc);

• if xi = 1, then δ((x1, . . . , xn, xn+1), qc) = ((x1, . . . , xn, 1), qc, 1) (to copy the
1’s of tape i to tape (n+ 1));

• if xi = 0, then δ((x1, . . . , xn+1), qc) = ((x1, . . . , xn+1), qb,−1) (to start mov-
ing back to position 0 when we read a 0);

• if xi = 1, then δ((x1, . . . , xn+1), qb) = ((x1, . . . , xn+1), qb,−1) (to move back);

• if xi = �, then δ((x1, . . . , xn+1), qb) = ((x1, . . . , xn+1), qf , 0) (to stop once we
have reached position 0).

Turing machine for 0n. Just take δ((x1, . . . , xn), qi) = ((x1, . . . , xn), qf , 0)
(stop immediately).

Turing machine for s. It suffices to copy the 1’s of tape 1 to tape 2 (state
qc), add one more 1 on tape 2, and come back to position 0 (state qb):
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• δ((x1, x2), qi) = ((x1, x2), qc, 1) (we start by moving the head to the right and
change to state qc);

• δ((1, x2), qc) = ((1, 1), qc, 1) (to copy the 1’s of tape 1 to tape 2);

• δ((0, x2), qc) = ((0, 1), qb,−1) (to add one 1 on tape 2 and start moving back
to position 0);

• δ((1, x2), qb) = ((1, x2), qb,−1) (to move back);

• δ((�, x2), qb) = ((�, x2), qf , 0) (to stop once we have reached position 0).

Turing machine for compnm(h, g1, . . . , gm). By induction hypothesis, g1 is
computed by T1 = (Σ1, k1, Q

1, q1i , q
1
f , δ

1), . . . , gm by Tm = (Σm, kn, Q
m, qmi , q

m
f ,

δm), and h by Tm+1 = (Σm+1, km+1, Q
m+1, qm+1

i , qm+1

f , δm+1). Let li = Σi
j=1ki.

Any machine T = (Σ, k,Q, qi, qf , δ) computing a function f : Nn → N can
be easily transformed into a machine T ′ = (Σ, k,Q, qi, qf , δ

′) where tapes are
permuted so that it reads its arguments on the tapes j1, . . . , jk and outputs its
result on tape jk+1, where j1, . . . , jk+1 are pairwise distinct integers of [1, k] (the
order of tapes does not matter). Any machine can also be easily transformed into
a machine with additional unused tapes. Let lj = n+1+Σj−1

i=1kj and k = lm+2.

For all j ∈ [1,m], we transform Tj into a machine Uj = (Σj , k,Qj , qji , q
j
f , ε

j)
that reads its arguments on tapes lj + 1, . . . , lj + n and outputs its result on
tape lj + n + 1 (the tapes used by Tj are translated by lj). And we transform
Tm+1 into a machine Um+1 = (Σm+1, k,Qm+1, qm+1

i , qm+1

f , εm+1) that reads its
arguments on tapes l1 + n + 1, . . . , lm + n + 1 and outputs its result on tape
n + 1. Without loss of generality, we can also assume that the sets Σi, Qi

and Q′ = {qi, qc, qb} are pairwise disjoint. Then, compnm(h, g1, . . . , gm) can be

computed by taking T = (Σ, k,Q ∪ Q′, qi, q
m+1

f , ε ∪ τ) where Σ =
⋃m+1

i=1
Σi,

Q =
⋃m+1

i=1
Qi, ε =

⋃m+1

i=1
εi, and τ is defined as follows:

• τ((x1, . . . , xk), qi) = ((x1, . . . , xk), qc, 0) (to start copying the arguments (x1,
. . . , xn) to compute g1(x1, . . . , xn), . . . , gm(x1, . . . , xn));

• if there is i ∈ [1, n] such that xi = 1, then τ((x1, . . . , xk), qc) = ((y1, . . . , yk), qc,
1) where yj = xj except, for all j ∈ [1,m] and q ∈ [1, n], ylj+q = xj ;

• if there is no i ∈ [1, n] such that xi = 1, then τ((x1, . . . , xk), qc) = ((x1, . . . , xk),
qb,−1) (to start to move the head back);

• if x1 6= �, then τ((x1, . . . , xk), qb) = ((x1, . . . , xk), qb,−1) (to move back);

• τ((�, . . . ,�), qb) = ((�, . . . ,�), q1i , 0) (to compute g1(x1, . . . , xn));

• τ((x1, . . . , xk), q
1
f ) = ((x1, . . . , xk), q

2
i , 0) (to compute g2(x1, . . . , xn));

• . . .

• τ((x1, . . . , xk), q
m
f ) = ((x1, . . . , xk), q

m+1
i , 0) (to compute g2(x1, . . . , xn)).
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Turing machine for recursion and minimization. . . .

Solution of Exercise 19

Encode the configuration of a Turing machine into some tuple of natural
numbers and show that the function ct 7→ ct+1 is Kleene-computable.

. . .

8.4 Section 5: Simply-typed lambda-calculus

Solution of Exercise 20

Any type for λxx must be of the form T → T , and every type of the form
T → T is a type of λxx. On the other hand, there is no type T such that
⊲λxxx : T . Indeed, assume that ⊲λxxx : T , then T must be of the form
U → V with {(x, U)}⊲xx : V . But, for this to hold, we must have U = U → V
which is not possible (the size of U → V is strictly bigger than the size of U).

Solution of Exercise 21

By induction on the definition of ⊲.

• E ⊲ x : T since (x, T ) ∈ E. We have F ⊲ σ(x) : T since F ⊲ σ : E.

• E ⊲ λxv : U → V since E ∪ {(x, U)}⊲ v : V and x /∈ dom(E). By renaming,
we can assume that x /∈ dom(F ) ∪ FV(σ). Therefore, σ(λxv) = λxσ(v).
By induction hypothesis, F ∪ {(x, U)} ⊲ σ(v) : V since F ∪ {(x, U)} ⊲ σ :
E ∪ {(x, U)}. Therefore, F ⊲ σ(λxv) : U → V .

• E ⊲ tu : V since E ⊲ t : U → V and E ⊲ u : U . We have σ(tu) = σ(t)σ(u).
By induction hypothesis, E ⊲ σ(t) : U → V and E ⊲ σ(u) : U . Therefore,
E ⊲ σ(tu) : V .

Solution of Exercise 22

We prove by induction on the definition of ⊲ that, if E ⊲ t : T and t =α t
′,

then E ⊢ t′ : T .

• Case t = x ∈ X and (x, T ) ∈ E. Then, t′ = x and we are done.

• Case t = λxv, T = U → V , x /∈ dom(E) and E ∪ {(x, U)} ⊲ v : V . Then,
t′ = λyw, v =α w{y 7→ x} and y /∈ FV(λxv).

Solution of Exercise 23

Consider the following rewrite rules on unification problems:

• P ∪ {t =? t} → P

• P ∪ {f(t1, . . . , tn) =
? g(u1, . . . , up)} → ⊥ if f 6= g

• P ∪ {f(t1, . . . , tn) =
? f(u1, . . . , un)} → P ∪ {t1 =? u1, . . . , tn =? un}

• P ∪ {x =? t} → P{x 7→ t} ∪ {x =? t} if x /∈ FV(t) and x ∈ FV(P )}
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• P ∪ {t =? x} → P{x 7→ t} ∪ {x =? t} if x /∈ FV(t) and x ∈ FV(P )}

• P ∪ {x =? t} → ⊥ if x ∈ FV(t) and t 6= x

• P ∪ {t =? x} → ⊥ if x ∈ FV(t) and t 6= x

Let S(P ) be the set of substitutions satisfying P . The rules are correct: if
P → Q, then every solution of Q is a solution of P (S(Q) ⊆ S(P )):

• A solution of P is a solution of P ∪ {t =? t} since σ(t) = σ(t).

• There is no solution of ⊥.

• Let σ be a solution of P ∪ {t1 =? u1, . . . , tn =? un}. Then, σ is a solution of
P∪{f(t1, . . . , tn) =

? f(u1, . . . , un)} since σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

• Let ρ = {x 7→ t} and σ be a solution of Q = ρ(P ) ∪ {x =? t}. This means
that σ(x) = σ(t) and, for all equation a =? b ∈ P , σ(ρ(a)) = σ(ρ(b)). Hence,
σ ◦ ρ is a solution of P . Since x /∈ FV(t), ρ(t) = t and σ ◦ ρ is also a solution
of x =? t.

• There is no solution of ⊥.

The rules are also complete: if P → Q, then every solution of P is a solution of
Q (S(P ) ⊆ S(Q)).

• A solution of P ∪{t =? t} is a solution of P since P is included in P ∪{t =? t}.

• There is no solution for P ∪ {f(t1, . . . , tn) =
? g(u1, . . . , up)} if f 6= g.

• A solution of P ∪ {f(t1, . . . , tn) =? f(u1, . . . , un)} is clearly is solution for
P ∪ {t1 =? u1, . . . , tn =? un} too.

• Let σ be a solution of P ∪ {x =? t}. This means that σ(x) = σ(t) and,
for all equation a =? b ∈ P , σ(a) = σ(b). Let θ be the substitution such
that θ(x) = x and, for all y 6= x, θ(y) = σ(y). We have σ = θ ∪ ρ where
ρ = {x 7→ t}. We also have σ = θ ◦ ρ. Indeed, θ(ρ(x)) = θ(t) = σ(t) since
x /∈ FV(t) and, for all y 6= x, θ(ρ(y)) = θ(y) = σ(y). Hence, σ is a solution
of ρ(P ) ∪ {x =? t}.

• There is no solution of x =? t if x ∈ FV(t) and t 6= x because the size of σ(t)
must be strictly bigger than the size of σ(x).

What is the shape of a problem that cannot be rewritten (we say that it is in
normal form)? It is either ⊥ or a set P of equations e of the form x =? t or
t =? x with x /∈ FV(t) and x /∈ FV(P −{e}). If it is ⊥, then there is no solution.
Otherwise, P can be transformed into the solution σ such that σ(x) = t if x =? t
or t =? x is in P , and σ(x) = s otherwise.

But can we always get to a normal form? To this end, we need to prove
that the rules cannot be applied for ever, i.e. the rewrite system terminates. To
this end, we can split a problem into two parts (P,Q) where Q, empty at the
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beginning, gathers all the equations x =? t or t =? x obtained by the rules 4
and 5. Then, the rules are applied to the P part only. We remark then that the
number of distinct variables is not increased by rules. And, in the case where the
number of distinct variables do not strictly decrease, i.e. in the decomposition
rule 3, the size of the problem strictly decreases.

One can easily see this algorithm is of complexity n2 in the size n of the uni-
fication problem: the number of rewrite steps is of order n and each substitution
propagation in rules 4 and 5 is of order n too.

Solution of Exercise 24

• ≤X is reflexive. For all substitution σ, we have σ ≤X σ since σ =X ι̂ ◦ σ
where ι is the identity substitution.

• ≤X is transitive. Assume that σ1 ≤X σ2 and σ2 ≤X σ3. Then, there are ρ1
and ρ2 such that σ2 =X ρ̂1 ◦σ1 and σ3 =X ρ̂2 ◦σ2. Therefore, σ1 ≤X σ3 since
σ3 =X ρ̂2 ◦ (ρ̂1 ◦ σ1) = (ρ̂2 ◦ ρ̂1) ◦ σ1 (associativity of function composition).

• ≃X is reflexive. Note that ≃X = ≤X ∩ ≥X . Therefore, ≃X is reflexive since
≤X so is.

• ≃X is transitive. Since ≤X is transitive.

• ≃X is symmetric. By definition.

Solution of Exercise 25

Assume that σ ≃X θ. Then, there ρ and ω such that σ =X ρ̂ ◦ θ and θ =X

ω̂ ◦ σ. Thus, σ =X ρ̂ ◦ ω̂ ◦ σ. It follows that, for every y ∈ {FV(σ(x)) | x ∈ X},
ω(y) must be a variable z ∈ {FV(θ(x)) | x ∈ X}, and ρ(z) = y.

Solution of Exercise 26

When applying the previous algorithm, we obtain a problem in normal form
that has exactly the same solutions as the initial problem. The substitution
corresponding to the problem in normal form is the most general one mgu (up
to renaming of variables).

Solution of Exercise 27

We extend the algebra S of types with an infinite set of type variables
X,Y, . . . to represent type patterns. We then define a computable function
typconstr which, given a typing environment E, a term t and a type T , returns
the constraints that should be satisfied for having E ⊲ t : T :

• typconstr(E, x, T ) = {T =? U} if (x, U) ∈ E,

• typconstr(E, λxv, T ) = {T =? X → Y } ∪ typconstr(E ∪ {(x,X)}, v, Y ) where
X and Y are new variables not occurring in E or T ,

• typconstr(E, tu, T ) = typconstr(E, t,X → T ) ∪ typconstr(E, u,X) where X is
a new variable not occurring in E or T ,
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• typconstr(E, t, T ) = ⊥ otherwise.

Then, we can define the computable function infer which, given a term t,
returns a pair (E, T ) such that E ⊲ t : T , as follows. Assume that FV(t) =
{x1, . . . , xn}. Let X1, . . . , Xn, Y be new distinct variables. If typconstr(E, t, Y )
returns some unification problem P admitting a most general solution σ, then
let infer(t) = (σ(E), σ(Y )). Otherwise, let infer(t) = ⊥.

Solution of Exercise 28

We define a computable function check which, given an environment E, a
term t and a type T , returns true if E ⊲ t : T , and false otherwise, as follows. If
typconstr(E, t, T ) returns some unification problem P admitting a most general
solution σ such that σ(E) = E and σ(T ) = T , then let check(E, t, T ) = true.
Otherwise, let check(E, t, T ) = false.

Solution of Exercise 29

We prove that, if E ⊲ t : T and E ⊲ t : T ′, then T = T ′, by induction on
E ⊲ t : T .

• Case t = x. Then, T = E(x) = T ′.

• Case t = λxUv. Then, T = U → V and T ′ = U → V ′. But, by induction
hypothesis, V = V ′.

• Case t = ab. Then, there are U and U ′ such that E ⊲ a : U → T and
E ⊲ a : U ′ → T ′. But, by induction hypothesis, U → T = U ′ → T ′.

8.5 Section 6: First-order logic

Solution of Exercise 30

We consider a model on A and a valuation µ.

• [[φ⇒ φ]]µ = imply([[φ]]µ, [[φ]]µ) = true by definition of imply.

• [[¬φ ∨ ψ]]µ = or(not([[φ]]µ), [[ψ]]µ) = imply([[φ]]µ, [[φ]]µ) = [[φ⇒ φ]]µ.

• [[¬(∀xφ)]]µ = not(forall({[[φ]]µ∪{x,a} | a ∈ A}))
= exists({not([[φ]]µ∪{x,a}) | a ∈ A}) = [[∃x¬φ]]µ.

Solution of Exercise 31

We proceed by induction on the definition of ⊢. Let Γ = {φ1, . . . , φn}. In
the following, we identity Γ and the formula φ1 ∧ . . . ∧ φn. Let A be a model
and µ a valuation such that dom(µ) ⊆ FV(Γ) and [[Γ]]µ = true.

(∧-intro) We have [[φ ∧ ψ]] = and([[φ]]µ, [[ψ]]µ). By induction hypothesis, [[φ]]µ = true

and [[ψ]]µ = true. Therefore, [[φ ∧ ψ]] = true.

(∧-elim-left) By induction hypothesis, we have [[φ ∧ ψ]]µ = and([[φ]]µ, [[ψ]]µ) = true. There-
fore, [[φ]]µ = true.
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(∧-elim-right) Similar.

(∀-intro) We have [[∀xφ]]µ = forall({[[φ]]µ∪{x,a} | a ∈ A}). But, for all a ∈ A, by
induction hypothesis, we have [[φ]]µ∪{x,a} = true. Therefore, [[∀xφ]]µ = true.

(∀-elim) By induction hypothesis, we have [[∀xφ]] = forall({[[φ]]µ∪{x,a} | a ∈ A}) = true.
Therefore, by definition of forall, we have [[φ{x 7→ t}]]µ = true since [[φ{x 7→
t}]]µ = [[φ]]µ∪{x 7→a} where a = [[t]]µ (can be proved by induction on φ).

. . .
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