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PREFACE

These lecture notes are an extension of a course on weak dependence given at Orsay
during the years 1994-1996 with Paul Doukhan. This course aims to treat the theory of
summation of weakly dependent variables. The first eight chapters give extensions of the
classical results for sums of independent random variables to strongly mixing or absolutely
regular processes. Chapter 9 is devoted to applications to Markov chains. The potential
reader is any researcher who is interested in sharp results for weakly dependent sequences.

I am particularly grateful to Paul Doukhan and Abdelkader Mokkadem for introducing
me to the domain of weak dependence. Thanks are also due to Sana Louhichi and Jérome
Dedecker for their help and their comments, who helped me to improve these notes.
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NOTATIONS

min(a, b)

max(a, b)

Euclidean scalar product of £ and x

For a real x the number max(0, z)

For a real z, the number max(0, —z)

For a real x, the integer part of x

For a function f, the left limit of f at point x

For a function f, the right limit of f at point z

The generalized inverse function of f

the function defined by a™!(u) = Y, n Tu<a,

For a random variable X, the inverse of ¢t — IP(|X| > t)

For an integrable random variable X, the expectation of X
Complementary of B

Indicator function of B.

Conditional expectation of X conditionally to the o-field A
Conditional expectation of g conditionally to .4

The variance of X

Covariance between X and Y

Measure of total variation associated to the measure p

Total variation of the measure u

Tensor product of the measures p and v

Tensor product of the o-fields A and B

the o-field generated by AU B

o-field generated by X

For r > 1, the space of random variables X such that IE(]X|") < oo
For » > 1, the usual norm on L"

The space of almost surely bounded random variables

The usual norm on L*

For P law on X, the space of functions f such that [, |f|"dP < oo
The Orlicz
The usual norm on L?

space associated to a convex function ¢

For a function ¢, the Young dual of ¢



INTRODUCTION

These notes are essentially translated from the preprint ”Théoremes limites pour les
suites de variables aléatoires faiblement dépendantes, Prépublication 97-81 de I’Université
de Paris-Sud” which was published in 1997. They are devoted to inequalities and limit
theorems for weakly dependent sequences. Our aim is to give performant technical tools to
Mathematicians or Statisticians which are interested in weak dependence. We will essen-
tially consider classical notions of weak dependence, called mixing conditions. Sometimes
we will give more general results. Nevertheless, most of the results of these notes are based
on the strong mixing coefficients introduced by Rosenblatt (1956).

Here the strong mixing coefficient between two o-fields A and B is defined by
a(A,B) =2sup{lIP(ANB) —P(A)IP(B) : (A, B) € A x B}.

This coefficient is equal to the strong mixing coefficient of Rosenblatt (1956), up to the
multiplicative factor 2. This coefficient is a measure of the dependence between A and B.
For example (A, B) = 0 if and only if A and B are independent For a sequence (X;);cz
of random variables in some Polish space X, let F, = o(X; :i < k) and G = o(X; : i > 1).
The strong mixing coefficients (o, ), >0 of the sequence (X;);cz are defined by

(1.0) ag =1/2 and a, = sup a(Fg, Gr4n) for any n > 0.

kEZ
The sequence (X;)iez is said to be strongly mixing in the sense of Rosenblatt (1956) if
limy 100 @y, = 0. In the stationary case, this means that the o-field G,, of the future after
time n is asymptotically independent of F, which is the o-field of the past before time 0.
We refer to Bradley (1986) for other coefficients of weak dependence and relations between
the coefficients of weak dependence.

In these notes, we will mainly establish results for strongly mixing sequences or for
absolutely regular sequences in the sense of Volkonskii and Rozanov (1959). Indeed these
notions of weak dependence are less restrictive than the notions of p-mixing and uniform
mixing in the sense of Ibragimov (1962). For example, in the case of autoregressive models
with values in IR? defined by the recursive equation

(I1.1) Xot1 = f(Xn) +ent1,
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for some sequence of independent and identically distributed integrable innovations (&, ),
with a positive continuous bounded density, the stationary sequence (X;);cz solution of
(I.1) is uniformly mixing in the sense of Ibragimov only if the function f is uniformly
bounded over IRY. This condition is too restrictive for the applications. By contrast the
stationary solution of (I.1) is strongly mixing with a geometric rate of strong mixing as
soon as there exists M > 0, s > 0 and p < 1 such that

(1.2) E(|f(x) +0l*) < plz|* pour z > M et Sup E(|f(x) + €0]*) < oc.
z|<M

We refer to Doukhan and Ghindes (1983) and to Mokkadem (1985) for more about the
model (I.1), and to Doukhan (1994) for other examples of Markov models satisfying mixing
conditions. Although the notions of strong mixing or absolute regularity are less restrictive
than the notions of p-mixing and uniform mixing, they are adequate for the applications.
For example, Viennet (1997) obtains optimal results for linear estimators of the density in

the case of absolutely regular sequences.

We now analyze the contents of these lecture notes. Our main tools are covariance
inequalities for random variables satisfying mixing conditions and coupling results which
are similar to the coupling theorems of Berbee (1979) or Goldstein (1979). Chapters 1-4
are devoted to covariance inequalities, moment inequalities and classical limit theorems.
Chapters 5-8 mainly use coupling techniques. The coupling techniques are applied to the
law of the iterated logarithm for partial sums in Chapter 6 and next to empirical processes
in Chapters 7 and 8.

In Chapter 1, we give covariance inequalities for random variables satisfying a strong
mixing condition or an absolute regularity condition. Let us recall Ibragimov’s (1962)
covariance inequality for bounded random variables: if X and Y are uniformly bounded

real-valued random variables, then
(1.3) | Cov(X,Y)| < 2a(0(X), 0 (Y)) | X]oo|[Y [|oo,

where o(X) and o(Y) denote the o-fields generated by X and Y respectively. We give
extensions of (I.3) to unbounded random variables. We then apply these covariance in-
equalities to get estimates of the variance of partial sums. In the dependent case, the
variance of the sum may be much larger than the sum of variances. We refer to Bradley
(1997) for lower bounds for the variance of partial sums in the strong mixing case. Nev-
ertheless adequate applications of the variance estimates still provide efficient results. For
example, we give in Sections 1.5 and 1.6 some performant applications to density estima-
tion. In Section 1.7* we give other covariance inequalities (* means that this subsection
has been added).



Chapter 2 is devoted to the applications of covariance inequalities to moment inequal-
ities for partial sums. In Subsections 2.2 and 2.3, we apply the covariance inequlities of
Chapter 1 to Algebraic moments of sums. Our methods are similar to the methods pro-
posed by Doukhan and Portal (1983, 1987). They lead to Rosenthal type inequalities. In
Subsections 2.4 and 2.5, we prove Marcinkiewicz type moment inequalities for the abso-
lute moments of order p > 2, and we give a way to derive exponential inequalities from
these results. In Chapter 3 we give extensions of the maximal inequalities of Doob and
Kolmogorov to dependent sequences. These maximal inequalities are then used to ob-
tain Baum-Katz type laws of large numbers, and consequently rates of convergence in the
strong law of large numbers. We also derive moment inequalities of order p for p in |1, 2|
from these inequalities.

Chapter 4 is devoted to the classical central limit theorem for partial sums of random
variables. In order to shorten the exposition, we consider strictly stationary sequences
(cf. Rio (1995c¢) for results in the non stationary case). We then apply projective criteria
which are derived from Gordin’s martingale approximation theorem (1969) to get the
central limit theorem for partial sums of a strongly mixing sequence. Then we give a
uniform functional central limit theorem in the sense of Donsker for the normalized partial
sum process associated to a stationary and strongly mixing sequence. The proof of the
tightness is based on the maximal inequalities of Chapter 3. At the end of the Chapter,

we give a central limit theorem for triangular arrays.

In Chapter 5, we give coupling results for weakly dependent sequences, under assump-
tions of strong mixing or S-mixing. In particular we recall and we prove Berbee’s coupling
Lemma (1979), which characterizes the S-mixing coefficient between a o-field A and the
o-field o(X) generated by some random variable X with values in some Polish space. If
(Q, T,IP) contains an auxiliary atomless random variable independent of AV o(X), Then
one can construct a random variable X* with the same law as X, independent of A and
such that

(I.4) P(X = X*) = 1 — B(A, o(X)).

We give a constructive proof of (I.4) for random variables with values in [0,1]. This
proof is more technical than the usual proof. Nevertheless the constructive proof is more
informative than the usual proof. In particular using a comparison theorem between
a-mixing coefficients and [-mixing coefficients for purely atomic o-fields due to Bradley
(1983), one can obtain (confer Exercise 1) the following upper bound for the so-constructed

random variables:
(1.5) E(|X - X*|) <4a(A,0(X))

In Section 5.2, we give a direct proof of (I.5) with an improved constant. Our method of
proof is based on the conditional quantile transformation.
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Chapters 6, 7 and 8 are devoted to the applications of these coupling results. In Chapter
6, we prove that Inequality (1.5) yields efficient deviation inequalities for partial sums
of real-valued random variables. In particular, we generalize the Fuk-Nagaev deviation
inequalities (1973) to partial sums of strongly mixing sequences of real-valued random
variables. For example for sums S = X7 + ... 4+ X} of real-valued and centered random
variables X; satisfying || X;||cc < 1, we prove that, for any A > 0 and any r > 1,

(1.6) 1P<kzﬁl?n] 1S5| > 4/\) < 4((1 + %)_”Z N W[;/r])

with o
52 = Z Z | Cov (X5, X5)|.

i=1 j=1
This inequality is an extension of the Fuk-Nagaev inequality to weakly dependent se-
quences. Theorem 6.2 provides an extension in the general case of unbounded random
variables. Choosing r = 2loglogn, we then apply (I.6) to the bounded law of the iterated
logartihm. In Chapters 7 and 8, we apply (1.4), (I.5) and (I.6) to empirical processes
associated to dependent observations. We refer the reader to Dudley (1984) and to Pol-
lard (1990) for more about the theory of functional limit theorems for empirical processes.
In Chapter 7, we give uniform functional central limit theorems for the normalized and
centered empirical distribution function associated to real-valued random variables or to
random variables with values in IR?. We prove that the uniform functional central limit
theorem for the normalized and centered empirical distribution function holds true under
the strong mixing condition a,, = O(n~17¢) for any d > 1. The strong mixing condition
does not depend on the dimension, contrary to the previous results. The proof is based on
Inequality (I.6). This inequality does not provide uniform functional central limit theorems
for empirical processes indexed by large classes of sets. For this reason, we give a more
general result in Chapter 8, which extends Dudley’s theorem (1978) for empirical processes
indexed by classes of sets to S-mixing sequences. The proof of this result is based on the

maximal coupling theorem of Goldstein (1979).

Chapter 9, which concludes these lecture notes, is devoted to the mixing properties of
irreducible Markov and the links between ergodicity, return times, absolute regularity and
strong mixing. We also prove on some example of Markov chain the optimality of some of
the results of the previous chapters. The Annexes are devoted to convex analysis, exponen-
tial inequalities for sums of independent random variables, tools for empirical processes,
upper bounds for the weighted moments introduced in Chapters 1 and 2, measurability

questions and quantile transformations.



1. VARIANCE OF PARTIAL SUMS

1.1. Introduction

In order to study the deviation and the limiting distribution of a partial sum of real-
valued random variables, one of the main steps is to study the variance of this sum. For
independent random variables, the variance of the sum is the sum of individual variances.
This assertion is generally wrong for dependent random variables, with the notable excep-
tion of martingale differences sequences. However, for stationary sequences, the so-called
series of covariances provides asymptotic estimates of the variance of partial sums. Con-
sequently, for dependent sequences, one needs to give conditions on the sequence implying
the convergence of this series. Such conditions are given, for example, by the so-called
mixing assumptions. In this chapter, we start by giving classical results on the variance
of partial sums in the stationary case. Next we give bounds on the covariance between
two random variables under a strong mixing condition on these random variables. These
results are then applied to variance of partial sums of strongly mixing sequences. Next
we give applications to integrated risks of kernel density estimators or linear estimators
of the density, under mixing assumptions. The end of this section is devoted to the so-
called S-mixing sequences, applications of this notion to density estimation and to an other

covariance inequality in the strong mixing case.
1.2. Stationary processes

In this section we recall some basic results on partial sums of random variables in the
stationary case. We start by recalling the definitions of strict stationarity, and stationarity

at second order.

Définition 1.1. Let T = 7Z or T' = IN. The process (X)ter is said to be strictly
stationary if, for any positive integer ¢ and any finite subset S of T',

(1.1) {Xs4+ : s € S} has the same distribution as {X; : s € S}.

For sequences (X;)tcr of real-valued and square-integrable random variables, (X;)ier
is said to be stationary at second order if, for any positive integer ¢ and any (u,v) in T'x T,

(1.2) E(X,) =E(X,) and E(X;1uXi10) = E(X.X,).
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We now define the covariance between two real-valued integrable random variables X
and Y such that XY is still integrable by

(1.3) Cov(X,Y) = E(XY) — E(X)E(Y).

Throughout, we assume that the random variables X; take their values in IR. Assume
now that (X;):er is stationary at second order. Let

(1.4) S, =X1+---+X,, Vo, =VarS,, and v, =V, — V,_1,

with the conventions that Sy = 0 and V = 0. Clearly V,, = v1 +---4v,,. We now estimate
vi. From the bilinearity and the symmetry of the covariance

k—1
Vi = COV(S}C7 Sk) - COV(Sk,17 Skfl) = Var Xk + 2 Z COV(XZ', Xk)
i=1
Hence, for second order stationary sequences,
k—1
(1.5) v = Var Xg + 2 Z Cov(Xo, X;)
i=1
and
(1.6) Vo, =nVar Xo +2 (n — i) Cov(Xo, X;).

i=1
From (1.5) and (1.6) we get the elementary lemma below.

Lemma 1.1. Let (X;);en be a sequence of real-valued random variables, stationary at
second order. Assume that the so-called series of covariances

Var XO + 2 Z COV(X(), Xz)

i=1
converges. Then the sum v of this series is nonnegative, and n~! Var S,, converges to v.

Remark 1.1. Sometimes v = 0. For example, if there exists a stationary sequence (Y;);cz
such that X; =Y; — Y;_4, satisfying the condition lim, o, Cov(Yp,Y,) =0, then v = 0. In
this specific case, the sequence (S,,)n>0 is bounded in L?, and consequently in probability.

Proof of Lemma 1.1. Since V,,/n = (v +---+v,)/n, the convergence of vy, to v implies
that of (V,,/n) to v via the Césaro mean theorem. Furthermore v > 0 since (V,,/n) > 0

for any positive integer n m



We now give a sufficient condition to ensure the convergence of the above series, which
will be called throughout series of covariances of (X;);eN-

Lemma 1.2. Let (X;);en be a sequence of real-valued random variables, stationary at
second order. Assume that there exists a sequence of nonnegative reals (d;);>o such that

(1) Cov(Xo, X;) <9; foranyi>0 and A =dy+ 22(2 < 0.
>0

Then Var Xy + 2 .-, Cov(Xy, X;) converge vers v élément de [0, A]. Furthermore

n k—1
(1.7) Var S,, < ndg + QZ(n —1)0; <nA and v <o+ ZZéi.

i=1 i=1
Proof of Lemma 1.2. Write
COV(X(),XZ') = 5@ - (51 - COV(X(), Xz))

The series ) .(6; — Cov(Xp, X;)) is a series of nonnegative reals and, consequently, con-
verges in IR". Hence the series of covariances converges to v in [—o0, A]. By the Césaro
mean theorem, n~! Var S,, converges to v. It follows that v belongs to [0, A]. Now (1.7)
holds due to the nonnegativity of the numbers §;. m

1.3. A covariance inequality under strong mixing

In this section, we give a covariance inequality for real-valued random variables sat-
isfying a strong mixing condition. This inequality will be applied in Section 1.4 to get
conditions on the strong mixing coefficients of stationary sequences ensuring the conver-
gence of series of covariances.

We start by defining the strong mixing coefficient coefficient of Rosenblatt (1956) be-
tween two o-fields A and B of (2, T,IP). We refer to Bradley (1986, 2005) for more about
strong mixing conditions and weak dependence coefficients and to Bradley (2007) for a
much more extensive treatment. In order to get more general results, we will also give less

restrictive coeflficients associated to real-valued random variables.

For X and Y real-valued random variables, we set

(1.8a) a(X,)Y)=2 sup |[P(X>zY >y —P(X>x)P(Y >y,
(z,y)€R?
and next
(1.8b) a(A)Y) = sup a(ll4,Y).
AcA
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Note that «(X,Y) = 0 means that X and Y are independent. Also a(A,Y) = 0 if and
only if Y is independent of 4. The strong mixing coefficient between two o-fields A and
B is defined by

(1.8¢) a(A,B) = sup a(A, Ip) = 2sup{| Cov(ll4,Ip): (A,B) € A x B}.

BeB
This coefficient is the Rosenblatt strong mixing coefficient, up to the multiplicative factor
2. This coefficient vanishes if and only if the o-fields are independent. Now, by the
Cauchy-Schwarz inequality,

| Cov(Il4, I5)| < +/Var 4 Var g < 1/4.
It follows that
(1.9) 0<a(A,B) <1/2.

Furthermore (A, B) = 1/2 if and only if there exists some event A in AN B with IP(A) =
1/2. In a similar way the coefficients defined in (1.8a) and (1.8b) are each bounded by 1/2.

Let us now give a slightly different formulation of these coefficients. Clearly
(1.10a) a(A, B) = sup{| Cov(ll4 — T4, 5)|: (A, B) € A x B}.

Next
Cov(lly — Tye, ) = E((IP(B | A) — IP(B))(1l4 — ac))

and consequently, for a fixed B, the maximum over A is reached by the measurable set
A= (IP(B|.A) >IP(B)). Consequently

(1.100) a(A,B) =sup{IE(|]IP(B | A) — IP(B)|) : B € B}.
In the same way, one can prove that

(1.10¢) alA,X) = jg]%]E(HP(X <z|A) -PX <x)|).

In order to state the covariance inequality, which takes into accounts the marginal

distribution of the random variables, we now introduce more notations.

Notation 1.1. For any nonincreasing and cadlag function f with domain the interval I,
let f~! denote the cadlag inverse function of f, which is defined by

fHu) =inf{z € I: f(z) <u}.
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The basic property of f~! is that :
x < f~'(u) if and only if f(z) > u.

If f is a nondecreasing and cadlag function, f~!(u) will be infimum of the set of reals x in
I such that f(x) > u. In that case, the inverse is left continuous and

x> f~(u) if and only if f(z) > u.

The distribution function F' of a real-valued random variable X is defined by F(x) =
IP(X < z). This function is nondecreasing and right continuous. The quantile function of
| X|, which is the inverse of the non increasing and right continuous tail function of | X|,
Hx(t) =IP(|X]| > t) , is denoted by Qx. For any monotonous function f, we set

fa—0)=lim f(y) and f(z+0)= lim f(y).

Theorem 1.1. Let X and Y be integrable real-valued random variables. Assume that
XY is integrable and let « = a(X,Y’) be defined by (1.8a). Then

o a/2
(a) | Cov(X,Y)| < 2/0 Qx(u)Qy (u)du < 4/0 Qx (u)Qy (u)du.

Conversely, for any symmetric distribution functions F' and G and any « in [0,1/2], one

can construct random variables X and Y with respective distribution functions F' and G
such that a(o(X),0(Y)) < «a and

a/2
(b) Cov(X,Y) > /0 Qx (u)Qy (u)du,

provided that QxQy is integrable on [0, 1].

Remark 1.2. Theorem 1.1 is due to Rio (1993). We refer to Dedecker and Doukhan (2003)
for extensions of (a) and to Dedecker, Gouézel and Merlevede (2010) for applications of (a)
to Markov chains associated to intermittent maps (these chains fail to be strongly mixing
in the sense of Rosenblatt). If & = 1/2 (no mixing constraint), Theorem 1.1(a) ensures
that

1/2

(1.11a) |Cov(X,Y)| <2 i Qx (u)Qy (u)du.

Now, if (Z,T) is a couple of random variables with the same marginal distributions as
(X,Y), then

(1.11d) E(|ZT)) §/0 Qx (u)Qy (u)du;

12



If furthermore X and Y have symmetric distributions, then the upper bound in (1.11b) is
reached for Z = eQx (U) and T = £Qy (U), where U is uniformly distributed in [0, 1] and
¢ is a symmetric sign, independent of U; see Fréchet (1951, 1957), Bass (1955) or Béartfai
(1970). Consequently, up to a constant factor, (a) cannot be improved.

Let us still give another byproduct of the covariance inequality. Let A be a o-field
of (,7,IP) and X be a real-valued random variable. Let Y be a real-valued random
variable with mean 0, and a = «(A,Y). Let €4 be the random variable defined by e 4 = 1
siIE(Y | A) > 0 et ¢4 = —1 otherwise. Then, from Theorem 1.1(a),

(1.11¢) E(XIE(Y | A)|) =Cov(e4X,Y) < 2/0a Qx (u)Qy (u)du.

Note that, if U has the uniform law over [0, 1], Q@ x (U) has the same law as | X|. Hence,
if | X| and |Y| are almost surely bounded, then (a) implies that

(1.12a) | Cov(X, )] < 20]|X] oo ¥ [ .

which gives again the covariance inequality of Ibragimov (1962).

For unbounded random variables, the Holder inequality applied to the upper bound in
(a) proves that, if p, ¢ and r are strictly positive reals such that p=t+ ¢t +7~! =1, then

(1.12b) | Cov(X,Y)| < 2P| X[ Y I

which provides a new constant in Inequality (2.2) of Davydov (1968).

Under the weaker tail conditions
P(X] > x) < (Ag(X)/2)? and P(]Y]>y) < (A(Y)/y)"
Theorem 1.1(a) gives:
(1.12¢) | Cov(X,Y)| < 2pat/PA (X)A(Y).

Consequently one can obtain the same dependence in « as in (1.12b) under weaker condi-
tions on the tails of the random variables. In the next section, we will prove that Theorem
1.1(a) provides more efficient upper bounds on the variance of partial sums than (1.12b).

Proof of Theorem 1.1. We first prove (a). Let
Xt =sup(0,X) and X~ =sup(0,—X).
Clearly

+oo
(1.13) X=XT-X = / (Txse — Mx<_g)dz.
0

13



Writing Y in the same manner and Applying Fubini’s Theorem, we get that

(1.14) Cov(X,Y) = /000/000 Cov(Ixsy — Uxc_g, Ly, — My oy )dzdy.

In order to bound up | Cov(X,Y)|, we now prove that:

(1.15) |Cov(lxsy — Ux ey, Iysy — Ay c—y)| < 2inf(o, P(|X| > z), IP(|[Y] > y) ).

Obviously the term on left hand is bounded up by 2a. Since X and Y play a symmetric
role, it only remains to prove that the term on left hand is bounded up by 2IP(|X| > ).
From the elementary inequality | Cov(S,T)| < 2||S]|1||T]|c applied to S = x>, — Ux<_y
and T' = y~, — Iy «_,, we infer that

‘COV(]IX>39 - ]IX<—xa ]IY>y - ]IY<—y>’ < Z]P(’X’ > x)v

which completes the proof of (1.15). From (1.15) and (1.14), we have
(1.16) | Cov(X, V)| < 2/ / inf(a, P(|X| > 2), P([Y] > y))dady.
o Jo

Now o
inf(a,]P(|X| > :L‘),IP(|Y| > y) ) = / ]Iu<]p(|X|>x)]Iu<]p(|y|>y)du.
0

Since (u < IP(|X| > z)) if and only if (x < @x(u)), one can write (1.16) as follows

(1.17) | Cov(X,Y)| <2 /0 /0 ( /0 ]Im<QX(u)IIy<QY(u)du)d:Udy.

To complete the proof of (a), it is then enough to apply Fubini’s Theorem.

To prove (b), we construct a couple (U, V') of random variables with marginal distri-
butions the uniform law over [0, 1], satisfying a(o(U),0(V)) < a and such that (b) holds
true for (X,Y) = (F~1(U),G71(V)).

Let a be any real in in [0, 1], and (Z,T) be a random variable with the uniform distri-
bution over [0,1] X [a/2,1 — a/2]. Set

(1.18) (U, V) =l zelay2,1-a/2)(Z,T) + Wi z¢[as2,1—a/2((Z, Z).

Then the random variables U and V' are uniformly distributed over [0,1]. We now prove
that

(1.19) a(o(U),o(V)) < 2a.

14



Let Py v denote the law of (U, V) and Py, Py denote the laws of U and V. Clearly
|Pyv — Py ® Pyl = 4a — 2a*

(here || . || denotes the total variation of the signed measure). Now, by (1.10b) and Remark
1.4 in Section 1.6, the total variation of Pyy — Py ® Py is greater than 2. Hence (1.19)
holds true.

Next, let (X,Y) = (F~1U),G71(V)). Since X is a measurable function of U and Y a
measurable function of V, a(c(X),o(Y)) < a. Now

XY = F Y (2)G" N (Z)zga2,1-as2 + FHZ)G HT) U zetas2,1-a/2)-

Taking the expectation in this formula (recall that Z and T are independent and that
IE(GYT)) =0), we get that
a/2 1
E(XY) = / F~ )G (u)du + / F~Yuw)G ™ (u)du.
0 1—a/2

Next, from the symmetry of F,
F7Y1 —u) = —F'(u) = Qx(2u) almost everywhere on [0,1/2]

(same equality for G). Hence

a/2 a
Cov(X,Y) > 2 /0 Qx (20)Qy (2u)du — /O Qx () Qy (u)du,

which completes the proof of (b). m
1.4. Variance of partial sums of a strongly mixing sequence

In this section, we apply Theorem 1.1 to get upper bounds on the variance of S,, =
X1+ ---+ X, in the strong mixing case. In this section, the sequence of strong mixing
coefficients (o, )n>0 of (X;)ien is defined by

(1.20) ap=1/2 and a, = sup a(o(X;),0(X;)) for n > 0.
(i,5)EN?
li=il>n

By definition the so defined sequence is nonincreasing.

For z in IR, let a(x) = o], square brackets designing the integer part. Let

(1.21) a Mu) =inf{k € N:ap Su} =) Tycq,

i>0
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(the second equality is due to the monotonicity properties of (a;);>0). Starting from
Theorem 1.1(a), we now get an upper bound on the variance of partial sums.

Corollary 1.1. Let (X;);en be a sequence of real-valued random variables. Set Q) =
QXk' Then

(a) Var §,, < En:zn: | Cov(X;, X;)| < 4zn:/1[oz1(u) A n)Q3 (u)du.
i=1 j=1 k=170
In particular, setting )
Maa@) = [ 0™ @i
for any nonnegative and nonincreasing function @) from [0, 1] into IR, we have:

(b) Var S, <4 Mjo(Q).

k=1

Proof. (b) is an immediate consequence of (a). To prove (a), notice that

n—1
a tu)An= Z Ty<aq,-
i=0

Clearly

(1.22) Var S, < Z | Cov (X5, X;5)|.
(4.5)€[1,n]?

Now , by Theorem 1.1(a),

Xli—j|

| Cov(X, X;)] < 2 / T Quw) Q@ (wydu < [ @+ @

0

Hence

n 1 n
Z ‘COV(XZ',XJ')’ < 22/0 Z]Iu<a|,-_j‘Qz2(u)du
i=1 j=1

(i,5)€[1,n]?

(1.23) §4;/0 [ (w) A n)Q% (u)du.

Both (1.22) and (1.23) imply Corollary 1.1(a). =

We now apply Theorem 1.1 and Corollary 1.1 to stationary sequences.
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Corollary 1.2. Let (X;);en be a strictly stationary sequence of real-valued random

variables. Then
(a) |Cov(Xo, X <2 [ Qhu)du
0

Consequently the series of covariances Var Xo + 23, Cov(Xo, X;) converges to a finite

nonnegative real o2 as soon as

1
(DMR) M. (Qo) = / o Hw) Qi (u)du < +oo.
0
In that case

(b) Var S,, < 4nMs o(Qo), liTm n~tVarS, =c? and o< AM5 (Qo)-

Proof. Inequality (a) is an immediate consequence of Theorem 1.1. Now, starting from
(a), we prove Corollary 1.2. Let §; = 2 [;" Q3(u)du. Clearly the sequence (6;); satisfies
condition (i) of Lemma 1.2, provided that (DMR) holds true. Corollary 1.2 follows then
from Lemmas 1.1 and 1.2. m

In some sense, in the strong mixing case the weighted moments M o(Qr) play the
same role as the usual second moments in the independent case. In the section below, we
give upper bounds for these weighted moments under various conditions on the tails of the

random variables and on the strong mixing coefficients.
1.4.1. Upper bounds for the weighted moments M, .

At first, note that, if U is a random variable with uniform law over [0, 1], then Q% (U)

has the same law as X ,3

If the sequence (X;);en is m-dependent,
m
Oéil(”) = Z ]Iu<o<i <m+1,
i=0

which entails that Ms o (Qr) < (m + 1)IE(X?). In that case condition (DMR) holds as
soon as X? is integrable.

If the random variables | X}| are uniformly bounded by some positive constant M, then
Q% (u) < M? and

1 00
My o(Qr) < MQ/ a Hu)du < MQ/ a(z)dz.
0 0

17



Then condition (DMR) holds if and only if

(1.24) D a; < oo,

i>0

which is the classical condition of Ibragimov.

We now give a condition on the tail distribution of the random variables Xj. Assume

that, for some r > 2, IP(| X%| > z) < (¢/z)" for any positive = and any integer k£ . Then

—1/r

the quantile fuctions x are bounded up by cu , whence

0 7] 2
Ms.0(Qx) < ¢ “2rqu < 21 ;R
0@ <@ [ i< TS !

i>0

Consequently condition (DMR) holds as soon as
(IBR) a7 <
i>0

In the stationary case, Ibragimov (1962) obtains the convergence of the series of covariances
under (IBR) together with the more restrictive assumption of existence of the moment of

order r for the random variables X;.

Assume now that, for some r > 2, the random variables X} belong to L". Then, by

the Holder inequality,

M o (Qr) < (/Ol[a—l(u)]r/(r—mdu)1_2/T (/01 Q’,;(u)du>2/r.

The second integral on right hand is equal to || X2, since Q(U) has the same distribution
as | Xx|. Now let [y] denote the integer part of y and set a(y) = ap,. Since the inverse
function of u — o~ (u)]"/""?) is x — a(x'72/7),

/Ol[a_l(u/Z)]T/(r_z)du - /Oo a(z' =2/ dz

0
= ((+ 1)/ _/r=2)) .
>0

Now
(Z- + 1)r/(r—2) o Z-r/(r—Q) < T‘(T _ 2)—1@- + 1)2/(7’—2),

which entails that

1
R e S

r—4
>0

18



Hence

(1.250) Mo Qi) < exp(2/r) (3 + 120 2a,) 2

i>0

In particular, in the stationary case, condition (DMR) holds if

(1.25b) D i+ 1) Dy < 0.
i>0

Under the same moment condition, Davydov’s (1968) covariance inequality ensures the
convergence of the series of covariances under the more restrictive condition (IBR). For
example, if

o = Ok~ =D (log k) ~9)
(note that r/(r — 2) is the critical exponent), (1.25b) holds for # > 1 and (IBR) needs the
stronger condition 6 > r/(r — 2).

In oder to give conditions ensuring (DMR) under more general moment conditions on
the random variables X} and on a~!(U), we now introduce the class of convex functions
(s R + . : e O2)
(1.26) ¢ ={¢p:R" - IR": ¢ convex, nondecreasing, ¢(0) = 0, lim ——= = oco}.

+oo T
For any ¢ in ®, the Young dual function ¢* is defined by
¢"(y) = sup(zy — ¢(x)).

x>0

We refer to Annex A, for some properties of this involutive transformation and to (A.5),
annex A, for a definition of the Orlicz norms below. Inequality (A.8), Annex A, ensures
that

Mz, (Qr) = E(a™ (U)Qi(U)) < 2[a™'(U))]

Suppose there exists ¢ > 0 such that ¢(X?/c’) is integrable. Then the above inequality
shows that condition (DMR) is satisfied if

X2 o-

¢*

(1.27) E(¢* (a1 (U)/c)) < +o0
for some positive constant c. Since U has the uniform law over [0, 1],
P(a Y (U) > z) =PU < a(z)) = afz).

Hence, by (A.3), Annex A,

cE(¢" (o™ (U)/c)) /Ooo P(a™'(U) > z)(¢") (z/c)dx

(1.28) /000 a(z)¢' "z /c)dx,
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where ¢’'~! denotes the left-continuous inverse of the derivative of ¢. Since ¢’~! is nonde-
creasing, condition (DMR) is satisfied if

(1.29) D i N ((i+ 1) /) < o0

i>0

for some positive constant ¢. Bulinskii and Doukhan (1987) generalized Davydov’s covari-
ance inequality (1968) to Orlicz spaces. For sequences of random variables with a finite
¢-moment, they obtain the convergence of the series of covariances under the summability

condition

(HER) D ¢ (1 ow)ai < o0,

i>0

which was introduced by Herrndorf (1985) for the central limit theorem. In Rio (1993) it
is shown that this condition is more restrictive than (1.29), which we now detail for fast

mixing rates.

Geometric and subgeometric rates of mixing. For b > 0, Consider the function
op(x) = z(log(1 + x))°.

This function belongs to ® and has derivative

(1.30) oy (x) = (log(1 + x))® 4+ bx(1 + )~ (log(1 + )"~ L.

The inverse function of ¢y, is equivalent to z — exp(z'/?) as = tends to co. Consequently,
if

(1.31) (X2 (log(1 + | Xo)))") < o0,
then, by (1.29), condition (DMR) holds true if there exists some positive 7 such that
(1.32) a; = O(exp(—7i/?)) as i — oo.

In particular, if a; = O(a’) for some a in ]0, 1] (geometric mixing rate) (1.32) and (1.31)
hold with b = 1, and (DMR) holds as soon as

(1.33) IE(X3 log(1 + | Xo])) < 0.

Let us compare (1.33) with condition (HER). Under (1.31), (HER) holds if and only the

series Y ;5 | log a;|~°
series. For example, under (1.33), (HER) does not ensure the convergence of the series of

converges. Condition (1.32) does not ensure the convergence of this

covariances for geometric rates of convergence.
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Numerical comparisons. We now compare the constants arising from our covariance in-
equality and Davydov’s inequality in the following case: the sequence (X;);en is strictly
stationary, IE(X3) < oo and o; < 2717%. Applying Davydov’s covariance inequality with
the constant in (1.12b), we get that

(1.34) | Var S, — n Var Xo| < 4n|| X0 Y vai < 2(V2+2)n|| Xoll3.
>0

This upper bound has to be multiplied by 2v/2 when using the initial constant of Davydov
(1968).
Now, by Theorem 1.1(a) together with the Schwarz inequality,

| Var S,, —n Var Xg| < 4n/ (at(u) — DQ2(u)du
0

< dnll(aH(U) = D l2]1 Xol3.

Since the inverse function of u — (o™ *(u) — 1)3 is z — a(1 + /),
07 @) =14l = [ ali+va)ds,

and our bounds lead to
(1.35) | Var S,, — n Var Xo| < 2v6n[| X, ||%.

The numerical value of the constant in (1.34) is 6.83 while the numerical value of the
constant in (1.35) is 4.89.

1.5. Applications to density estimation

In this section, (X;);en is a strictly stationary sequence of random variables with values
in RY. The marginal distribution P is assumed to be absolutely continuous with respect
to the Lebesgue measure on IRY. We are interested in estimating the density f of P. In
this section, the strong mixing coefficients of (X;);en are defined by (1.20).

1.5.1. Kernel density estimators.

We start by defining kernel density estimators. Let K : IR? — IR be an integrable
kernel, satisfying

(H1) / K(z)dr =1 and K?(x)dz < +oo.
R4 R4
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Let then (h,)n>0 be a sequence of positive reals converging to 0. The kernel density
estimator f,, at time n is defined by

(1.36) falz) = (nhy)™ ) K(hy'(z — Xk)).
k=1

For stationary and strongly mixing sequences, Mokkadem (1987) proves that the L? norm of
frn —IE(fy) has the same order of magnitude as in the independent case , under condition
(1.24). He also obtains some related results for LP-norms. In this section, we recall
Mokkadem’s result in the case p = 2 and we give a proof of this result.

Theorem 1.2. Let (X;);en be a strictly stationary sequence of observations with values
in RY. Let f, be the kernel density estimator as defined in (1.36). Assume that (HI)
holds. Then

n—1

/ Var f,(z)dz < 8(nhd)~? Z Q; K?(x)dz.
R4 — /R

Proof. Set h, = h and Kj(z) = K(x/h). Let P denote the common marginal distri-
bution of the observations Xj. Define the empirical measures P,, and the normalized and
centered empirical measure Z,, by

(1.37) Py=n"") bx, and Z,=n(P, - P).
k=1
With these notations, Theorem 1.2 is equivalent to the inequality below:

(1.38) y E((Z,  Kp(2))?)dz < 8 ; o | K2(x)dz.

Now, by the Parseval-Plancherel identity,
[ s En@)pdo = em [ 120K
R R
and consequently
" E((Zy * Kp(x))?)dz < (2m) 71 L (12, (&)*)| K (€)[?dé

< Cn) s BZ,(P) [ 1K€ P

£cR?

< sup B(|Z, () | Kj(x)da
§€Rd R4

22



by the Parseval-Plancherel identity again. Next

n

nlZ,(©) = (3 (eos(e.X0) — Bleos(6.X0))) +

k=1

(i(sin(ﬁ.Xk) - IE(sin(g,Xk)))>2'

k=1

To finish the proof of (1.38), we start from the above equality and we apply Corollary
1.1 twice. Noting that the random variables cos(£.X}) and sin(£.X}) take their values in
[—1, 1], we get that

1
B(Z,©P) <8 [ (@™ (w) An)du
0
which completes the proof of (1.38). m
1.5.2. Projection estimators.

Let w: RY — IR™ be a nonnegative and locally square integrable function. The space
IR is equipped with the measure w(z)dz. Let (ej)j>0 be complete orthonormal system in
the Hilbert space L?(w(z)dz). Suppose that the observations Xj have a common law P
with density f(z) with respect to the Lebesgue measure on IR?. Assume furthermore that
f belongs to the Hilbert space L?(w(x)dz). Let

a = | f@)e;(@w(x)de.
]Rd
Then, by the Plancherel identity,
F(t) =) aje;(t).
§>0

Let I1,,, f denote the orthogonal projection of f on the vector space generated by e, ..., €.
Then

Hmf = Z a;€;.
j=1

Furthermore II,, f converges to f in L?(w(x)dz) as m tends to infinity. Now define the
estimators a; of the coefficients a; by a; = P,,(we;). Then I[E(d;) = a; and, under suitable
condtions on w and f, a; converges to a; as n tends to infinity. Now, we set, for some

nondecreasing sequence (my,), of positive integers going to infinity (to be choosen later),

(139) fn = Zn djej = n_l Zn Zw(Xk)ej(Xk)ej.
j=1

j=1k=1
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Then

(1.40) E(fa) = aje; =, f.
j=1

Hence IE(f,) converges to f in L2(w(x)dz) as n tends to infinity. In order to get the
convergence of f, to f in L2(w(z)dx), it is then enough to bound up the variance of
fn. In Theorem 1.3 below, we give an upper bound which is efficient for unconditional
orthonormal bases or Riesz bases. We refer to Leblanc (1995) for wavelets estimators of
the density and to Ango-Nzé (1994) for general linear estimators of the density.

Theorem 1.3. Let (X;);en be a strictly stationary sequence of observations with density
f in the Hilbert space L?(w(x)dz). Then

n—1 My
(a) n/]Rd w(z) Var f, (z)dz < 4 ; o xseung)d <w(13) ]; \6]’(95)])2‘
Let h be defined by h(z) = (1 + x)log(1 + «) — «. Then
(b) n/]Rd w(z) Var f,, (z)dz < 20|[a™ (U) An, mseullgd <w2(.:c) JZ:; e?(:c))

Proof. For convenience, write m = m,. Since (e;);e[1,m] is an orthonormal system, it is

easy to check that

m
(1.41) n/ w(z) Var f,(z)dz = ZVar Zn(wej).
Let €1,...,&,, be a finite Rademacher sequence, that is, a sequence of symmetric and

independent signs. Suppose furthermore that this sequence is independent of (X;);eN.
Then

(1.42) ZVarZ we;) (( (quq)) )

71=1

We now proceed conditionally on €1,...,¢,,. By Corollary 1.1,

m 9 n—1
]E((Zn<25jwej>> \51,...,5m> §4Zai
j=1 i=0

Noting that

> uXo)es (o)

| esmes ] < L v o]

7j=1
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we then get Theorem 1.3(a).

We now prove (b). Let

e= o~ ()]s and ¢ = | (i sjw(Xo)ej(X0)>2‘
j=1

B

For (e1,...,em) in {—1,1}™, let Q,,... ., be the quantile function of the random variable

) Z;nzl sjw(XO)ej(Xo)‘. By Corollary 1.1 applied conditionally on (g1,...,&m),

(1.43) E((Zn<iejwej))2)§22‘m > / nlQ2 . (u)du.

(Ela 75m)€{ 1 1}m

Next, by inequality (A.7) in Annnex A, applied with 2 = [a7!(u) A n]/c and y =

2
€1y.-3Em

(1.44) éIE((Zn<§:€jwej>> )<4+22 m Z /h* e W)/ )du

(Ela Em)

(u)/c, we have

Now Q% (U) has the law of Z2. Hence

/Oh*( ? e () = B (n

which, together with both (1.44) and inequalities (1.41) and (1.42) ensures that

iejw(Xo)ej(Xo)r)),

Jj=1

n/}Rd w(z) Var f, (z)dz <

(1.45) 8o~ (1) /\n||hH<§: sjw(Xo)ej(Xo)>2‘

Jj=1

B

To complete the proof, it remains to show that

h*<—sup< ie )

xR j=1

(1.46) H (i gjw(XO)ej(Xo))z‘

Proof of (1.46). Let (Y1,...,Y,,) be a Gaussian random vector with independent and
N(0,1)-distributed components. For any reals py,...,p, and any positive integer k,

E((pie1 + - pmem)*®) SE((p1Y1 + - - - oY) ).
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Consequently, for any positive s such that 2s(p? +---p2,) < 1,

E(exp(s(pier + - pmem)?)) < E(exp(s(p1Y1 + - pmYm)?))
(1.47) < (1—=2s(pf +---pp) "2

Let then 9 (z) = (1 — 22)7'/2 — 1 — 2. Since the Legendre transform h* of the function h
is h*(z) = e* — 1 —x (cf. Annex A), it follows from (1.47) that

(1 (o 3 esuXoe, (%)) | %0 = 2) <
j=1

(1.48) Y(sw?(@)(ef () + - + ep, (2))),

provided that sw?(z)(ef(x) + -+ + €2, (z)) < 1/2. Hence

H(i 5jw(X0)€j(X0)>2’ LS ¢_1(1) sup (wz(a:)zm:e?(x)).

CKGIRd ]:1
(1.46) follows then from the fact that ¢(2/5) < 1. m

Application of Theorem 1.3(a) to unconditional bases. Suppose that (ey,...,e,,) is an
unconditional basis, which means that there exists some positive constant K, independent
of m, such that

<K\/_ sup |¢jl.

Jj€E[1,m)]

(1.49) H Z c;We;
j=1
Then Theorem 1.3 ensures that
(1.50) / w(z) Var f,, (z)dx < 42" Z Q.
]Rd

For example, suppose that w(z) = 1o ;) and let us consider the histogram bases

(1.51) ej7m(x) = \/E]I](jfl)/m,j/m] fOI‘j € [1,m].

Then (1.49) holds with K = 1.

We now apply these facts to laws with density f with support in [0, 1]. Let § be some
real in ]0,1]. We denote by F(d,C) the class of densities with support included in [0, 1]
such that

(1.52) (@) = f(y)| < Cle —y|° for any (z,y) € [0, 1)%,
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Starting from (1.52), one can easily bound up the absolute value of the bias term IE(f,,)— f.
Together with Theorem 1.3(a), this yields the result below on the mean integrated square

error.

Corollary 1.3. Let (X;);en be strictly stationary sequence of real valued random vari-
ables. Assume that the random variable X; has a density f in the class F(9,C'), for some
C > 1. For the bases defined in (1.51), let

Do(F(6,C)) = inf  sup /1 ((f@)—ipn(ej,m)ej,m(x)f)dx.

m>0 ¢e 7 (5,C)

Then .
n- 25/(1+25)
Do(F(5,C)) < 802< -1 ak)
k=0
Consequently, if Zkzo ay < 00, then
(a) Dy(F(5,C)) = O(n2/(1F20)
and, if a, = O(k~“) for some a in ]0,1[, then
(b) Dy(F(8,C)) = O(n~200/(1F20)),

Remark 1.3. (a) gives an upper bound of the same order as in the independent case. By
contrast (b) provides a slowler rate. It would be interesting to study the LP risks for p < 2
in that case.

Application of Theorem 1.3(b) to Riesz bases . Suppose that (e;);>o satisfies the Riesz
condition:

(1.53) [w?(ef + -+ e2)|loo < K'm

for some positive constant K’. Then, by Theorem 1.3(b),

(1.54) /R w(e) Var fu(@)dz < 206" = () A
Under the mixing condition

(1.55) > ailloga;| < o0,

i>0
(1.54) together with Theorem 1.3(b) yields
(1.56) / w(z) Var fn(z)dz = O(m/n).
R4
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For example, if m = 2m’ + 1, w(z) = Mg q) and ey,. .., e, is the system of trigonometric
polynoms of degree at most m’, (1.53) holds with K’ = 1. In that case, if F is the ball
of radius R of the Sobolev space Hs(T') on the torus 7" = [0,1]/{0 = 1}, Theorem 1.3(b)
yields the minimax bound

(1.57) inf sup/0 IE((f(g:) — ZPn(ej)ej(:U))2>dx = O(n~2¢/(1+29)y,

m>0 fer =

Note that, for S-mixing sequences, (1.57) holds under the condition Zkzo Br < 00, as
shown by Viennet (1997).

1.6. A covariance inequality under absolute regularity.

In this section, we state and we prove Delyon’s covariance inequality (1990) for random
variables verifying g-mixing type conditions. We start by the definition of the S-mixing
coefficient between two o-fields. These coefficient are also called absolute regularity coef-

ficients.

Definition 1.2. Let A and B two o-fields of (€2, 7, IP). Let the probability measure Pygpn
be defined on (2 x Q, A® B) as the image of IP by the canonical injection ¢ from (2,7, 1IP)
into (© x Q, A® B) defined by i(w) = (w,w). Then

Pass(A x B) = P(AN B).

Now, let us denote by P4 (resp. Pg) the restriction of P to A (resp.B). The [-mixing
coefficient of Volkonskii and Rozanov (1959) is defined by

B(A,B) = sup |Pagg(C)— P4 ® Pg(C)|.
CeARB

This coefficient is also called coefficient of absolute regularity.

Remark 1.4. Let C = (A x B) U (A° x B¢). Then
Pass(C) — Pa Ps(C) = 2(P(A N B) — P(A)P(B)).
This equality ensures that (A, B) > a(A, B).

We now introduce the stronger uniform mixing coefficient of Ibragimov (1962).

Definition 1.3. The uniform mixing or ¢-mixing coefficient ¢(.A, B) between two o-fields
A and B is defined by

o(A,B)= sup [P(B|A)—-IP(B)|.
(A,BYEAXB
P(A)#0
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This coefficient belongs to [0, 1]. Contrary to the S-mixing coefficient, (A, B) # ¢(B, A).

In order to compare (A, B) and ¢(A, B), we will use the following identity, whose
proof is left to the reader:

(1.58) B(A,B) = % sup{ 3" ST P(4; 1 B) ~ P(A)P(B))] .
icl jeJ

the maximum being taken over all finite partitions (A;);c; and (B;),es of £ with the sets
A; in A and the sets B; in B.

Now, starting from (1.58) we compare the two mixing coefficients. Fix ¢ in I. Let J’
be the set of elements j of J such that

IP(A; N B;) > 1P(A;)IP(B;))
and let B be the union of the sets B; for j in J’. Then

5 S IP(A N B;) — P(A)P(B)) = P(A)(P(B | A7) — P(B)
jeJ
(1.59) < P(A) (A, B).

Summing on I, we thus get that

(1.60) B(A,B) < p(A, B).

Ibragimov (1962) has given a suitable covariance inequality for real-valued random
variables under a uniform mixing condition. It is important to note that this inequality
cannot be deduced from Theorem 1.1(a). Nevertheless this covariance inequality is a
corollary of a more powerfull covariance inequality involving the S-mixing coefficient, due
to Delyon (1990). We now state and prove this inequality. We refer to Dedecker (2004)

for an extension to a weaker notion of dependence.

Theorem 1.4. Let A and B be two o-fields of (2, T,IP). Then there exist random variables
d4 and dg with values in [0, 1], respectively A and B-measurables, satisfying

E(da) = E(dp) = B(A, B),

and such that, for any pair (p,q) of reals in [1,00] with (1/p)+ (1/q) = 1 and any random
vector (X,Y) in LP(A) x L1(B),

(a) | Cov(X,Y)| < 2BY/7(d 4| X [P)EY 2 (dg Y |%).

29



Furthermore ||d 4|00 < ¢(A,B) and ||dp||s < ¢(B,.A). Hence

(b) | Cov(X,Y)| < 20(A, B)YPo(B, A) 4 X |, [[Y |-

Remark 1.5. (a) was proved by Delyon (1990), (b) is due to Peligrad (1983) and implies
Ibragimov’s covariance inequality (cf. also Bradley and Bryc (1985), Theorem 1.1.).

Proof. Since (X,Y) is A®B-measurable, by the polar decomposition of IP 4o5—IP 4 @P3,
we have:

| Cov(X,Y)| < / XY]d|IP aos — P4 @ Pgl.
QAxN

Let p = |IP4gs — IP4 ® IPg|. By the Holder inequality,

(L61)  |Cov(X,Y)| < (/

QxQ

X(@)Pdues,e) | Y () dp(ew.e))

Let p 4 denote the first margin of p and up the second one. Then

/ X (@) Pdpr(w, o) = / X[Pdyis and / Y () (o) = / Y |“dpas.
QXN Q QOxN Q

Hence, to prove Theorem 1.4(a), it is enough to prove that u4 = 2d 4P and ug = 2dgPp,
for random variables d 4 and dg with the prescribed properties.

Starting from (1.58), one can prove that

(1.62) fa(A) :sup{ZZuP(AmBj) —IP(Ai)IP(Bj)\},

iel jeJ

the maximum being taken over all finite partitions (A;);c; and (B;) e of Q with the sets
A; in A and the sets B; in B. Therefrom, for any A in A,

) < Sup{zz P(A; N B;) +IP<AZ-)IP(B]~))} < 2IP(A).

el jed

Consequently by the Radon-Nikodym theorem, p 4 is absolutely continuous with respect
to the restriction of IP to A, from which it follows that pu4 = 2d4IP, for some nonnegative
A-mesurable random variable d 4 verifying d4 < 1. Finally

E(da) = /Qd/u =283(A, B),

which completes the proof of (a).

To prove (b), it suffices to note that p4(A) < 2¢(A, B)IP(A) by (1.59). Consequently
da < (A, B) a.s., which implies Theorem 1.4(b). m
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Starting from Delyon’s covariance inequality, we now give new upper bounds on the

variance of partial sums of functionals. These bounds are due to Viennet (1997).

Corollary 1.4. Let (X;);en be a strictly stationary sequence of random variables with
values in some Polish space X. Set 3; = f(0(Xy),0(X;)). For any numerical function g,
let

Sn(g) = 9(X1) + - +9(Xp).

Denote by P the law of X. Then there exists a sequence (b;);cz of measurable functions

x
and such that, for any function g in L?(P),

from X into |0, 1], satisfying

(a) Var S, (g) < n/ (14 4by + - + 4by_1)g2dP.
X
Consequently, if B=1+43._,b;, then
(b) Var S, (g) < n/ Bg*dP.
X

Remark 1.6. Starting from (b), one can obtain the bounds of Corollary 1.1 with the
S-mixing coefficients instead of the a-mixing coefficients. Indeed, for any positive 1,

/ b;g*dP = / / Wy <p, ()97 (2) P @ N(dz, dt),
X xx[0,1]

where A denotes the Lebesgue measure on [0,1]. Let b(¢, 2) = T;<p,(x) and h(t, z) = g*(x).
By (1.11b) (confer Lemma 2.1, Chap. 2, for a proof of this fact),

1 Bi
/ / ey, (009> (@) P © A(de, di) < / Qu)Qu(w)du < | Q2. (u)du
xx[0,1] 0 0

(recall that @), = Qﬁ( Xo))' It follows that
1
(1.63) / Bg?dP << 4/ B™Hu) Q2 (u)du.
X 0
Proof of Corollary 1.4. From the stationarity
n—1
Var S,,(g) — n Var g(Xp) < 2n Z | Cov(g(Xo), 9(X;))]-

=1
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We now apply Theorem 1.4(a) with p = ¢ = 2. There exist random variables By ; and B; o
with values in [0, 1] and with mean value (;, measurable respectively for o(Xy) and o(X;),
such that

| Cov(g(Xo), 9(X:))| < 2y/TE(Bo ig2(Xo))E(B: 09%(X,))
< E(Bo,i9°(X0)) + E(B;09° (X))

Now By, = bo.i(Xo) and B; o = b; 0(X;) and therefrom, since Xy and X; have the common
marginal law P,

| Cov(g(Xo),9(Xi))| < /X(bi,o + bo.;)g*dP.

Setting b; = (b; .0 + bo.;)/2, we then get (a). (b) follows immediately. m

Corollary 1.4 yields better results for density estimation than Corollary 1.1. For ex-
ample, we can relax the summability condition on the coefficients in Theorem 1.4(b), as
shown by the result below, which is a particular case of the results of Viennet (1997) on
LP risks of linear estimators of the density. We refer to Dedecker and Prieur (2005) for
extensions of this result to non absolutely regular sequences.

Corollary 1.5. Let(X;);en be a strictly stationary sequence of random variables with
values in IR?, satisfying the assumptions of Theorem 1.4. Then, for the projection estimator
of the density defined by (1.39),

n—1 m
b Var f,,(z)dx < (1 + 4 ] ( 2 2 >
) n [l Var fu(a)de < (14430 ) sup (u2(0) 30 3@

i=1  z€RI j=1

Proof. By (1.41) and Corollary 1.4,

n/]Rd w(z) Var f,(z)dr < ; /]Rd (1+4 ; bi(z)) f(x)w? (x)eF (x)dz,

with b; > 0 and [. bi(z) f(x)dz < ;. Hence

n/ w(z) Var f(z)dz <
R4

2 2 i\ T xT)ax
(1.64) ms;£d<w (a:)j;ej(a:)> /}Rd(1+4;bz( ) f(w)de,

whcih completes the proof.
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1.7. Other covariance inequalities under strong mixing *

In this section, we give sharper bounds on the covariance under strong mixing condi-
tions. Recall that Theorem 1.1 gives upper bounds involving the quantile function of | X]|.
In this section, in order to get sharper bounds, we will use an other approach. Let L, (F,G)
denote the class of random vectors on IR? with given marginal distributions functions F
and G, satisfying the mixing constraint a(X,Y) < a. In the case @ = 1/2 (no mixing
constraint), Fréchet (1951, 1957) and Bass (1955) proved that, for continuous distribution
functions F' and G,

1 1 1
(1.65) COV(X,Y)§/0 F_l(u)G_l(u)du—/O F_l(u)du/o G H(u)du,

and that the equality holds when FI(X) = G(Y) in the continuous case. In a similar way

(1.66) Cov(X,Y) 2/01F_1(u)G_1(1—u)du—/01 F_l(u)du/OlG_l(u)du,

and the equality holds when F'(X) = 1—G(Y') in the continuous case. Since the infimum of
Cov(X,Y) over the class L, (F,G) is nonpositive, the lower bound in (1.66) is nonpositive.
It follows from this remark and (1.65) that

Cov(X,Y) < /1 FHu)(G Y uw) — G711 — u))du
0
Next, using the change of variables t = 1 — u in the integral on right hand, we get that
Cov(X,Y) < /1 P11 — ) (G (1 — u) — G~ (u))du.
0
Define now the dispersion function D of F' by
(1.67) Dp(u) = F (1 —u) — F~'(u).

Using both the two above upper bounds on Cov(X,Y'), we then get that
1/2
(1.68) Cov(X,Y) < Dp(u)Dg(u)du.
0

This upper bound is slightly suboptimal. Theorem 1.5 below gives an upper bound on the
covariance involving Dp D¢g with a multiplicative factor (1 — 2u), providing a better upper
bound in the case a = 1/2.

Theorem 1.5. Set z, = (1 —+/1—2a)/2. Let (X,Y) be an element of L, (F,G). Then
(a) | Cov(X,Y)| < / " (1 = 2u) Dy (u) Dy () du.
0
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If (X;)icz is a strictly stationary sequence of random variables with distribution function
F', then

1/2
(b) | Var S,, — n Var Xg| < 2n/ (™' (2u(l —u)) — 1), D (u)du.
0

Remark 1.7. Exercise 8 at the end of this chapter is devoted to a comparison between
Theorem 1.1(a) and Theorem 1.5(a).

Proof. The main step is the proof of (a). Without loss of generality we may assume that
0 is a median for the distributions of X and Y. For any real-valued random variable Z,
let Z* = max(0,7) and Z~ = max(0, —Z). Then

Cov(X,Y) = Cov(XT,YT) +Cov(X,Y ") — Cov(XT,Y ) — Cov(X,YT).

We now bound up the four terms on right hand. Let Hx(z) = IP(X > z) and Hy (y) =
P(Y > y). From the Hoeffding identity we have:

Cov(X+,Y*) = /OOO/OOO (]P(X >2,Y >y) - HX(ac)Hy(y)> dzdy.
Now
P(X >2,Y >y) - Hx(2)Hy (y) < inf(Hx (), Hy (y)) — Hx () Hy (y)-
Let R be the increasing function defined on [0,1/2] by R(t) = t — t2. Applying the

elementary fact that inf(a,b) — ab < inf(R(a), R(b)) for any reals a and b in [0,1/2] and
the strong mixing condition, we get that

P(X >2,Y >y) - Hx(2)Hy (y) <inf(R(Hx(z)), R(Hy(y)),a/2)
for any positive x and y. It follows that
Cov(XT,YT) < /000/000 inf(R(Hx(x)), R(Hy (y)), a/2)dzdy.
Let V be a random variable with uniform distribution over [0, 1]. Set
Z=F'1-R'V)y<qayz and T=G (1 - R (V) yqno
Then, for any positive reals z and y,

inf(R(Hx (x)), R(Hy (y)), a/2) =P(Z > 2,T > y).
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Hence
af2
Cov(XT,YT) <IE(ZT) = / F7'1-R )G (1 - R *v))dv.
0
In the same way

a/2
Cov(X,Y)g/O F YR ()G YR (v))dv.
Now

—Cov(XT, Y~ / / (Hx(z)G(—y) —P(X > z,Y < —y))dzdy

< /0 /0 inf(H x (2)G(—y), 0/2)dady

< % /0 OO/O it (Hx (2), G(—y), a)dzdy.

Therefrom, proceeding as in the proof of Theorem 1.1(a),

—Cov(XT,Y7) < %/Oa F7H1 =) (=G (v))dv

a/?2
= /0 F7H1 - 20) (-G *(2v))dv.

Now, from the convexity of R™1 on [0,1/4], 2v > R™1(v). Since v — —F~1(1 —v)G~1(v)
is nonincreasing on [0, 1/2], we deduce from the above inequality that

a/2
_Cov(XH, V) < —/0 FY(1— R ()G (R (v))dv.

Interverting X and Y, we get a similar upper bound for — Cov(X~,Y "), and, collecting
the four upper bounds above, we then get that

(1.69) Cov(X,Y) < /0 i Dp(R™'(v))Dg(R™(v))dv.

Since the dispersion function associated to the distribution function of —X is also equal
to D almost everywhere, the above upper bound still holds true for Cov(—X,Y). Now
Theorem 1.5(a) follows via the change of variable u = R™1(v).

We now prove (b). Assume that the random variables X; have the common marginal
distribution function F. With the notations of Section 1.4, Inequality (1.69) yields

Ot1/2
| Var S,, — n Var Xg| < Qn/ (a™'(20) — 1) D% (R (v))dv.
0
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Using again the change of variable u = R~!(v) in the above integral, we then get Theorem
1.5(b).

EXERCISES

1) Let U be a random variable with uniform law over [0,1] and F' be the distribution
function of some real-valued random variable.

a) Prove that X = F~1(U) has the distribution function F.

b) Prove that, if F' is continuous everywhere, then F'(X) has the uniform law over [0, 1]
and F(X) = U almost surely.

c) Let F' be any distribution function (jumps ate allowed) and ¢ be a random variable
with uniform law over [0, 1], independent of X. Prove that

V= F(X -0)+6(F(X) - F(X —0))

has the uniform law over [0, 1], and that, almost surely F~!(V) = X. Hint: prove that
X > F~1(V), and next use the fact that X and F~!(V) have the same law.

2) Let 1 be a law on IR? and let X be a random variable with distribution the first
marginal law of u. Let § be a random variable with uniform law over [0, 1], independent
of X. Construct a function f such that (X, f(X,0)) has law p. Hint: if Z = (T, W) has
law p, consider the inverse of the distribution function of W conditionally to T'.

3) Let F' and G be distribution functions of nonnegative real-valued random variables, and
(X,Y) be a random vector with marginal distribution functions F' and G.
a) Prove that

(1) E(XY) < /0 F~Huw)G ™ (u)du.

Suppose now that the equality holds in (1) . Let U be a random variable with uniform
distribution over [0,1]. Prove that (F~1(U),G~1(U)) and (X,Y) are equally distributed.
Hint: consider the bivariate distribution function of (X,Y").

b) Let 6 be a random variable with uniform law over [0,1], independent of (X,Y).
Prove that, if the equality holds true in (1), then one can construct a random variable
V = f(X,Y,§) with uniform law over [0, 1], such that (X,Y) = (F~}(V),G~1(V)) ps.

4) Let X be a real-valued random variable and let @ be the quantile function of | X|. Let ¢
be a random variable with uniform law over [0, 1], independent of X, and let £(«) be the
class of nonnegative integer random variables A on (2, 7, IP), such that IP(A > z) = a(z).
Prove that

@) / o~ (w)Q2(w)du = sup T(AX2).
0 AcL(a)
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5) Throughout this exercise, the strong mixing coefficients «,, are defined by par (1.20).
Let (X;)iez be a strictly stationary sequence of real-valued random variables with law P
and distribution function F'. Let Z,, be defined by (1.37). We are interested in the variance
of Z,(I) for I interval. For any Borel set A, set

k
I,(A) = sup{z Var Z,,(4;) : {A1,..., A} finite partition of A}.
i=1

a) Prove that I,, is a nondecreasing and nonnegative function.
b) Prove that, for any Borel sets A and B with ANB =0, I,(AUB) > I,(A) + I,(B).

c¢) Prove that

(3) I,(A) < sup VarZ,(f14).

lflleo=1

Deduce from (3) that I,(R) <1+4>" " a;.
d) Prove that there exists some distribution function G,, such that

(4) Var Z,,(]s,t]) < (Gp(t) — Gn(s))(1 + 4 z_: ;).

for any (s,t) with s <t¢. Compare (4) with Corollary 1.1.

6) Let F' and G be distribution function of nonegative and integrable random variables
and X and Y be random variables with respective distribution functions F' and G. Let ®
be the set of convex functions defined in (1.26).
a) Suppose that F' and G are continuous one to one maps from IR* on [0,1[. Prove
that
1
(5) / F~Yu)G™ (u)du = inf IE(¢*(X) + ¢(Y)).
0

oed

Hint : define ¢ by ¢/(G™1) = F~1.

b) Does (5) hold in the general case?

c) Let Z be a nonnegative random variable with distribution function H. Suppose
that, for any ¢ in @, if ¢(Y")) is integrable, then ¢(Z) is integrable. Prove that under the
assumption of (a),

/01 F~ 1 w) G (u)du < oo = /01 F~Yu)H Y (u)du < 0.

7) Let X and Y be complex-valued integrable random variables such that | X'Y| is integrable
and let a = a(o(X),0(Y)). Let RX and ZX denote respectively the real parts and the

imaginary part of X.
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a) Prove that QRX S Q\X| and QIX S Q|X\
b) Suppose that E(XY) — E(X)E(Y) = p > 0. Apply Theorem 1.1 to the real parts
and the imaginary parts of X and Y to prove that

(6) BOXY) ~ BOOBW) <4 [ Qui(u)Q ()

c) The general case. Suppose that IE(XY) — IE(X)IE(Y) = pe'® for some p > 0 and
some 6 in IR. Apply (b) to X and e~Y to prove that Inequality (6) still holds true.

8) Let X and Y be two random variables, with respective distribution functions F' and G,
satisfying the assumptions of Theorem 1.1 or Theorem 1.5.
a) Prove that, for any (z,y) in IR?,

IP(X >z,Y >y) —IP(X >2)P(y >y)| <inf(F(z),G(x),1 — F(z),1 — G(z),a/2).
b) With the notations of Theorem 1.5, infer from the above inequality that
a/2
(7) | Cov(X,Y)| < / D (u) Des (w)du.
0
c) Noticing that the upper bound in (1.69) is equal to the upper bound in Theorem
1.5(a), prove that Theorem 1.5(a) is sharper than (7). Hint: prove that R~!(v) > v.

d) Symmetric case. Assume here that X and Y have symmetric laws. Prove then that
Dp(u) = 2Qx (2u) and Dg(u) = 2Qy (2u) almost everywhere. Infer that

/Oa/2 Dp(u)Dg(u)du = 2 /Oa Qx (u)Qy (u)du.

e) General case. For a real-valued random variable Z, define ¥, by U (z) = IP(Z > z)
for x > 0 and Uyz(z) = IP(Z < z) for x < 0. Go inside the paper of Rio (1993, pages
593-594) to prove that

2 /0 " Ox () Oy (w)du > / /R inf(Wx(2), Uy (y), a/2)drdy

Infer that (7) is sharper than Theorem 1.1(a) in the general case.
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2. ALGEBRAIC MOMENTS, ELEMENTARY
EXPONENTIAL INEQUALITIES

2.1. Introduction

In this chapter, we start by giving upper bounds for algebraic moments of partial sums
from a strongly mixing sequence. These inequalities are similar to Rosenthal’s inequalities
(1970) concerning moments of sums of independent random variables. They may be applied
to provide estimates of deviation probabilities of partial sums from their mean value, which
are more efficient than the results derived from the Marcinkiewicz-Zygmund type moment
inequalities given in Ibragimov (1962) or Billingsley (1968) for uniformly mixing sequences,
or in Yokoyama (1980) for strongly mixing sequences, in particular for partial sums with a
small variance. For example, Rosenthal type inequalities may be used to get precise upper
bounds for integrated LP-risks in of kernel density estimtors. They provide the exact rates
of convergence, contrary to Marcinkiewicz-Zygmund type moment inequalities, as shown
first by Bretagnolle and Huber (1979) in the independent case.

In Sections 2.2 and 2.3, we follow the approach of Doukhan and Portal (1983), for
algebraic moments in the strong mixing case. In Section 2.4 we give a second method,
which provides explicit constants in inequalities for the algebraic moments of order 2p.
Applying then the Markov inequality to S2P

“P_and minimizing the so obtained deviation

bound with respect to p, we then get exponential Hoeffding’s type exponential inequalities
in the uniform mixing case. We also apply this method to get upper bounds for non-

algebraic moments in Section 2.5.
2.2. An upper bound for the fourth moment of sums

In this section, we adapt the method introduced in Billingsley (1968, section 22) to
bound up the moment of order 4 of a sum of random variables satisfying an uniform
mixing condition to the context of strongly mixing sequences. We start by introducing

some notations that we shall use throughout the sequel.

Notation 2.1. Let (X;);cz be a sequence of real-valued random variables. Set Fj, =
o(X;:i<k)and G, = o(X; : 7 >1). By convention, if the sequence (X;);cr is defined on
a subset T' of 7, we set X; =0 for i in ZZ\ T.
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During Sections 2.2 and 2.3, the strong mixing coeflicients (o, )n>0 of (X;)icz are
defined, as in Rosenblatt (1956), by

(2.1) ag =1/2 and o, = sup a(Fg, Gr4n) for any n > 0.
kEZ

Starting from Theorem 1.1(a), we now give an upper bound for the fourth moment of
the partial sums for nonstationary sequences.

Theorem 2.1 Let (X;);en be a sequence of centered real-valued random variables with
finite fourth moments. Let Q) = Q|x, and set

Mo (Qi) = E/[a u) A ] Qi (u)du

Then

E(5) < 3(30 3 IB(X X)) +48S Mo n(Q0)
k=1

i=1 j=1

Proof. For i ¢ [1,n], let us replace the initial random variables X; by the null random
variable. With this convention

(22) Sp =24 Y X, X;XpX;+12 Y XPX;Xp4+6) XPXZ4+4) XPX; +ZX4
1<j<k<l zgj{jkk:} 1<J i£j

It follows that

(23)  E(SH<3 Y IEXGXXX)(1 L) (14 Ta)(1+ Ticy).
1<j<k<l

We now apply Theorem 1.1(a) to the product X;X; X, X; at the maximal spacing. So, let
m =sup(j — i,k —j,l —k). f m=Fk—j >0, then Theorem 1.1(a) applied to X = X; X,
and Y = X X yields

(2.4) (X, X5 X5, X0)| < [IE(X.X5)IE(XRX)| + 2/ Qx.x, (W) Qx, x, (u)du.
0
If m=j—iand k—j <m, Theorem 1.1(a) applied to X = X; and Y = X, X, X; yields
2.5) BOGGNXD) <2 [ Q@ (0)Q,xux ()
0

The case m =1 — k and sup(k — j,j — i) < m can be treated in the same way and gives
the same inequality. To complete the proof, we will need the technical lemma below, due
to Bass (1955) in the case p = 2.
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Lemma 2.1. Let Zy, ... Z, be nonnegative random variables. Then

1
(a) IE(Zl...Zp)S/ Qz, (u)...Qz, (u)du.
0
Furthermore
1 1
(0) /QZ@(U)ng(U)---sz(U)duS/ Qz, (W)Qz, (u)...Qz, (u)du
0 0
and

1 1
(©) / Qv s20 () Q2 (1) Qz, () < / (@ () + Qs ()@ (). Qz, ().
0 0

Proof of Lemma 2.1. We first prove (a). By the Fubini Theorem,

(2.6)
E(Zy..Zy) = / IP(Zy > 2z1,...,Zp > 2zp)dzy ...dz, < / inf P(Z; > z;)dz; ...dzp.
RP RP i€[17p]
Now
1
(27) . inf ]P(ZZ > ZZ) = / ]121<Qzl (w) =+ - ]IZp<QZ (u)du.
16[1777] 0 P

Plugging (2.7) in (2.6) and applying again the Fubini theorem, we then get (a).

Let us now prove (b). Let U be a random variable with the uniform distribution over
[0, 1]. For any nonnegative random variable Z, Q2 (U) has the distribution of Z. Now (cf.
exercise 1, Chap. 1), if H(t) = IP(Z1Z2 > t), then, for any random variable § with uniform
distribution over [0, 1] independent of (Z1, Zs),

has the uniform law. Let (11,75, --,T,) = (Z1,22,Qz,(W),...,Qz,(W)). Then the
random variable (1173, T3, ...,T),) has the same law as (Qz,z,(U),Qz,(U),...,Qz,(U)).
Hence, by Lemma 2.1(a),

/0 Q2022 Q 1, (). Qz, (w)du < / Q) Q2 (1) Q, (),

which completes the proof of (b). The proof of (c), being similar, is omitted. m

We now complete the proof of Theorem 2.1. Both inequalities (2.4) and(2.5) together
with Lemma 2.1(b) applied repeatedly yield

IB(X: X X5, X)) < 2 / " Qi(w)Q; () Qi (w) Qi) du
(2.8) A TE (X X)) IE(X e X0) [ Mg — s max(j—i i k)

41



where m = max(j — i,k — j,l — k) > 0 is the maximal spacing. In the case m = 0, (2.8)

still holds since
1/2

1
E(XY) = /0 Qa2 [ Qlwan

Now

Y EXX)EXX)0 L)+ < (Y B

i<j<k<l (1,5)€[1,n]?

Hence, by (2.3) and (2.8),

B -3(X X)) <2y [ (@) + Q) + QR + @} (w)du

i=1 j=1 i<j<k<l

(2.9) <48 ) (m +1)%Q} (u)du,

with the convention that «,, = 0 in (2.9). Hence Theorem 2.1 holds m

Application of Theorem 2.1 to bounded random variables. Suppose that || X[ < 1 for
any ¢ > 0. Then by Theorem 2.1 and Corollary 1.2,

E(S4) < 3<i i ]]E(Xin)])2 + 144n ni (m + 1)2am,

i=1 j=1 m=0
n—1 2 n—1

(2.10) < 48n2<z am> + 1440 Y (m + 1)’
m=0 m=0

Let us compare this result with Lemma 4, Section 20, in Billingsley (1968). This lemma

gives, in our setting (note that the proof of Billingsley can be adapted to strongly mixing

sequences),

n—1 9
(2.11) E(SY) < 768n2<z «/_ozm> .

m=0
For any p > 0, set
(2.12) Ap(a™) = sup (m+1)(am)?.

0<m<n

Applying (2.10), we get
(2.13) IE(SH) < (872 + 144) (nAa(a™1))? < 223n% (Ag(a™ 1))
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Since (o )m>0 est nonincreasing,

(2.14) M) < S Vam,
m=0

which shows that (2.13) implies (2.11). Now, if the strong mixing coefficients a,, satisfy
Qi = O(m™2), then (2.13) ensures that IE(S2) = O(n?). In that case (2.11) leads to a
logarithmic loss. m

2.3. Even algebraic moments

In this section, we extend Theorem 2.1 to moments of order 2p with p > 2 integer. Our

main result is the following.

Theorem 2.2. Let p > 0 be an integer and (X;);en be a sequence of centered real-
valued random variables with finite moments of order 2p. Set ), = ()x, . Then there exist
positive constants a, and b, such that

E(57) < a, / DL n] Q3 (w)du)”

k=1

” 1a_1u n]2P1 Q%P (u)du
+bp];/0[ () A2~ Q2 (u)du

Remark 2.1. Recall that Q(U) and | Xj| have the same law. The weighted moments
on right hand in the above inequality play the same role as the usual moments in the
independent case. We refer to Annex C for more comparisons between these quantities
and the usual moments.

Doukhan and Portal (1983) give recursive relations which allow to bound up a, and
b, by induction on p. These upper bounds can be used to derive exponential inequal-
ities for geometrically strongly mixing sequences or random fields (cf. Doukhan, Leén
and Portal (1984) or Doukhan (1994)). For nonalgebraic moments, one can derive mo-
ments inequalities from the algebraic case via interpolation inequalities (see Utev (1985)
or Doukhan (1994)). Nevertheless, interpolation inequalities lead to suboptimal mixing
conditions. In Chapter 6, we will give another way to prove moment inequalities, which

leads to unimprovable mixing conditions.

Proof of Theorem 2.2. We follow the line of proof of Doukhan and Portal (1983); cf.
also Doukhan (1994). For any positive integer g, let

(2.15) A,n)= Y EX;, ... X))

1<y < <ig<n
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It is easy to check that
(2.16) B(S2) < (2p)! Az (n).

Therefrom Theorem 2.2 follows from similar upper bounds on A,(n). We will bound up
these quantities by induction on ¢ via Lemma 2.2 below.

Lemma 2.2. Suppose that the random variables X1,... X, are centered and with finite
absolute moments of order q. Then

q—1 n 1
A € 3 A Ay ) +23 [ o™ ) Al Qi
r=1 k=1

Proof. As in the proof of Theorem 2.1, we may assume that «,, = 0. Let

m(i1,...,5) = sup (ig+1 — %)
kell,q]

and
(2.17) j=1inf{k € [1,q[ : ix41 — ix = m(i1, ... 3¢}

Theorem 1.1(a) applied to X = X ... X;, and Y = X
2.1(b) ensures that
(2.18)

(X, ... X)) < |B(X;, ... X

... X, together with Lemma

bi4+1

Xm(iq,..., iq)
ij)IE(Xij+1 . qu)| +2/ Qil (u) .o qu(u)du
0

Summing (2.18) on (i1, ...,4,) we infer that

-1

(219)  Agn) <3 A4, () +2 S /Oa Q). Qi (u)d.

1 i1 <<l

Q

ﬁ
I

Now, starting from the elementary inequality

Qi (u) . Qi, (u) < ¢7H(QF, (w) + - + Qi (w),

and interverting the sum and the integral, we get that

Am(ig,..., ig) 1 q n n—1 U
3 / Q). Qs (w)du < 0323 / (i m)Q? (u)d,
0

iy < <ig I=1 3;=1 m=0" O¥m+1
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where x(i;, m) is the cardinality of the set of (¢ — 1)-uples (i1, ..,4—1, %41, .., 4¢) such that

i1 < <idpo1 <4 <y <---<i, and sup (igy1 — i) < m.
kell,q]

Noting that x(i;,m) < (m + 1)27!, we then get Lemma 2.2. m

End of the proof of Theorem 2.2. Let

nooe
(2.20) Mgan=Y_ / [ (u) An]7 QY (u)du.
k=10
We will prove by induction on ¢ that
H(q) Ay(n) < aqu,/aQ,n + bgMy,a,n-

By Corollary 1.2, #(2) holds true with as = 2 et by = 0. Suppose now that #(r) holds for
any 7 < g — 1 Then, from Lemma 2.2 we get that

-2

Ag(n) <Y (@ My 4 b My o) (g MSED by e My ) + 2My o

T2 a,mn 2,a,m

Q

Il
N

r

Hence #H(q) will hold true if we prove that, for any r in [2,q — 2],

(2'21) (aer/2 + brMTaa7n)(a/q_TM(q_T)/2 + bq_qu_rya’n) S a/qaqu/z + bqaquaaan'

2,a,m 2,a,mn 2,a,m

To prove (2.21) we apply the Young inequality qzy < rz?/" + (¢ — r)y?/(9=") to the left
hand side in (2.21). Noting that (v+w)* < 2571 (v® +w?®) for any s > 1, we get that (2.21)
will hold true if

(2.22) M3 < g (MI2 4+ My o).

ran = 2,0,m
Now, let )

Myo(Qe) = [ To™ (@) A nl ™ Q)
By the Holder inequality,

M,y o0n(Qr) < (Mqva,n(Qk))(T—m/(q—?) (MQ’a’n(Qk))(q—T)/(q—Q).

Therefrom

3
3

Mr,a,n - MT,a,n(Qk) < (Mq,a,n(Qk))(T_2)/(q_2)(M2,a,n(Qk))(q_T)/(q_2)-
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Hence, by the Holder inequality applied with exponents (¢ —2)/(r —2) and (¢ —2)/(q —r)
together with the adequate Young inequality,

My < M(Z"ji)/(q—Q)MZ(’q;;)/(q—Q) < c;,q(MT/q + M2 ),

— q,o q,o,m 2,a,m

which implies (2.22). Whence (2.21) holds, and Lemma 2.2 follows by induction on gq.
Both (2.16) and Lemma 2.2 then imply Theorem 2.2. m

Application to bounded random variables. Suppose that || X;||cc < 1 for any ¢ > 0. Then
(2.23) (S,7) < (2ap + by)n? (Ap(a™))?,

Consequently, if the strong mixing coefficients (o, )m>o satisfy a,, = O(m™P), then
(2.23) implies the Marcinkiewicz-Zygmund type inequality IE(S?P) = O(nP). In that case
Yokoyama’s inequalities (1980) are not efficient (cf. Annex C for more details). m

2.4. Exponential inequalities

The constants a, and b, appearing in Theorem 2.2 can be bounded up by explicit
constants. Nevertheless, in the case of geometrically mixing sequences, it seems that it is
difficult to obtain the exact dependence in p of the constants (recall that one can derive
exponential inequalities from moment inequalities with explicit constants). In this section,
we give a different way to obtain moment inequalities, which is more suitable to derive
exponential inequalities. Next we will derive exponential inequalities for geometrically
strongly mixing inequalities from these new inequalities. We will also get the so called
Collomb inequalities (1984) for uniformly mixing sequences via this method. We refer to
Delyon (2015) and Wintenberger (2010) for additional results.

Notation 2.2. Let F; = o(X; : j <1i). We set IE;(Xj) = E(Xy | F).
The fundamental tool of this section is the equality below.

Theorem 2.3. let (X;);em be a sequence of real-valued random variables and 1 be a
convex differentiable map from IR into IR™, with ¥(0) = 0, and such that the second
derivative of v in the sense of distributions is absolutely continuous with respect to the
Lebesgue measure on IR. Let ¢” denote the density of the second derivative of 1). Suppose
that for any i in [1,n] and any k in [i,n],

(a) E(|(¢"(Si) = 9’ (Si-1)) X|) < o0.

Then
E(14(S,,)) :Z/O B (Si-1 + 1) (X7 + X; (X)) )t

k=i
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Proof. By the Taylor integral formula at order 2

n

Y(Sn) = Y ((8i) = $(Si-1))

i=1

n n 1
= Y SN+ Y [ (- 0 (S + X)X
k=1 i=170
Now
k—1 k—1 1
V' (Sk—1) = Z(W(Si) —¢'(Si1)) = Z/o Y (Si—1 +tX;) X, dt.

i=1 i=1

Plugging this equality in the Taylor formula, we get that
n 1 n

(2.24) )(Sn) = Z/ W (Sioy + tX;) (-tXf +X; ZXk>dt.
i=170 k=i

Now, taking the mean in the above equality, noticing that, under assumption (a), the
random variables (1 — ¢)1"(S;_1 + tX;)X? and ¢"(S;_1 + tX;)X; X} are integable with
respect to the product measure A ® IP and applying the Fubini theorem, we get that

E()(S,)) = i /1 lE(w”(Si_l +EX;) (—tXE e iXk)»dt.
i=170 k=i

Theorem 2.3 follows then from this equality and the fact that

E(4" (Si—1 + tXi) X, X3,) = B (Si1 + tX,) XilEi(Xy)). m

We now derive an Hoeffding type inequality from Theorem 2.3 (cf. Theorem B.4,
Annex B, for Hoeffding’s inequality for bounded and independent random variables). This
inequality is an extension of the Azuma inequality (1967) for martingales to dependent

sequences.

Theorem 2.4. let (X;);cz be a sequence of real-valued bounded random variables. Let

(my,ma,...,my) be a n-uple of positive reals such that
J
(a) sup (X2 + 201X Y Bi(Xp) o) < mi for any i € [1,n],
J€[i,n] k=i+1

with the convention ZZ:iH IE;(X%) = 0. Then, for any nonegative integer p,

(b) E(5%) < (;Dp)'! (Z”: mi)p.

p: i=1
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Consequently, for any positive x,

(c) P(|S,| > z) < Veexp( —2?/(2my + -+ +2my,)).

Proof. Define the functions v, by vo(z) = 1 and v¢,(z) = z??/(2p)! for p > 0. Set
M; = || X;||%,. We prove (b) by induction on p. At range 0, (b) holds true for any sequence
(X;)iem, since SO = 1. If (b) holds at range p for any sequence (X;);cz, then, applying
Theorem 2.3 to 9 = 1,11 and noting that 1, ; = 1, we get that

225 2ya(5) < Y [ B+ X)) 0m k(1 20V

We now apply the induction hypothesis to the sequence (X]);cz defined by X| = X; for
any 1 <[l <, X]=1tX;, and X] =0 for [ ¢ [1,i]. For I <i and j <1,

J J
XP Y E(X),) =X ) B(X).
m=Il+1 m=Il+1
For [ <7 and j > 1,
7 7 1—1
XP > E(X) =tX Y E(Xn)+(1-0)X Y Ey(Xn).
m=I+1 m=l+1 m={+1

Hence the sequence (X]);cz satisfies assumption (a) with the new sequence (m/); defined
by mj = my for | < i and m} = t*M;. Consequently, applying (b) to S} = X| +--- + X],
we get that

2Pp! (v, (Si—1 +tX;)) < (my + -+ +mi_y + t2M;)P.

Now m; + (1 — 2t)MZ Z m; — Mz Z 0. Hence
1
Caar / (4 (Si—1 + X)) (i + (1 — 20)M;)dt
0
1
S / (m1 + e —|— m;—1 + tQMi)p(mi —|— (1 — 2t)MZ)dt
0
1
0
since tm; + t(1 — t)M; > t>M;. Now

1
(p + 1)/ (m1+ s + my;—1 + tmi -|- t(l — t)Ml)p(ml + (1 — 2t)Ml)dt =
0
(2.27) (ma - mg) " — (my+ e mig )P
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whence

1
2+ (p 4 1)!/ (5 (Si 1 + £X0)) (i + (1 — 26)My)dt <
0
(2.28) (my+-- +m)?" = (my + -+ myg)PT
Finally both (2.25) and (2.28) ensure that the induction hypothesis holds at range p + 1
for the sequence (X;);cz. Hence (b) holds true by induction on p.

In order to prove (c), we will apply the Markov inequality to S2P for some adequate p.
Set
A=2%/2my +---+2m,) and p = [A+ (1/2)],

square brackets designating the integer part. (c) holds trivially fo A < 1/2. Hence we may
assume that A > 1/2. Then p > 0, and applying the Markov inequality to S2P, we get
that

(2.29) P(1S,] > 2) < (44)7(2p)!/p.
If A belongs to [1/2,3/2], (2.29) yields
(]S, > ) < (24)7 < Veexp(—A),

since 24 > exp(A — 1/2) for A dans [1/2,3/2]. Next, if A > 3/2, using the fact that the
sequence (27n)~'/2(e/n)"n! is nonincreasing, we get that (2p)! < v/2(4p/e)Pp!, whence

P(|Sn] > x) < V2(eA)PpP.
Now, taking the logarithm in this inequality, we obtain
A+1ogP(|S,| > z) <log V2 + f,(A),

with f,(A) = (A — p) — plog(A/p). Here p > 2 and A belongs to [p — 1/2,p + 1/2][.
Since f/(A) = (A —p)/A and f]/(A) = p/A?, the function f, is convex. Consequently the
maximum of f, is reached at A =p—1/2 or A =p+ 1/2. Since f, reaches his minimum
at point p and f,’ is decreasing, the maximum de f;, is reached for A =p —1/2. Hence

< log2 —1

A+ logP(5,] > 2) < 5=

2 log2 —1
Po) < 55— 4 2108(4/3),

los
triog(y, 2

since p > 2. Thus we get that

16v/2
9ve

P(ISn] > 7) < = exp(—A) < Ve exp(—A),
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which completes the proof of Theorem 2.4(c) m
We now apply Theorem 2.4 to uniformly mixing sequences, as defined below.

Definition 2.1. The uniform mixing coefficients of (X;);cz are defined by

vo =1 and ¢, = sup ¢(Fg,0(Xk4n)) for any n > 0.
keZ

The sequence (X;);ecz is said to be uniformly mixing if ¢,, converges to 0 as n tends to co.

Corollary 2.1 below provides a Hoeffding type inequality for uniformly mixing sequences
of bounded random variables.

Corollary 2.1. Let (X;);cz be a sequence of centered and real-valued bounded random
variables. Set 0, = 1+4(p1+- - +pn_1) and M; = || X;||%,. Then, for any positive integer

D,

2p)! 10, \P

2p <(i n P

(@) B(s7) < () (Mt M)
Next, for any positive x,

(b) P(|S,| > z) < eexp(—xQ/(QHnM1+~~+20nMn)>.

Proof. Let us apply Theorem 2.4 to the sequence (X;);cz. Since the random variables
X}, are centered at expectation, by Theorem 1.4(b) and the Riesz-Fisher theorem,

T (X ) lloo < 208 —il| X[ -
Hence we may apply Theorem 2.4 with
n
m; = M; + 4 Z V M; My, p—i-
k=i+1
Summing on ¢, we have:

m1+"'+mn§ZMz‘+4 Z V M My, pr—i
i=1

1<i<k<n

< ZMz + 2 Z (M; + My)pr—; < 9nZMz’-
i—1

1<i<k<n i=1

Corollary 2.4 follows then from both Theorem 2.4 and the above upper bound.
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2.5. New moment inequalities

In this section, we derive from Theorem 2.3 new moment inequalities for strongly mixing
sequences. These inequalities are similar to the type Marcinkiewicz-Zygmund inequalities
for independent random variables. Throughout the section, the strong mixing coefficients
are defined in the following way:

(2.30) a9 =1/2 and o, = sup a(Fy, Xp4n) for any n > 0.
keZ

Our main result is as follows.

Theorem 2.5. Let p be any real in |1,00[. Let (X;);cz be a strictly stationary sequence
of real-valued random variables with mean 0 and finite moment of order 2p. Set (Q = Qx,.
Then, with the notations of Section 2.4, for any positive n,

(a) B(1S.[%7) < (4np)” sup. IE(]XOZIEO ).
Consequently
(®) IE(|Sn[??) < (8np)” / = (u) A P QP (u)du

Remark 2.2. Inequality (a) may be applied to some dynamical systems with hyper-
bolicity, as shown by Melbourne and Nicol (2008). Inequality (b) can be improved if the
strong mixing coefficients are defined by (2.1). We shall obtain Marcinkiewicz-Zygmund
type inequalities under a weaker mixing condition in Chap. 6 (see Section 6.4 and (C.15)
in Annex C).

Proof. We prove Theorem 2.5 by induction on n. Our induction hypothesis is the follow-
ing. For any integer k < n and any ¢ in [0, 1],

E(|Se_1 + tX4|?) < (p)P(k — 1 + )P sup IE((XO Z]EO
1E[1,k]

First, for any integer k£ < 4p,

[Sk—1 4 tXkllop < (k =1+ 1)[| Xoll2p < VAp(k = 1+1) [[Xo]l2p-

Hence the induction hypothesis holds for k£ < [4p].
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Now let n > 4p. If the induction hypothesis holds at range n — 1, then, applying
Theorem 2.3 with ¢(x) = |z|??, and setting

-1
hy(t) = B(|Sp_1 +tX,|*) and T, = sup ||XOZ]E0 i)llps
le[l n| i—0
we obtain that
hn<t) n—1 1 n
< / 1E<|Si,1+3Xi|2p*2XiZIEi(Xk)>ds
p i=170 k=i

t
+ / E(|Sp_1 + 5Xn [P~ 2X2)ds.
0

We now apply the Hélder inequality with exponents p/(p — 1) and p:

B(|Si-1 + X720 Y Bi(X0)) < (i) 70710 Y B
k=i

k=1

From the stationarity of (X;);cz,

t
ho(t) < 4p°T,, Z / )P=D/pgs 4 / (hn(s))(p*”/pds)
0

Now if the induction hypothesis holds at range n — 1,
1 1
/ (hi(s))P~D/ds < (4pfn)p_1 / (i =1+ 5)7~1ds
0 0
< (0PI — (i = 1)P).

Set then g,(s) = (4p(n — 1 + s)I',,)P. The above inequalities ensure that

hn(t) < gn(0) + 4p°T, /O t(hn(s))@—l)/pds.

Now, let
t
H,(t) = / (hn(s))P~D/P s,
0

The above differential inequality may be written as
H,,(5)(gn(0) +4p°T, H, (s)) 7P < 1L
Integrating this differential inequality between 0 and ¢ yields
(ha(D)'? = (g2 (0)"/? < 4ptTy,
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which implies that h,, < g,,. Hence (a) holds true.

To prove (b), it is enough to prove that
Ly < l(a™ An)Q%l,.
Let ¢ = p/(p — 1). Clearly

I < Z o (X3) | Xollp-

Hence, by the Riesz-Fisher theorem, there exists a random variable Y in L9(Fy) such that
¥, =1 and

T, < IE( YZ | XoIE (X;)|) < Z 1Y XoIEo (X5) |1
1=0 =0

Hence, by (1.11c),
n—1 a;
Iy <2 Z/ Qy x, (W) Qx, (u)du
i=0 70

Finally, by Lemma 2.1(b)

r, <2 / Qy (w)la~" (u) A n]Q? (u)du,

which implies (b) via the Holder inequality on [0, 1] applied to the functions @y and
@™t An|Q?. =

To conclude this section, we give a pseudo exponential inequality for geometrically
strongly mixing sequences. Our result is similar to the results of Theorem 6 in Doukhan,
Leén and Portal (1984).

Corollary 2.2. Let (X;);cz be a sequence of centered real-valued random variables each

bounded a.s. by 1, and (a,)n>0 be defined by (2.30). Suppose that, for some a < 1,

lim sup,, ozn/ < a. Then there exists some positive xy such that, for any x > xo and any

P(19,] > oy/nlog(1/a) ) < a®/.

Proof. It is easy to check that

positive integer n,

limsupp~!la™'Q?||, < (—eloga)™".

p— 00

Hence there exists some pg > 1 such that, for any p > py,
a1, < 4np?(—eloga)™".
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By the Markov inequality applied to S?P, we infer that

P (150 > 2y/mlog(1/a) ) < e (b ).

xloga

Set then p = —(z/2) log a. Then the above inequality yields Corollary 2.2 if p > pg, which
holds true as soon as z > —(2pp/loga). m

EXERCISES

1) Let (X;);cz be a sequence of centered real-valued random variables, with finite fourth
moments, and let (a,),>0 be defined by (2.1).
a) Let i < j < k <[ be natural integers. Prove that

1
(1) (XX X Xo)| < 2/0 Mu<a; Mu<a, , Qi(u)Q;(w)Qr (w)Qi(u)du.
b) Prove that

E(Sy) <12 > [BXGXXEX)|(1+ L)

c¢) Prove that
2 B <21)° Y [ a7 w A nPQw)Qk udu
j=1k=1"0

d) Suppose now that || X|oc <1 for any & in [1,n]. Derive from the above inequalities
that

(3) E(S}) < 24n? ni (2m + 1)ay,.

m=0
Compare (3) with (2.13) and (2.11).

2) Let (Sy)n>0 be a martingale sequence in LP for some p > 2 and X,, = S, — Sp—1.
Either use Inequality (2.3) in Pinelis (1994) or adapt the proof of Theorem 2.5 to prove
the inequality (4) below, given in Rio (2009):

(4) 1Sall5 < 11Soll5 + (0 = 1) Y 1 Xkl
k=1
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3. MAXIMAL INEQUALITIES AND STRONG LAWS

3.1. Introduction

In this chapter, we are interested in extensions of the classical maximal inequalities of
Kolmogorov and Doob to weakly dependent sequences. Here we adapt previously known
tools to the context of weakly dependent sequences. In Section 3.2, we give a maximal
inequality for second order moments of the maximum of partial sums. From this maxi-
mal inequality we then obtain a criterion for the almost sure convergence of a series of
dependent random variables in the style of Kolmogorov’s criterion. Next, in Section 3.3,
we give new maximal inequalities, which are more suitable for long range dependence.
These inequalities allow us to get an extension of the results of Berbee (1987) on rates of
convergence in the strong law of large numbers for S-mixing sequences to strongly mixing

sequences.
3.2. An extension of the maximal inequality of Kolmogorov

All along this chapter, (X;);en is a sequence of real-valued random variables. The
strong mixing coefficients of (X;);en are defined by (2.30). We set

k
(3.1) Qx, =Qi, So=0, Sy =) (X; ~B(X;)) and Sj= sup S.

i—1 kel0,n]
In this section, we prove the maximal inequality below.

Theorem 3.1. Let (X;);en be a sequence of centered real-valued random variables with
finite variance and A be any nonnegative real. Set p;, = IP(S}; > \). Then

E((S" <4Z/ Qi(u Qz )+4 Z Qr(u)Lu<ay z>d

k=1+1

(a) < 16; / o= () A n] Q3 (w)du

with x4 = sup(z,0). In the particular case A = 0,
() F(5*2) <162/ ) A n] Q2 (u)du
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From Theorem 3.1(b), one can derive the following extension of Kolmogorov’s result
on the almost sure convergence of series of random variables. We refer to Cuny and Fan
(2016) for more about series of dependent random variables.

Corollary 3.1. The series y .-, X; converges almost surely as soon as the condition below
holds:

(a) Z / W)du < +oc.

Application of Corollary 3.1. Suppose that the random variables X; are defined from a
strictly stationary and strongly mixing sequence (Z;);cz by X; = ¢;Z;. If Qz, satisfies

condition (DMR), then condition (a) of Corollary 3.1 holds true as soon as >, ¢7 < 0.

Proof of Theorem 3.1. The proof is done by adapting a trick of Garsia (1965) to our

context: write
(3.2) (S =N = (S5 = N2 = (Si_1 =N,

Since (S} )k>0 is nondecreasing, the quantities on righ hand are nonnegative. Now
((Sk = A+ = (Sk—1 = M) )((Sk = Ay + (S50 = A)4) >0
if and only if S > A and S > S;_,, and then Sj, = S}. Consequently
(3.3) (Sk =N = (S5 = NF <208 = N((Si = N+ = (Si—1 = N)+),
which implies that
(Sn =N < zzn:(sk — A5k — A4 -2 zn:(Sk — A)(Sk-1— A+
k=1

(34) <28 = A)( +—2Z Sio1 = A4 X

Since

it follows that

(3.5) (Sr = N3 <A4(Sn = N5 =4 (Sio1 — N+ Xe.



Next we bound up (S, — A\)3. Adapting the decomposition (3.2), we get:

(Sn — A2 ((Sk = N3 = (Sk—1 = N)2)

I
NE

i
:H

(3.6)

n 1
2) (Sk—1—A)4Xp +2 ZX,f/ (1 = )W, _, 4ex,>adt.
k=1 k=1 0

Noticing then that s, ,tix,>x < Igx>y, we infer from (3.6) that

(S, — )2 <2Z (Sp_ 1—A+)(,€+ZX,€115*>A
k=1 k=1

From (3.5) and the above inequality we now obtain that

(3.7) Z (Sk—1 = A)g = (S5 = Na)Xe +4> XPMges .

Set Dy = 0 and Dy, = 2(S; — A) 4+ — (S — A)4 for any positive k. Clearly

k—1
Cov(Dy—1,Xi) = »_ Cov(D; — Di_1, Xy).
i=1
Now the random variables D; — D;_; are measurable with respect to F; = o(X, : j < 19).
Hence

n

(3.8)  IE((S;—MN3) <4) B(X;lssa) + 42 IE<|(DZ- ~Di1) > lEi(Xk)D.

k=1 i=1 k=i+1

In order to bound up Qp,-p,_,, we now bound up |D; — D;_1]|. If (S =X+ = (S;_1 =)+,

then

i—17

[Di = Di—a| = 2|(Si = M)+ — (Si—1 — A)+] < 2/ X;[Lsr >,

since D; — D;—1 = 01if S; < A and S;—1 < A. In the opposite case S; = S7 > A\ and
Si—1 < Sf ;< S;. Therefrom D; — D;—1 = (S; — A+ +(S7_; —A) 4+ —2(Si—1 — A)+ belongs
to [0,2[(S; — A)+ — (Si—1 — A)4|]. In each case |D; — D;_1| < 2|X;[1g:~, whence

(3.9) BE((S* —A2) < 4Z]E X7 Ts:n) +8 ZE(HSM}X 3 IE,L-(Xk)D.
k=1 k=i+1
Next, by (1.11c) together with Lemma 2.1,
Qg
B (oo | XTE: (X)) <2 / Qi(u) Qu (1) Tz, du
0
Qp—j
(3.10) < [ @@y, + Q) Lucy, )i
0
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(use the monotonicity of the sequence (pg)r>0). Now, by Lemma 2.1(a), we also have

Pk
E(X;lsr>a) < / Qi (u)du
0
Theorem 3.1 follows then from (3.9), (3.10) and the above inequality. m

3.3. Rates of convergence in the strong law of large numbers

Let r be be any real in |1,2[ and (X;);en be a strictly stationary sequence. Theorem
3.1 applied to the sequence (X;);en provides the almost sure convergence of n=/"S, to 0

under the strong mixing condition

/01 o (u)Q, (u)du < oo.

This condition needs the summability of the series of strong mixing coefficients, even for
bounded random variables. By contrast, for strictly stationary and S-mixing sequences of
bounded random variables, Berbee (1987) proved the almost sure convergence of n-4rs,

to 0 under the S-mixing condition

(BER) D (i+1)"728; < oo

i>0

which is clearly weaker than the summability of S-mixing coefficients. In the strong mixing
case, Shao (1993) has given some rates in the strong law of large numbers under weaker
conditions than the integral condition above. However, in the bounded case, he does not
obtain the convergence of n=1/"S,, to 0 under the strong mixing condition corresponding to
Berbee’s condition. In this section, we give a new maximal inequality, which minimizes the
effects of long range dependence. This inequality is then applied to get rates of convergence
in the strong law of large numbres under minimal assumptions on the mixing coefficients
and the tails of the random variables, as in Rio (1995a).

Theorem 3.2. Let (X;);en be a sequence of centered random variables with finite vari-

ances. Then, for any nonnegative integer p and any positive x,
* —1
P(S* > 22) _x2z/ ) A plQ2 (u) du+ / Qn(u

Before proving Theorem 3.2, we give an application to the rates of convergence in the
strong law. We refer to Dedecker and Merlevede (2007) for extensions of the corollary

below to other types of dependence and Banach-valued random variables.
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Corollary 3.2. Let (X;);en be a sequence of centered and integrable real-valued random
variables. Set () = sup;~ Q-
(i) Let r be any real in |1,2[. Suppose that

(a) M,ya(Q) = / o ()] Q" (u)du < +oc.

Then n~1/"S,, converges to 0 almost surely.
(ii) Suppose that ) satisfies the weaker condition

() /O Q(w)log(1 + a~ (u))du < oo.

Then n~1S,, converges almost surely to 0.

Remark 3.1. Let X be a nonnegative random variable such that Qx = @. For m-
dependent sequences conditions (a) and (b) are respectively equivalent to the usual inte-
grability conditions IE(X") < co and IE(X) < co. Note that, in the stationary and ergodic
case, the strong law of large numbers holds as soon as the variables are integrable. This
result does not hold for non-stationary strongly mixing sequences: condition (b) cannot
be relaxed, as proved in Rio (1995a).

Remark 3.2. We refer to Annex C for more about conditions (a) and (b). Notice that
(a) and (b) are respectively equivalent to the condtion below with r in |1,2[ or r = 1:

(3.11) Yo+ 1) /Oai Q" (u)du < .

For bounded sequences, (3.11) is equivalent to the strong mixing condition

Z(z +1)"2a; < 0.

i>0
Since «; < f;, Corollary 3.2 includes Berbee’s result.

Proof of Theorem 3.2. Dividing the random variables by x if necessary, we may assume
that = 1. Define the function g by g(y) =y — 1 for y in [1,2], g(y) = 0 for y < 1 and
g(y) =1 for y > 2. Then

P(S;, > 2) <TE(g(S;)) < D> TE(g(S}) — 9(Si_1)).
k=1

Let f be the nonnegative and differentiable function defined by f(y) = y? for y dans [0, 1],
fly) = 2y — 1 for y > 1 and f(y) = 0 for any negative y. Since g is nondecreasing,
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g(Sg) —g(S;_;) > 0. If this quantity is strictly positive, then S, > S;_; and S > 1.
Hence

9(Sk) = 9(Sk—1) < (9(Sk) = 9(Sk—1)) 25k = 1),

which implies that

3

P(s; >2) < > B((9(S)) — 9(Si_1)(28 — 1))
k=1

<TB((2S, — 1)g(S;) =2 Cov(g(Si_1), Xx)
k=1

< E(f(Sn)9(S5)) =2 Cov(g(Sii_1), Xi)

k=1

(3.12) <E(f(Sn)) =2 Cov(g(Si_y), Xi)-

k=1
Now, since f’ is 2-Lipschitz,
(3.13)  TE(f(Sn) = Y _E(f(Sk) — f(Sk-1)) <> _Var Xz + > _ Cov(f'(Sk-1), Xz).
k=1 k=1 k=1
Set then gi(X1,... Xk-1) = 5" (Sk—1) — 9(S;_;). From (3.12) and (3.13) we get that
(3.14) P(S; >2) <> VarX, +2)  Cov(ge(Xi,... Xp_1), Xz).
k=1 k=1

Recall that % f" and g are 1-Lipschitz and coordinatewise nondecreasing. Therefrom the
function gy, is separately 1-Lipschitz with respect to each coordinate. Let then, for: < k—1,

D;,k :gk(Xl,...,Xi,O,...,O)—gk(Xl,...,Xi_l,O,...,O).

For any nonnegative integer p,

k—1

(315) gk(le---Xk—l):gk(le'"7X(k—p)+707"'70)+ Z g,k‘
i=(k—p)4++1

Now the first term on the right vanishes if p > k. Since g is with values in [—1,1] and
the first term on right hand in (3.15) is measurable with respect to o(X; : i < k — p), by
Theorem 1.1(a),

| Cov(gr(X1, .y X(h—p)+,0,...,0), Xz) < 2/ Qr(u)du.
0
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Next the random variables D}, verify |D},| < |X;_x| and are measurable with respect to
o(X; i <k —1), whence

| Cov(Dl ., X4)| < 2 / Q) Quu)du < / Q) + Q2 (w))du.

Both (3.15) and the two above inequalities ensure that

(3.16) | Cov(ge(X1,... Xe1), Xu)| < Z/Oai(Qi_i(u) + Q2 (u))du + 2/0% Qn(u)du.

Now, both (3.14), (3.16) and the elementary inequality Var X, < 2 [;* Q% (u)du imply
Theorem 3.2. m

Proof of Corollary 3.2. The proof of Corollary 3.2 is a direct consequence of Proposition
3.1 below applied to the sequences (X;);en and (—X;);en via the Borel-Cantelli lemma:
indeed the series in Proposition 3.1 are convergent if and only if for any positive ¢,

> P(Sin > e2V/7) < o0,
N>0

which implies the convergence of n=!/ "S} to 0, due to the monotonicity of S}.

Proposition 3.1. With the same notations as in Theorem 3.2, under condition (a) of

Corollary 3.2, for any positive ¢,

(a) Z n~'P(SE > en'/") < .
n>0
Under condition (b) of Corollary 3.2, for any positive ¢,

(b) > nT'P(S; > en) < oo

n>0

w
=
o
o
™
g
=
Q
=
o
=
—
]
=
<
<
=
=)
=
o
+
-+
=
o
N
o)
Q
=
@
=
Q
o)
»n
=
|
<
m
N
Q
=
Q.
>

i)iez be defined by

X;=(XiAQ) V (—Q(v)) and X; = X; — X;.

Let U be uniformly distributed over [0, 1]. Since | X;| has the same distribution as Q;(U),
Qx,(u) = Qi(u) ANQ(v) and Qg (u) =sup(Qi(u) — Q(v),0).

Now @Q; < @), whence

(3.17) E(X,)| < E(X]) < / "(Q(u) — Q))du.
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Set Si, = Zle(Xi —IE(X;)) and S = SUPjc[0,n] S).. Noting that
Si < S (1Kl + (X)),
i=1

we infer from (3.17) that

(3.18) n'P(S* > 5x) < n 'IP(SF > 4x) + % /OW(Q(U) — Q(v))du.

Next, by Theorem 3.2 applied to the random variables X;, we get that

1

(3.19) nP(Sk > 4x) < ;/0 [~ (u) A plQ? (v V u)du + % /0% Qv V u)du.

We now choose the parameters p and v in such a way that the terms on right hand lead
to the same integral condition. Set

(3.20) R(u) = o H(u)Q(u).

In the strong mixing case, R plays the same role as the quantile function () in the indepen-
dent case. We will choose v in such a way that R(v) is of the order of n'/". Before choosing
v, we choose p = a~1(v), in order to get upper bounds of the same order of magnitude in
(3.18) and (3.19). With this choice of p, oy, < v. Consequently

/O [ (u) A PIQ* (v V u)du < /0 R(vV u)Q(u)du.

Therefrom, by (3.18) and(3.19),

(3.21) n~'P(S; > 5z) < ;/OU Q(u)du + i/0 R(v V u)Q(u)du.

xr2

Let € be any real in ]0,1]. Set = x,, = en'/" and v = v, = R~}(n'/") in (3.21). Since

R is right continuous and nonincreasing,
(3.22) (R(u) < n/") if and only if (u > v,),

whence

/0 " R(on)Q(w)du < V" /O " O(w)du.

It follows that
Un 1
(3.23) n"IP(S) > 5x,) < 372 (nl/r/ Q(u)du + nQ/’"/ R(u)Q(u)du)
0 U’n.
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Let us prove (a). Set c. = £?/3. Summing on n the inequalities (3.23) , we get that

Ce Z %IP(SZ > bxy,) < /01 Q(u) Z (n_l/rﬂu«zn + n_Q/’”R(u)]quvn>du,

n>0 n>0

1/r

with z,, = en'/". Now, applying (3.22),

1
Ce * —1/r —2/r >
3.24 “p(st > 5,) < ( T, s R(u)TL,~ iy ) .
B24) 3 EP(S =50, < [ Q)Y (1 e+ 0 ROz e )
n>0 n>0
Since r belongs to |1, 2|, there exist constants ¢, and C,. depending only on r such that
Z n~ " < ¢, R""'(u) and Z n~" < C (R 2(u) A1).
0<n<R"(u) n>R7(u)V1
Both the above inequalities and (3.24) ensure that
1 1
S SP(S; 2 5ot/ <€ RN @
n 0
n>0
for some constant C' depending only on r, which completes the proof of Proposition 3.1(a).
To prove Proposition 3.1(b), we need to truncate the random variables again. Let
k

Y;=(X;An)V(-n), ¥i=X;-Y; and TF = sup Z(YZ—]E(YZ))

kelo,n] ;4

Since Qy, < Q An for any 7 in [1, n], it follows from (3.23) that
Un 1

(325)  n 'P(T) > Ben) < e (n! / (Q(u) A n)du + n2 / R(u)Q(u)du).
0 Un

Now set I' = |J;_,(X; #Y;). Forany w ¢ T,

(3.26) Sn(w) < Tr(w) + ) E(Y; — X)),

i=1
Let X be a nonnegative random variable such that @ x = ). Then
P(I) <> P(|X;| > n) < nlP(X >n)
i=1

and
n

Y E(Y; - Xi|) = Z /OO P(|X;| > u)du < nIE((X —n),).

=1
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Since IE((X —n)4) < e for n large enough, there exists some positive integer ny such that,

for any n > ng,

1

(3.27) 2—6113(5;; > 6en) < P(X > n) + (% /OU”(Q(U) A n)du + % R(u)Q(u)du).

Set then w, = Q7 !(n) = IP(X > n). Since w, < u < v, if and only if Q(u) < n < R(u),

we get that

Un 1
-l / (Q(u) A n)du = P(X > n) +n- / Q) Loy << iyt
0 0

Hence for n > ny,

1
c . 1 R(u
(3.28)  EIP(S; > 6en) < P(X > n) + / Q) (> Mguy<nerin + Blu) > ) ) du
n 0 n n
Finally, since

Z n~! <1+4log(l1+a!(u)) and Z n~? <2(R(u) V1)t
Q(u)V1i<n<R(u) n>R(u)V1

(3.28) implies Proposition 3.1(b). m
EXERCISES

1) Let (X;)ien be a sequence of real-valued and integrable centered random variables. Set
@ = sup,;-o Q; and let R be defined by (3.20).
a) Prove that, for any positive z > 0,

R~ (x) 1
(1) nP(SE > ba) < ° /0 Qu)du + - R(u)Q(u)du.

— 2
X X R—1(z)

Hint : apply (3.21).
b) Prove that, for any r in |1, 2],

(2) E(S;") = 7“57’/ " HP(S% > ba)d.
0

c¢) Infer from (2) that

% /O [a™ (u)]" ' Q" (u)du.

Prove that (3) still holds if a~!(u) is changed to a1 (u) A n.

(3) E(S,") < nd”
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2) Let (X;)ien be a sequence of real-valued and integrable centered random variables.
Assume that IE(|X;|P) < oo for any positive ¢, for some fixed p > 2.
a) Let S be a nonnegative random variable. Prove that

(4) 2B(5) = plp~ Do —2) [ E(S - NEINan

b) Set H(\) = IP(S > A). Prove that
n 00 H(N)
<P — — a Y u) A nlQ2(u)du ) \P3d\.
() B <8 D 2)%/0 ([ '@ A nQt ) v —tax
c) Starting from (5), prove that
(© B(S) < 80~ DY [ o ) An]Q} (1) Q8 *(u)du
k=170

Hint: apply the Fubini Theorem and note that the inverse function of H is Qs:x.
d) Prove that

@ B(S;?) < [splp — P27 S [ o~ w) A 2Q (w)du
k=1"0

Compare (7) with the inequalities of Chapter 2 and with Corollary 1 in Yokoyama (1980).

3) A Marcinkiewicz-Zygmund inequality for martingales. Let (X;);en be a se-
quence of real-valued and integrable centered random variables and let Fj, = o(X; : i < k).
Suppose that (Sk)r>0 is a martingale with respect to Fj. Let p > 2. Prove that, if
E(|X;P) < oo for any positive i, then

(8) E(S;7) < [4p(p — DIP2n@=2/2 Y TE(1X,[7).
i=1
Hint: apply (3.8) and use the ideas of Exercise 2.

4) A maximal inequality of Serfling. In this exercise, we prove an inequality of Serfling
(1970) in a particular case. Let p > 2 and (X;);en be a sequence of real-valued random
variables such that for any couple of natural integers (m,n) such that m < n,

(9) E((Sn = Sm)}) < (n—m)P/2.
The goal of the exercise is to prove that there exists some constant K (p) such that

(10) E(S,7) < K(p)n’?.
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a) Let

@(N) =sup|| sup Skonvy; — Span|lp-
k>0 i€[0,2N]

Prove that, for any positive integer NV,
(1) PN) < 5D (St = Sz Iy + 270N = 1)

b) Infer that
SO(N) < (21/2 _ 21/p)—12N/2.

Next prove that (10) holds true with K(p) = (1 — 2%_%)_7’. Compare (10) with the
Doob-Kolmogorov inequality for martingales.
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4. CENTRAL LIMIT THEOREMS

4.1. Introduction

In this chapter, we are interested in the convergence in distribution of suitably nor-
malized partial sums of a strongly mixing and stationary sequence of real-valued random
variables. In Section 4.2, we give the extension of Ibragimov’s central limit theorem for
partial sums of a strongly mixing sequence of bounded random variables to unbounded
random variables, due to Doukhan, Massart and Rio (1994). We essentially follow the line
of proof of Ibragimov and Linnik (1971) and Hall and Heyde (1980). This approach is
based on Gordin’s theorem (1969) on martingale approximation. Next, in Section 4.3, we
prove a functional central limit theorem for the normalized partial sum process under the
same integrability condition on the tails of the random variables. In Section 4.4, we give
a triangular version of the central limit theorem. This result is obtained by adapting the
Lindeberg method to the dependent case.

4.2. A central limit theorem for strongly mixing and stationary sequences

In this section, we derive a central limit theorem for partial sums from the covariance
inequalities of Chapter 1. Our proof is based on Theorem 5.2 in Hall and Heyde (1980),
which is a consequence of Gordin’s results (1969, 1973) on approximation by martingales
(see Volny (1993) for a survey). We first recall Theorem 5.2 in Hall and Heyde.

Theorem 4.1. Let (X;);cz be a stationary and ergodic sequence of real-valued random

variables.
n

Sp=> (X; —E(X;)) and Fo=o0(X;:i<0).

Suppose that, for any nonnegative integer n,

(a) ZCOV(]E(Xn]}"O),Xk) converges
k>0

and

b lim sup | > Cov(IE(X,, | Fo), Xi)| =0,

0 | 3 Cov(I(X, | 7). X
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Then n~' Var S,, converges to a nonnegative real 0> and n='/2S,, converges in distribution
to the normal law N (0, c?).

The proof of Theorem 4.1 can be found in Hall and Heyde (1980). Now we derive from
Theorem 4.1 a central limit theorem for partial sums of a strongly mixing sequence.

Theorem 4.2. Let (X;);cz be a strictly stationary and ergodic sequence of real-valued
random variables. satisfying condition (DMR) of Corollary 1.2, with the strong mixing
coefficients defined by (2.30). Then n~!Var S, converges to a nonnegative real o and
n~1/28, converges in distriubtion to the normal law N (0, c?).

Remark 4.1. From Lemma 1.1, 02 is equal to the series of covariances defined in Lemma
1.1. It is worth noticing that Theorem 4.2 implies the uniform integrability of the sequence
of random variables (n=152),,~¢. This fact follows from Theorem 5.4 in Billingsley (1968).
We refer to Merlevede and Peligrad (2000) for a central limit theorem under a weaker
strong mixing condition.

If the strong mixing coefficients (o, ),>0 are defined by (2.1), then the convergence of
ay, to 0 implies the ergodicity of the sequence, and consequently the ergodicity assumption
can be removed. If the strong mixing coefficients are defined by (2.30), the ergodicity
assumption cannot be removed, as proved by the counterexample of Exercise 1, Chap. 4.
In Section 9.7 of Chapter 9, we will prove the optimality of condition (DMR) for power type
mixing rates. We mention that Bradley (1997) shows that condition (DMR) is optimal for

arbitrary mixing rates.

Proof of Theorem 4.2. We have to prove that assumptions (a) and (b) of Theorem 4.1
holds true under condition (DMR), for an ergodic sequence. Clearly these conditions are
implied by the absolute convergence of the series of covariance together with the condition

(4.1) ngfoo[; | Cov(IE(X,, | Fo), Xx)| = 0.

To prove that (4.1) holds true, we now apply Theorem 1.1(a). Let
(4.2) XY =E(X, | Fo).

n

Since the random variable X0 is Fy-measurable, Theorem 1.1(a) yields

(4.3) | Cov(B(X,, | Fo), Xp)| < 2 / " Qun (0)Qu, (u)du

Let 6§ be a random variable with uniform distribution over [0, 1], independent of (X;);cz.
Then (see Exercise 1, Chap. 1) the random variable

Up = Hxo (I1X3) + 6(Hxo (| X5| = 0) = Hxo (1X3))
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has the uniform distribtution over [0,1] and Qxo (U))) = |X}}| almost surely. Let €}, denote
the sign of X°. Then

ak
(4.4) | @@, (0du = B Qx, (U Tngea, )
0
Since 0 is independent of(X;);cz,
XY =E(X, | o(6) V F),

whence

/0 Qe ()@ (w)du = E(X,e0Qx, (U Tpoca, ).

It follows that
(4.5) / Qo ()@, () < B(Xn|Qx (U)o <o)

Now, by (4.5) and Lemma 2.1(a),

(623 (623

(4.6) Qxg (u)Qx, (u)du < Qx, (u)Qx, (u)du

0 0

Both (4.3) and (4.6) together with the stationarity of the sequence then ensure that

(4.7) | Cov(X0, X,)| < 2 / " Q% (wydu
0
Now
(4.8) Cov(XY, X3) = Cov(X?, X}) = Cov(X}P, X,,)

and therefrom, interverting k and n in (4.7), we get that

(4.9) | Cov(X2, Xy)| < 2 /0 " 02 (u)du

Consequently
inf(og,an)
Covxt X2 [ Qi
0

which ensures the normal convergence of the series. Hence (4.1) holds true, which completes
the proof of Theorem 4.2. m

Starting from Theorem 4.2, we now derive a central limit theorem for stationary and

strongly mixing sequences of random variables in the multivariate case.
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Corollary 4.1. Let (X;);cz be a strictly stationary sequence of random variables with val-
ues in R?. Let Qo be the generalized inverse function of Hx,(t) = IP(|| Xol|| > t). Assume
that (X;),cz satisfies condition (DMR) of Corollary 1.2, with the strong mixing coefficients
defined by (2.1). Then n~* Cov(S,,S,) converges to I’ = Var Xo + 23, Cov(Xo, X})
and n~1/2S,, converges in distribution to the normal law N (0,T).

Proof. For a and b in ]Rd, denote by a.b the Euclidean scalar product of a and b. Now

a.Sp, = (a.X; —E(a.X1))+ -+ (a.X,, — E(a.X,,))

for any a in IRY. Consequently, by Theorem 4.2, n~1/2

the normal law N(0,02(a)), with

a.S,, converges in distribution to

0?(a) = Var(a.Xg) + 2 Z Cov(a.Xp,a.X) = a.la.
k>0

Hence
lim E(exp(ia.n~'/28,)) = exp(a.T'a/2).
n— o0

Corollary 4.1 follows then from the Paul Lévy theorem.
4.3. A functional central limit theorem for the partial sum process

In this section, we give an extension of the functional central limit theorem of Donsker
to strongly mixing and stationary sequences of real-valued random variables. We refer to
Sections 9 and 10 in Billingsley (1968) for the definition of the functional central limit
theorem and to Section 14 in Billingsley (1968) for the weak convergence in the Skorohod
space D([0,1]).

Theorem 4.3 below is the functional version of Theorem 4.2. This result improves
the functional central limit theorems of Oodaira and Yoshihara (1972) and Herndorff
(1985), which hold under conditions (IBR) and (HER) respectively. We refer to Mer-
levede, Peligrad and Utev (2006) for a survey of functional central limit theorems for
dependent random variables and to Gordin and Peligrad (2011) for functional central limit

theorems via martingale approximation.

Theorem 4.3. Let W denote the usual Wiener measure on [0, 1] (ses Billingsley (1968) for
a definition) and let (X;);cz be a stationary sequence of real-valued and centered random
variables, satisfying condition (DMR) with the usual strong mixing coefficients, which are
defined by (2.1). Let {Z,(t) : t € [0,1]} be the normalized partial sum process, defined by
Z,(t) =n~1/2 Zgrﬂ X, square brackets designating the integer part.

Let o be the nonnegative finite number defined by defined by ¢ = lim, n~! Var S,,.
Then Z,, converges in distribution to W in the Skorohod space D(|0, 1]).
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Proof. Let @@ denote the quantile function of |Xy|. We start by proving the finite
dimensional convergence of Z,, to cW. Let ty < t; < ... < t; be any increasing sequence
of reals in [0, 1] such that to = 0 and ¢, = 1. We have to prove that the random vector
(Zn(tj)—Zn(tj—1))1<j<k converges in distribution to (cW;, —oWy,_ | )1<j<k. Let ¢, denote
the characteristic function of (Z,(t;) — Z,(tj—1))1<j<k, which is defined by

k
on () IEexp( Z Zn(t;— 1))) for © = (x1,22,...2k).
Let € > 0 be any positive real such that € < infj<;<p(t; —t;-1). Let
k
On.e(x) IE]exp( Z n(t;y —e) Zn(tj_l))>.
Since the function y — €% is 1-Lipschitz,
(4.10) [on () = @n.e(2)] < Z 25 (Zn(t; =€) = Zn(t;))l1 < 4llxlivVeM2o(Q)

by Corollary 1.1(b). Now, by Inequality (6) of Exercise 7, Chap. 1 applied repeatedly k

times,

On e H IEexp(zxj(Zn(tj —e)— Zn(tj—1))> ’ < dkajne) -1,

7j=1
which ensures the asymptotic independence of the above increments. Together with The-
orem 4.1, this inequality ensures that

(4.11) nli}m On.e(x) =exp (02 Z tj—1 — )x?)
7j=1

The finite dimensional convergence follows then from both (4.10) and (4.11).

It remains to prove the tightness property for the sequence of partial-sum processes
(Zp)n. According to Billingsley (1968), Section 8, Theorems 8.2 and 8.4, the tightness
property holds in the stationary case if the sequence (n=1S%*2),,~¢ is uniformly integrable.
Hence Proposition 4.1 below completes the proof of Theorem 4.2.

Proposition 4.1. Let (X;);cz be a stritctly stationary sequence of centered real-valued
random variables stisfying condition (DMR) of Corollary 1.2 for the mixing coefficients
defined in (2.30). Set S}, = supyco.,) Sk- Then the sequence (n~"'Sx?*)nso is uniformly
integrable.
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Proof of Proposition 4.1. Proposition 4.1 is implied by

(4.12) lim supn™'E((S; — Avn)) =

A—+o00 n>0

Now, applying Theorem 3.1(a), we get that

nE((S; - AViR) <16 [ 0T W@

with p, = IP(S% > Ay/n). Now, by the Chebyshev inequality together with Theorem
3.1(b),
pn < ATPIR(SE? /n) < 16My o (Q)A™2.

Hence the two above inequalities imply (4.12), which completes the proof of Proposition
41. m

4.4. A central limit theorem for strongly mixing triangular arrays *

In this section, we adapt the Lindeberg (1922) method to strongly mixing sequences.
The extensions to mixing sequences started with Bergstrom (1972) in the stationary ¢-
mixing case (see Krieger (1984) for remarks on Bergstrom’s paper). Dehling (1983) ex-

tended the method to strong mixing conditions and random vectors.

Let (Xin)ic[1,n) be a triangular array of independent random variables with mean zero
and finite variance. Suppose that Var(Xy, + -+ Xpn) = 1. Let Sy = Xqp + - + Xon-
Lindeberg (1922) proved that S,,, converges in distribution to a standard normal law as

n tends to oo if

(4.13) Z]E(an]l|xm|>g) —0 as n — oo for any € > 0.

=1

Now one can easily prove that (4.13) holds true if and only if
(4.14) ZIE (X2 min(|X;,[,1)) = 0 as n — oc.

Let then U be a random variable with uniform law over [0, 1]. Since the random variable
Qx,, (U) as the same distribution as | X;,|, (4.14) is equivalent to

IS
(4.15) Z/ Qg(m () min(Qx,, (z),1)dr -0 as n — oo.
i=170

In this section, we obtain a generalization of the Lindeberg condition to strongly mixing
sequences by replacing Qx, by a !'Qx, and dx by dr/a~!(z). Theorem 4.4 below is
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due to Rio (1995c). We refer to Neumann (2013), for a variant under other types of
dependence, with applications to statistics.

Theorem 4.4. Let m be a positive integer and (Xip)n>m,1<i<n be a double array of
real-valued random variables with mean zero and finite variance. Let (o )r>0 be the
sequence of strong mixing coefficients in the sense of (2.1) of the sequence (Xin)ic[1,n]
and a(*nl) be the inverse function of the associated mixing rate function. Let us define
Sin = X1n + -+ X4, and V; , = Var S;,,. Suppose that

(a) Van =1 and limsup max V;, < oo.

Let Q; »n, = Qx,, . Assume furthermore that

0 i (3 [ o 0t min(oz o100 01 ) =0

Then S,,,, converges in distribution to a standard normal law as n tends to oo.

Remark 4.2. Theorem 4.2 in the case ¢ > 0 follows from Theorem 4.4 applied to
Xin = (Var S,,)~1/2X; via Lebesgue’s dominated convergence theorem.

Proof of Theorem 4.4. The main step of the proof is the proposition below, which
gives quantitative estimates of the accuracy of the characteristic function of a sum to
the characteristic function of a normal law. In order to state this result, we need some
additional notations.

Definition 4.1. For any nonnegative quantile function () and any positive ¢, let
1
Mya(@0) = [ 0 (@)@ @)(ta (0)Q) A 1da.
0

The proposition below provides an estimate with an error term depending on the above

truncated moments.

Proposition 4.2. Let (X;);en be a strongly mixing sequence of real-valued random
variables with finite variance and mean zero. For any positive k, let S, = X1 + --- + X},
and ¢y (t) = E(exp(itSk)). Set Vi, = Var Sy, and V, = supyep ) Va- Let Q = Qx, . For
any positive integer n and any real t,

| exp(Vat?/2)pn(t) — 1] < 16¢% exp(V,i1%/2) Y - Mza(Qu, [t])-
k=1

Before proving Proposition 4.2, we complete the proof of Theorem 4.4. Since
Ms,0(@Q, [t]) < max([t], 1) Ms,0(Q, 1),
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Proposition 4.2 ensures that

P 0) =1 <161 DY [0 0108 0) e s A )

with V,; = max;c(1 5, Vi;n- Now, under assumption (a), the sequence (V,;'), is a bounded
sequence and, under assumption (b), the above sum converges to 0 as n tends to oo.
Consequently

lim |exp(t?/2)p,(t) — 1] =0,
n— oo
which imples Theorem 4.4 via the Paul Lévy theorem. m

Proof of Proposition 4.2. Considering the random variables —X; if ¢ < 0, we may
assume that ¢ > 0. Let 1, = 0, Sy = 0 and ¢g be the characteristic function of Sy. Set
v = Vi — Vi—1 and let

(4.16) A = pp(t) —e U 200 1 (t).

Then

(4.17) e 20n(t) = 1] < Y V2 A,
k=1

Let then

(4.18) Ak,l = g0k<t) - (1 - ’Ukt2/2)g0k,1<t) and Ak’g == (1 — Uth/z — eivktZ/Q)(pk,l(t).

Clearly Ag = Ak 1 + Ag 2. From (4.17) and the fact that |pr_1(t)] <1,
2 * 42 i
(4.19) eVt 2, (1) — 1| < eVt /2 (Z |Apa|+g Ws?/z))
k=1

with g(u) = min(1,e")|1 — u — e~ *|. Now, it is easy to check that g(u) < ¥(u), with

(4.20) Y(u) =u?/2 for u € [~1,1] and ¥ (u) = |u| — (1/2) for u ¢ [-1,1].
Hence
(4.21) €V 2 (1) — 1] < V2( S Acal + Zw (04t/2) ).

k=1

Consequently Proposition 4.2 follows from the upper bounds below via (4.21).
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Proposition 4.3. For any positive t,

(a) Z|Ak,1| < _t2ZM3a Q1)
k=1 k=1
and
o) " p(r?/2) < 0 Z My o (et
k=1 I ’

Proof of Proposition 4.3(b). By definition,

k—1
vp = Var X, +2 ) Cov(X;, Xp).
j=1

Hence, by Theorem 1.1(a) applied to the random variables X; and X,

1 k
(4.22) lug| < 4/0 Qr(x) My (x)dx with My(z) = ZQj(ﬂU)]Iw<ak,j-
=1

We now introduce some notations.

Definition 4.2. Let R, = a~'Q}, and let H;, denote the generalized inverse function of
Rk. Set Uk = Hk(l/t),

xR = /OM Qr(x)Mg(x)dxr and y, = /u: Qr(x) My (x)dx.

From (4.22) together with the elementary inequality
(4.23) Y +y) <z +(y°/2)

applied to = = 2z,t? and y = 2y,t?, we get that
n mn n
(4.24) D p(uet?/2) <202 m + 20 i
k=1 k=1 k=1

Hence Proposition 4.3(b) follows from the lemma below.

Lemma 4.1. With notations of Definitions 4.1 and 4.2,

n

Z($k+t2 ZMSa le

k=1
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Proof of Lemma 4.1. By definition of Hy, tRy(z) > 1 for any x in |0, ux[. Hence

k

(4.25) e <Y /0 e Q;(2)Qx(x)(tRy(x) A 1)dz.

J=1

Now, from Lemma G.1(a) applied to a = tR;(z) and ¢ = tRy(z),

QR ) (tRi(x) A1) + SQ3)(ER; () A1),

Wl N

(4.26) Qj(2)Qr(x)(tRe(2) A1) <

which ensures that
an) w<Y [ ot A+ Qe @) an)a
>~ . 3 j J

Next, by the Schwarz inequality

k

k
yk / Qk Mk ZZ/ Qk )Q;(2)Qu(2) Ty <a, Aag_ A

j= =1

Now, applying the elementary inequality 2Q;(z)Q;(x) < Q? () + Q?(z) and noting that
Sl Mycq,, < a~l(z) we obtain that

m=0

k 1
tyk Z/ t2 _1 ( )Q2( ) m<01k:—jdx'

Now, a~(z) < (a(x))? and, for > uy, tRx(z) < 1. It follows that
t?a H(2)Q3(z) < (tRp(7))? < tRyp(x) A1 for any x > uy.
Hence

(tyk) <Z/ (tRg(x 2(I)Hm<ak7jd93.

By Lemma G.1(b) applied to a = tR;(z) and ¢ = tRy(x), proceeding as in the proof of
(4.26), we get that

(4.28) (tR(z) AN 1)QF (x) < Qi () (tRy(x) A1) + QF () (tR; () A 1),

oo|>—~

which ensures that

k
(4.29) (tyr)? < Z/

O —j

(;Qi(x)(tRk(x) A1)+ Q?(x)(tRj(ZE> A 1))dx.
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Adding (4.27) and (4.29) and summing on k, we then get Lemma 4.1, , which completes
the proof of Proposition 4.3(b). m

Proof of Proposition 4.3(a). Let us give another expression for A . Define the

function x; by x:(z) = exp(itx). Then x} = —t?x;. Hence

(4.30) Ay =TE(x:(Sk)) — xe(Sk-1) = 306X/ (Sk—1) )-
Let us now define the class F(1,t) of regular functions as follows.

Definition 4.3. Let F(1,t) be the class of real-valued two times differentiable functions
f such that || f”|lcc <1 and f” is ¢t-Lipschitz, that is |f"(x) — f"(y)| < t|lx — y| for any
reals x and y.

Define then

(4.31) Dy = sup E(f(Sk—1+Xx)— f(Sk—1) — 30rS"(Sk-1)).
FEF(1,t)

We start by comparing A; , and Dj,.
Lemma 4.2. For any positive real t, |Aq x| < t?Dj,.

Proof of Lemma 4.2. From the polar decomposition of a complex number, there exists
some real 6 such that |A; x| = Ay ze=%. Tt follows that

’Al,k‘ — E(ei(tSk—é)) o ei(tSk_l—G)(l _ %Ukt2>)
(4.32) = IE(cos(tSk — 0)) — (1 — 2v4t?) cos(tSk_1 — 0) ).

For any real 6, the function gy defined by gg(x) = t~2cos(tx — ) belongs to F(1,t).
Furthermore g; = —t%gy. Hence Lemma 4.2 follows from (4.32). m

From Lemma 4.2, Proposition 4.3(a) follows from the more general upper bound below.

Proposition 4.4. Under the assumptions of Proposition 4.2,
D Dk <5 ) M3 a(Qrst).
k=1 k=1

Proof of Proposition 4.4. Throughout the proof, we make the convention that X; =
S; = 0 for any ¢ < 0. The main step of the proof is the following upper bound for Dj.

Lemma 4.3. Let u be any real in [0,1/2] Set Q(x) = min(Qx(z), Qx(u)) and p =
a~1(u). Then

p—1lj+p—1 Otj/\a(l,j)+

+ 2t Z > / (1 + Myepj2-1)) Qr—1(2)Qr—j (2)Qr () dux.
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Proof of Lemma 4.3. Throughout the proof, we make the convention that S; = 0 for
any ¢ < 0. We set

(4.33) My (z,u) = i Qr—j(@)Iycq, and Xi = (X A Qr(u)) V (—Qr(w)).
§=0

Let Qj, denote the quantile function of | Xy|. From the definition of X,
(4.34) Qx, (u) = Qu(z) and Qx, _x, (v) = (Qu(x) — Qr(u))+ .
Let f be any element of F(1,¢). By the Taylor integral formula,
1
F(S1) = F(Simt) = £/ (S1o)Xe = X [ (F/(Sis +0X0) = (S
0
1
_ Xk/ (F(Skor +0Xp) = F/(Sp_1 + vX))do
0
(4.35) + X Xk // vf"(Sk—1 + vv' Xy )dvdv'.
0Jo
The first term on right hand is bounded up by | X (X — X%)|/2. Moreover

Xk‘a

1,1
— 1
)// vf"(Sp_1 + vv' Xy )dvdv' — = f"(Sk_1) §£]
0J0 2 6

which ensures that the second term is bounded up by | Xz X?/6|. Now, from (4.34)

(4.36) E[X, (X; — Xp)| = / " Qu(@)(@Qu(a) — Qu(u))da
and
B 1 B 1/2 B

(4.37) EXE = [ Q@i <2 [ Quw)@ieds,

0 0
Hence

B(/(S1) = f(Sk1) = /(S 1)Xn = 5"(Sk 1) XK <

u 1/2 B
(4.38) : / Qu(r)(Qu(x) — Qu(u))dr + / Qu(x) Q2 (x)da.
We now control the second order term
(4.39) Dia(f) = B(f"(Sk—1)Xs Xx) — B(" (See1))B(X5: Xs).
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Let de' = f”(Sk,j) - f”(Sk,j,l). Clearly

p—1
(4.40) F(Sk-) XX = ) T XX + £ (Sk—p) X3 X

Jj=1

Since [Tk ;| < t|Xk—;|, applying Theorem 1.1(a) applied to X = T'y; and Y = X X}, we
get that

(4.41) | Cov(Te, X X3)| < 2t /0 Y Qs (2)On(2) O (2)da
Noting that oy, < u, we also get that
(1.42) [Con(f" (Sup) XXl £2 [ Qule) Qula)ie
The two above inequalities and the decomposition (4.40) together then yield
@) D=z M) — Qel) + T ) Q) Qi)
Next, by (4.36)
(1) B S )BT - X0) < 17 | Q@) Qule) — Qulu))d,
Combining (4.38), (4.43) and (4.44) we then get that

B (F(Sk) = £(Sk-1) = F(Se-1)Xe = 31" (Se-1)E(XD)) <

o

(4.45) /OuQi(x)dx—}—t ; My (2, u)Qr(2)Qr(x)dz.

It remains to estimate the first order term IE(f’(Sk—_1)Xx). Let

k—1

(4.46) D1 (f) = B(f' (Sk—1)Xk) = > E(f"(Sk—1))E(X_; Xp).

.
I

In order to bound up Dy 1(f) we introduce the decomposition below

k—1
Dy1(f) = ZDi,l(f)y where
j=1

(447) D] (f) = Cov(f'(Sk—s) = ' (Sk—j-1) Xp) = (" (Sk—1))E(Xp—; X3)-
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We now consider two cases. If j > p, then a; < u. Since
(4.48) |/ (Sk—j) = f'(Sk—j—1)| < [Xk—jl,

it follows from Theorem 1.1(a) that

(4.49) Cov(F/(Se_s) — f'(Sk_j1), Xp) < 2 /O Y Qs (2)On () da
Now, by Theorem 1.1(a) applied to X = Xj_; and ¥ = X},
(4.50) B (S By X0] <2081 [ Qus0)Qula)da
Hence
(451) IZROES) DY CANCINEIE

jzp jzp

If j < p, we write
(4.52a) DL, (f) = DL, (f) + Di,(f),
with
(4.520) DL (f) = Cov(f'(Sk—s) = F/(Sk—j—1): Xi) = B (Sk1) (X5 Xp).
From the definition of Dj , (f) and the fact that [f] <1,
Dy 1 (f) < | Cov(f'(Sk—) = f'(Sk—j—1)s Xp = Xp)| + E|Xp—; (Xi = X))
<9 / T s @)(Qula) — Q) + / " Qu i (@)(Qulx) — Q)

by Theorem 1.1(a) together with (4.48) and Lemma 2.1(a). Since u A a; < u, we get that

(4.53) Dy (f) <3 / Q—5(2)(Qu(x) — Qulx))da.
We now bound up Di@(f)- Let

(4.54) Ryj = f'(Sk—j) = f'(Sk—j—1) = f" (Sk—j—1)Xp—;.

By the Taylor formula at order two, |Ry ;| < tX7 ;/2. Consequently, applying Theorem
1.1(a),

(4.55) Cov(Ry j, Xi) < t/o : Qi_](x)Qk(m)dx
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We now estimate
(4.56) D{(f) = D}, (f) — Cov(Ru 1, Xi).

Here we introduce the decomposition below

(4.57) f//(Skfjfl) Sk 25) Zrk,]+l

Now, recall that |I'y, ;1| < t|X,—;—;|. Hence, by Theorem 1.1(a) applied to X =T'; 41 X,—;
and Y = X}, and Lemma 2.1(b),

(4.58) Cov (T 1 X, Xi) < 21 /O 7 Qr (@) Qi () Qu (@) de
We now bound up the remainder term

(4.59) D) = Cov(F"(Sk—2i) Xn—j, Xi) = (" (Sk—1))E(Xj—; Xx).
Here we use the decomposition

DI (f) = Cov(f" (Sk—2i), Xu—j Xi) + B(f" (Sk—2j) Xp—j) (X, — Xp)
(4.60) +IE(f"(Sk—25) — f" (Sk—1))IE(Xp_; X).

Using Lemma 2.1(a) and noticing that o; > u for j < p, we get that

(4.61) (S (Sk—2j) Xi—j) (X, — Xp)| < /Ou Qr—j(2) Ly <a, (Qr(r) — Qr(x))dz.

Next

2j—1

(4.62) " (Sk—2;) = [/ (Se-1)| <t > | Xp]

=1

and, by Theorem 1.1(a) applied to X = X;_; and Y = X,

(4.63) E(Xk—; Xk)| < /Oaj Qk—j(2)Q(x)dx

whence

25—1

(4.64) TE(f"(Sk—2;) = f"(Sk—1))E(Xp—; X) <2tZ/ Qr—1(2)Qr—j () Q. (x)dx
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It remains to bound up Cov(f”(Sk—2;), Xx—;Xk). Clearly

p—1
(4.65) F"(Sk—2i) =Y Thuri+ 1" (Sk—jp)-

1=
Now, by Theorem 1.1(a) applied to X =Ty 4, and Y = X;_; X} and Lemma 2.1(b),
ajAag

p—1 p—1
(4.66) S Cov(Tesg, Xe s Xi) <2t / Qn— s 1(@)Qp; () On () da.
1=j 1=5 70

Noting that o, < u < «;, and applying Theorem 1.1(a) with X = f"(S,_;,—,) and
Y = X;_; X together with Lemma 2.1(b), we also get that

(4.67) COV(f”(Sk_j_p),Xk_ij) S 2/0 ]Im<ank_j(£L‘)Qk($)dl'.

Using the decomposition (4.60), and adding the inequalities (4.61), (4.64), (4.66) and
(4.67), we then get that

DI < [ Q) (@uo) + Qula)i

Pl pagnaq—g, _

+2t Z / Qr—1(2)Qr—j(2)Qr(v)d.
1=1 70
Next, from (4.53), (4.55), (4.58) and the decomposition (4.52), for any j in [1,p — 1],

DL < [ Qs e, (1G4 (o) — 20u(0))do

J+p—1 ajNogg—

(4.68) + 2t ; /0

Now, summing (4.68) on j for j in [1,p — 1] and adding (4.51), we get that

" (14 Wyepj2j—1))Qr—1(2)Qr—; ()Qx(z)dz,

Dea(f) <4 / " (Mi(2) — Qu(a))Qn()da

p—1j+p—1 OLj/\Oé(l_j)+

(4.69) + QtZ Z / (L4 Wepj0i—1)) Qr—1(%) Qr—; (2)Qr (2)dx.

Adding (4.45), we then obtain Lemma 4.3. m

End of the proof of Proposition 4.4. Replacing the random variables X} by X}
if necessary, we may assume that ¢ = 1. Let then up = Hy(1), pp = o !(ux) and
Qr(z) = min(Q (), Q(ur)). Applying Lemma 4.3 with u = uy, we get that

(4.70a) Y Dp<ad /Uk M (2)Qr (x)dz + Y I
k=1 k=10 k=1
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with

pr—1j+pr—1 Ozj/\Ot(l,j)+ _
a0 L= Y / (14 Toegy ;- 11)2Qu1(2) Qo () Qu()da.
j=0 1=0 YO

We now bound the first term on right hand in (4.70a). By definition of uy, Ri(z) > 1
for x < ug. It follows that

A —j

Uy k
(4.71) /0 Mi(@)Qu(w)de < 3 /0 Ry (@) Re(2) (Ra () A 1) (0 () 2da.

Now, by Lemma G.1(a),
R;(z) Ry, (2)(Rp(z) A1) < 5 RS (2)(R;(x) A1) + FRE () (Ri(x) A1),

Putting this inequality in the right hand side of (4.71) and summing on k, we obtain that

(472 S [ M)@ute)dn < TS Mo al@ia1),
k=1"0 k=1

We now bound up Ij;. From the inequality 2Qx—;(2)Qx—;(z) < Q7_,(z) + Qi_j (x),

pr—1j+pr—1 Ozj/\Ot(l,

) D+ _
LI+ w1V = Y / (1+ Mgy j-1) Q3 (1)Qu(w)d
=0 1=0
(2) pr—1j+pr—1 Otj/\a(l,j)+ _
(4.73) and L,V = > ) /o (1 + Wyepj 2j—1)) QF 1 () Qr () d.
i=0  1=0

In order to manage I Igl), we write

pe—1 L1 J+pr—1
1 = .
=% / n;(2)Q}_;(2)Qu(@)dz with nj(x) = Y (1+ Wepjoj-1) Tacaq ), nay-
3=0 =0
Next
pr—1
(4.74) nj(@) = 3 + Dllaca, + Y Moca,, <3(a ' (2) Api)Taca,.
m=j+1

Since (a=1(x) A pr)Qk(z) < (Ri(z) A1), it follows that
k=1 ray

(4.75) 1M <3y / @2 (2)(Ri(x) A 1)d.
j=0"0
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In a similar way

2pr—2 Pk—

1
](2 < Z / Nl Qk l( )Qk( )d:l;‘ Wlth Nl( ) (1+]Ile[j,2j—1})]lx<a(l,
0

j)+/\aj'
Jj=

Now min(a ), , ;) < min(ay_p/9), ;). Consequently

pr—1

WEET NN SE SR S |

7=0 JEIL/2,1]
i<pp

If I < pi, then

pkl

Z ]Im<on = 5 Z (]Iac<aj + ]Iac<o¢l j = 2 Z ]I:v<am

j€lt/2,1 je]l/2,l]
I<Pg

Otherwise [ > p, and

pr—1

S leca, € Y Teca, <5 O Teca,

J€lL/2,0) JEIPK/2:pK| m=0
I<Pl

again. From the above inequalities N;(z) < 3 (o™ () ADk)Tp<a,_y s, Whence

A —[1/2]

(4.76) <z Z/ Q2_,(z)(Ry(z) A 1)da.

Now (4.75) and (4.76) together with (4.28) ensure that

ka <2 Z Z/“l Y02 (@) (B () A D)da + 22_:/0% Q2. (2)(Rpn () A l)d:c).
j=0

m=1 [=0

Since 27:_01 Loy gy <2 Z;:Ol Tico, < 2a~1(z), the above inequality implies that

(4.76) > I <8>  Msa(Qm,1)
k=1 m=1

Proposition 4.4 follows then from (4.70), (4.72) and (4.77). =
EXERCISES

1) A non Gaussian limit law. Let (¢;);ez be a sequence of Gaussian random variables
with common distribution N(0,1) and V' = (a, b) be a random variable with values in the
unit circle, independent of the sequence (g;);ez. We set X; = ag;—1 + be;.
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a) Prove that the coefficients (o )r>0 defined by (2.30) satisfy o = 0 for any k£ > 2.
b) Prove that n~'/2S,, converges in distribution to (a + b)Y, where Y is a N (0, 1)-
distributed random variable, independent of V' = (a,b). Give a necessary and sufficient

condition on V ensuring that the limit law is a Gaussian one.

Problem. - Agrégation de mathématiques 1994 - Our aim in this problem is to provide
a second proof of the central limit theorem for stationary and strongly mixing sequences.
We follow the approach of Bolthausen (1982a), which is based on the Stein method (1972).
Throughout the problem, (X;);cz is a strictly stationary sequence of centered real-valued
random variables satisfying condition (DMR) for the strong mixing coefficients (a;,)n>0
defined by (2.1). Furthermore we assume that

o? = Z Cov(Xp, X;) > 0.
1EXL

A

Let (v, )n>0 be a sequence of probability measures on IR such that

(0) K := Sup/ r2dv, (x) < oco.
n>0JR

Suppose furthermore that, for any real A,

(1) lim [ (A —x)exp(i\z)dv,(z) = 0.
n—oo R
1) Prove that, if (v,)n>0 converges weakly to a probability measure v, then v is the
standard normal law.
2) Deduce from 1) and from (0) that (vy,),>0 converges in distribution to the standard

normal law.
B

Throughout part B, we assume that || Xo||cc = M < co. Let (my,)n>0 be a nondecreas-
ing sequence of positive integers converging to oo and such that m,, < n/2 for any n > 0.

For j in [1,n], we set
Dy =A{(l,j) € [L,n]* : [j =1 <mn} and Dy(j) ={l € [L,n] : [j — 1| < my}

Let
Vo= Y Cov(X; X)).

(1,j)€Dn
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1) Prove that (V},/n),>0 converges to o as n tends to oc.

Throughout the rest of Part B, we assume that n is large enough to ensure that V,, > 0.
We set, for [ in 7,

Yin =V, ?Xy, To(j) = > Yin and T, =) Yin.

Here X is any real.

2) Prove that
E((iX — T},) exp(iATy,)) = iAE(exp(iAT},) Ay) — IE(exp(iATy,) By) — IE(C,)

with

n

Ap =1~ ZTn(j)Yj,n, B, = ZYj,n(l — exp(—iATu(4)) — AT (5))

Jj=1
and

Co = Y exp(iXT, — iXT,(j)).
j=1

3a) Apply the Taylor integral formula to show that
lexp(idz) — idx — 1] < (\z)?/2.
3b) Prove that there exists some positive constant K; such that
E(|B,|) < Kin~Y?m,

for n large enough.

3c) Prove that there exists some positive constant Ko such that
E(Cy)| < K2n1/2amn

for n large enough.

4) Let m be a nonnegative integer and (4,1, 5’,1') be an element of Z* such that |j —1| <
m and |5/ —U'| < m.

a) If |j — 7’| > 2m, prove that

| Cov(X; Xy, X Xp)| < 2M*ajj_jr|—om.
b) It k= mln(|.] - j/|7 |] - l|7 |.] - l/|)7 prove that
| Cov(X,; X, X0 Xp)| < 4M*ay.
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5) Prove that IE(A,) = 0. Next, prove that there exists some positive constant K3 such
that
E(A%) < Kzn~'m?

for n large enough.
6a) Prove that the sequence (mau,)mso converges to 0, Find a sequence (my)n,>o of
positive integers with the above prescribed properties such that

1/2

lim n'2a,, = lim n=Y?m, = 0.

n—oo n— oo

6b) Prove then that n=1/2S,, converges in distribution to the law N(0,0?2).

C

Let M be any positive real. We set

We denote by H the tail function defined by H(z) = IP(|Xo| > x) and by @ the cadlag
inverse of H. Let

Zn =072 "Xy, o =072 (X)) = B(fu(X))
j=1 j=1

and

Zn,M - Zn - Zn,M-
1) Prove that

) H(M)
E(Z2 ;) <4 / o1 (1) Q2 () du.
0

2a) Prove that the series

Z Cov(far(Xo), fr(Xk)).

keZ

is abolutely convergent.

2b) Let 02(M) be the sum of the above series. Prove that o?(M) converges to o2 as
M tends to oo.

2c) Prove that the central limit theorem holds under condition (DMR). ¢

2) A central limit theorem for [-mixing sequences. Let (X;);cz be a strictly
stationary sequence of random variables with values in some Polish space X', with common
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law P. We assume that the sequence of strong mixing coefficients defined in (2.1) is
summable and that the sequence of S-mixing coefficients (5;);>0 defined in Corollary 1.4
is summable. Let B be defined as in Corollary 1.4 and QQ = BP.

a) Prove that, for any g in L?(Q), the series

ZCOV(Q(XO),Q(Xt))

is absolutely convergent. Bound up the sum o2(g) of this series.
b) Proceed as in part C of the problem to prove that

Zy(g9) =n"""*(Su(g) — E(Su(9)))

converges in distribution to the law N(0,5%(g)).
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5. MIXING AND COUPLING

5.1. Introduction

One of the most popular techniques to get limit theorems for dependent processes is to
replace the initial sequence by a sequence with finite range dependence. In this direction,
the coupling lemmas allow one to replace the initial sequence after time 0 by a new sequence
independent of the past before time 0. In this chapter, we give coupling theorems for mixing
sequences. The cost of the coupling will depend on the mixing condition involved. Here

we will give coupling results for strongly mixing or absolutely regular sequences.

For sequences of random variables satisfying a S-mixing condition, the new sequence is
equal to the initial sequence after time n with high probability. This result was obtained
independently by Berbee (1979) and Goldstein (1979). This result fails in the strong
mixing case. Nevertheless one can still obtain weaker results, which are efficient for real-
valued random variables. These results are stated and proved in Section 5.2 in the case of
bounded random variables. Next, in Section 5.3, we will state and prove coupling lemmas
for random variables satisfying a S-mixing condition. In Section 5.4 we compare the results
of Section 5.2 to previous results on the same subject. In Section 5.5, we give the strong
version of Berbee’s or Goldstein’s Lemma, called maximal coupling. Section 5.6 is devoted

to an extension of the results of Section 5.2 to unbounded random variables.
5.2. A coupling lemma for real-valued random variables

We first state the coupling lemma of Berbee (1979) for random variables satisfying a
B-mixing condition. This lemma will be proved in Section 5.3.

Lemma 5.1. Let A be a o-field in (2, T,IP) and X be a random variable with values
in some Poilsh space. Let § be a random variable with uniform distribution over [0, 1],
independent of the o-field generated by X and A. Then there exists a random variable
X*, with the same law as X, independent of A, such that IP(X # X*) = B(A,o(X)).
Furthermore X* is measurable with respect to the o-field generated by A and (X, ).

When X is a real-valued random variable with values in the compact interval [a,b],
Lemma 5.1 ensures that

(5.1) E(X - X*[) < (b —a)B(A,0(X)).
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In this section we will prove that (5.1) is still true if one replaces the S-mixing coefficient

by the strong mixing coefficient, and more generally, by the dependence coefficient defined
in (1.8b).

Lemma 5.2. Let A be a o-field in (2, T,IP) and X be a real-valued random variable
with values in [a,b]. Let 6 be a random variable with uniform distribution over [0, 1],
independent of the o-field generated by X and A. Then there exists a random variable
X*, with the same law as X, independent of A, such that

E(X —-X*) <(—-aalA,X).

Furthermore X* is measurable with respect to the o-field generated by A and (X, ).

Proof. We will define X* from X via the conditional quantile transformation. The
main interest of the quantile transformation, is that this transformation minimizes the L'-
distance between X and X*. We refer to Major (1978) for the properties of the quantile
transformations.

Let F be the distribution function of X, and F 4 by the conditional distribution function
of X given A, which is defined by F4(t) = IP(X <t |.A). Since ¢ is independent of AVo(X)
and has the uniform distribution over [0, 1], the random variable

(5.2) V = FA(X = 0) + 0(F4(X) — Fa(X — 0))

has the uniform distribution over [0, 1], conditionally to A (see Annex F). Hence V is
independent of A and has the uniform distribution over [0, 1]. Therefrom

(5.3) X*=FYV)

is independent of A and has the same distribution function as X. Furthermore (see Exercise
1, Chap. 1),

(5.4) X =F"(V) as.,
whence
1
(5.5) E(X — X*|) :IE</O 7' (v) —F‘l(v)|dv>.

Since X takes its values in [a, D],

1 b
/ Filw) — F(0)|dv = / Fa(t) — F(0)]dt.
0 a
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Interverting the integral and the mean, we infer that

b
(5:) B(X - X)) = [ E(FA() - Pt))t.
Now, by (1.10c), for any real ¢,
(5.7) B(|Fa(t) = F(t)]) < oA, X),
which, together with (5.6) implies Lemma 5.2. m

5.3. A coupling lemma for S-mixing random variables

In this section, we give a constructive proof of Lemma 5.1. In Section 5.4 we will study
connections between coupling for [S-mixing random variables and coupling for strongly

mixing random variables.

Proof of Lemma 5.1. Let X* be a random variable, independent of A and with the
same distribution as X. For any pair (A;);cr and (Bj);e s of finite partitions of {2 and X,
with A; in A and B; Borelian of &,

YD 1Cov(Ia,, Ixep,)l =Y D IP(AiN (X € By)) — P(A;N (X" € By))|

el jeJ i€l jeJ
<Y B(Ly, ) [lxen, — Lx-es,)).
i€l Jjed

Now Zjej Ixep, — Ix~ep,| < 2L xxx~, and consequently

(5.8) %ZZ|COV(]IA“]IX€B].)| <IP(X # X*).

iel jeJ
Therefrom, by (1.58), IP(X # X*) > (A, 0(X)).
Let us now prove the converse inequality. From Lemma E.1 in Annex E, is is enough

to prove Lemma 5.1 for random variables X with values in ([0, 1], B) where B denotes

the o-field of Borel sets of [0,1]. We start by the construction of the random variables in
(@ x[0,1] x [0,1], A® B® B).
Here, we use the notations introduced in the proof of Lemma 5.2. We have to construct

a probability measure on the above product space in such a way that, if Y denotes the
second canonical projection and Y* denotes the third canonical projection, then

(5.9) P(Y <t|A) =Fut), P(Y*<t|A)=F(t) and P(Y #£Y"*) < §.
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On the first component we consider the probability induced on A by IP. In order to define
the law on the product space, it is enough to define the conditional law v4 of (Y,Y™)

conditionally to w.

Notations 5.1. For L nonnegative integer, let I, 1 = [0,27%] and I, ; =](i —1)27F,i271]
for i in [2,2],. Let Br, be the Boole algebra generated by the sets Iy, ;.

We now define a coherent sequence (vy, 4)1, of conditional probabilities on the algebras
B, ®By,. The conditional probability v 4 will be defined from these conditional probabilities

via some extension theorem.

Assume that a coherent sequence (v, 4)r<n of conditional laws on the Boole algebras
Br, ® By, has been constructed in such a way that these laws are measrurable with respect
to A and satisfy the condition #(L) below: if p}; = v, a(I1; X I ;), then, for any L in
[0, N] and any i in [1,2%],

2L 2L
pli=P(X el | AANPX €l;), Y ply=P(Xely;|A), > pl;=P(X el

(note that #(0) is satisfied anyway). We have to construct an extension vyy1 4 of vn 4
to the Boole algebra Byy1 ® By in such a way that H(N + 1) still holds true.
For any pair (4,j) of integers in [1,2%], the extension vy1 4 has to satisfy the con-

straints

1 1
N N+1
C(N +1) pij = Z szifsaj—n-
e=0n=0

Furthermore we need to construct vn41 4 in such a way that H (/N + 1) holds true. Set
(5.10)  al=TP(X € Iny12i= | A), bl =TP(X € Iny19j-c) and ¢ =py Ly .
We start by defining the diagonal terms. In order to fulfill H(NN + 1), we set

(5.11) gi. =IP(X € Iny19i-c | A)ANP(X € Ing12ic).

Now we have to fulfill both constraint C(N 4 1) for j = ¢ and (5.11). With the notations
introduced in (5.10), it means that

(512) qpp = ag Ab, g1y = a1 Aby and gy +4iy = inf(ag+ai, b +b1) — (ag Aby) — (ai ADY).

If af) + ai < bf + bi, then the constraint on the first marginal at range N, which may
be written Zj pfvj = a} + af, implies that pfvj = 0 for j # ¢, whence qg? = 0 for j # 1.
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Consequently the first marginal constraints at range N + 1 for the lines 2¢ and 2¢ — 1 hold

true if and only if
(i) go1 = ap — (ag A by) and gy = ay — (a3 A by).

Hence there exists a unique (qé%)s,n satisfying (5.12) and the marginal constraints on the
lines. Similarly, if a + af > bf + b, then the constraint on the first marginal at range N,
which is implies that pévz = 0 for any j # i. Then the marginal constraints at range N + 1

on columns 27 et 2¢ — 1 hold true if and only if
(i) G = by — (ag A by) and qgy = by — (a3 Aby).

Hence there exists a unique (g% )., satisfying (5.12) and the marginal constraints on the

columns.

It remains to define the probabilities pgf; 2j—n for j # 4. If pfvj = 0, then these numbers
are equal to 0. If pf\; = 0, then

(5.13) P(Xely,|A)>P(Xely;,)and P(X €Iy, | A) <IP(X € In;).

Under (5.13) the reals ¢%} and ¢3} are determined by ( (ii). Summing on the lines 2i et
2i — 1, we then get that the marginal constraints are satisfied if

g +ati = b+ (ahAb)) —(al Ab) < af
¢+ gt = b4 (al AbL) — (ah ADY) < al.

Now b}y + b} < af) + a¥, whence b}y < afy or b} < a}. If b} < af, then

by + (ah Ab) < b + b} < inf(ah + af, af + b))
by + (a3 Ab1) — (ag A bp) < (ay A DY) < aj,

which ensures that the above marginal constraints are satisfied. The case b < a® can be
treated in a similar way. Hence ryo = (a} — ¢5) — q¢&y)/(ah + a¥ — by — b%) is nonnegative.
In a similar way, it can be proven that r;5 < 1. Lety then r;; = 1 — r;5. We now deal with
the column j. By (4.13), the reals ¢/} satisfy condition (i) (with j instead of 7). Starting
from (i), one can define nonnegative reals s;o et s;1 = 1 — s;¢ corresponding to the column

J, in the same way as the reals r;p and r;; are defined from (ii). We then set
<514) pé\z(—’—_i,Qj—n = ri€8j77p£\,]j for (5777) € {07 1}27

which completes the definition of vn41 4. Condition C(N + 1) is then satisfied. We now
check the constraint on the first margin (the constraint on the second margin can be
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checked in a similar way). Under (i) this constraint holds immediately since p,f\; = 0 for
j # 4. Under (ii), we have to prove that

2N 1 .
(5.15) Z Zp2i,2j—77 = ay,

j=1n=0

Now, separating j =4 and j # 4 in this sum and using (ii), we get that (5.15) holds true
if and only if 750 3,4, pi; = (abh — q4h — ¢b1). Now the constraint at range N on the line
i for vn 4 may be written as }_ pfvj = (a} + a® — b}y — b}), so that (5.15) holds true by
definition of r;9. Consequently there exists a sequence (vn 4)n of conditional probabilities
with the prescribed properties. Define then the probability measure vy on AR By ® By by
UN(AXxBy) = E(vy, a(Bn)14). The so defined sequence (vn )y of probability measures is
coherent. Hence, by the Kolmogorov extension theorem, there exists a unique probability
measure v on A ® B ® B such that

(5.16) V(A x By) =vn(A X By) = E(llavy a(By))

for any A in A, any positive integer N and any By in By ® By. Let then v 4 be defined
by

(5.17) v(Ax B) =IE(llyva(B)) for A€ Aand B € B® B.
The restriction of v4 to By ® By is equal to vy 4. Hence, for any dyadic number z,
(518) I/A([va] X [07 1]) = FA(x) et VA([()? 1] X [O,%]) = F(.’L’)

Since the dyadic numbers are dense in [0,1], it follows that (5.18) holds for any real x
in [0,1]. Let then Y denote the second canonical projection and Y* the third canonical
projection. From (5.18) the random variable Y* is independent of A (here A denotes the
o-field induced by the first projection) and has the same law as X. From (5.18) again the
conditional law of Y given A is equal to the conditional law of X given A. Furthermore

2N 2N
— V) = i ‘ ) = 1 N

(5.19) P(Y =Y*) = ngnoona(VMA <L:J1 In: % IN71)> ngnoo;IE(pm).
Now

oN 2N

v 1
> E@Y) = 5 Y E(P(X €Iy, | A) —P(X €1,)]) > 1 - B(A (X)),
=1 =1

which ensures that IP(Y # Y™*) < 5(A,0(X)). Hence IP(Y # Y*) = (A, o(X)).
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Let then Q = Qx[0,1] x[0,1] x [0, 1] be quipped with v®A. By Lemma E.2, there exists
a random variable V' with uniform law over [0, 1] independent of the o-field G induced by
the first two projections and a measurable function g such that Y* = g(w,Y, V) almost
surely. Setting X* = g(w, X, ), we then get Lemma 5.1. m

5.4. Comparison of a-mixing and g-mixing coefficients for finite o-fields

In this section, we are interested in a converse inequality for S-mixing and strong mixing
coefficients, in the case ot o-fields with a finite number of atoms. Below we give a result
of Bradley (1983) which was used to obtain approximation theorems by Bradley (1983) in
the case of real-valued random variables. At the end of this section we will compare this

lemma with Lemma 5.1.

Lemma 5.3. Let A be a o-field of (Q,7T,IP) and B be a Boole algebra included in T,
having exactly K atoms. Then B(A, B) < (2K)'/?a(A,B).

Remark 5.1. The above lemma is optimal up to some multiplicative constant, as proved
by Bradley (1983). This fact will be proved in Exercise 2.

Proof of Lemma 5.3. We may assume that the probability space is large enough to
contain a finite sequence (e1,.. .,k ) de of independent and symmetric signs, independent
of AV B. Let By,..., Bk denote the atoms of B. Set

K
Y =) &i(lip, — P(By).
k=1

We now proceed conditionally to (e1,...,ex) : the random variable Y is conditionally
centered, so that we may apply (1.11c) with X = 1 conditionally to the values of the signs.
Since Y belongs to [—1, 1], integrating with respect to the signs, we get that

K
(5.20) ]E<‘ 3 e(P(By | A) —IP(Bk))D < 2a(A, B).
k=1
Now, by the lower bound of Szarek (1976) in Khinchin’s inequality, for any finite sequence

ai,...,ax of reals,

E(laie1 + - +akek]) > 2_1/2(a% + -4 a2)
(5.21) > (2K) 72 (Jar| + -+ Jax])

by the Cauchy-Schwarz inequality. Taking a = IP(By | A) —IP(By) in (5.21), we get that

2a(A, B) > (2K)72 Y "E(P(By, | A) — P(By)]) = (2/K)'?B(A, B),

=1
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which completes the proof of Lemma 5.3. m

We now explain the method of Bradley (1983) for strongly mixing sequences. Divide
[a,b] into K intervals , Hy, Ha,... Hy of the same length. For X random variable with
values in [a,b], consider the Boole algebra B generated by the atoms By = (X € Hy).
Applying Lemma 5.1 together with Lemma 5.3, one can construct a random variable X*
(which depends on the number K of intervals) with the same distribution as X, indepen-
dent of A and such that

(5.22) ]P((X,X*) e |J Hi x Hk) > 1— (2K)20(A, 0(X)).
k=1

Now, if (X, X*) belongs to Hy x Hj for some k in [1, K], then|X — X*| < (b — a)/K.
Consequently

(5.23) P(|X — X*| > K~ '(b—a)) < (2K)2a(A,0(X)).
Now, for any A in [0,b — a], applying (5.23) with K =1+ [(b — a)/A], we get that
(5.24) P(|X — X*| > X) <2((b—a)/N)2a(A,0(X))

(see Bradley (1983), Theorem 3). The main default of (5.24) is that X* depends on A:
therefore this inequality cannot be integrated with respect to A, which leads to a loss for
E(|X — X*|). From (5.24),

E(X - X*) <A+ (b—a)P(|X — X*| > ) < A+ 2a(A, 0(X))(b—a)32A"1/2,
For the optimal choice A\ = (b — a)(a(A, 0(X)))?/3, the above inequality gives
(5.25) E(X — X*[) <3(b—a)*(a(A,0(X)))*?.

For the pair (X, X™*) constructed in the proof of Lemma 5.1, this upper bound can be
improved. We refer to Exercise 1 for an upper bound on IE(|X — X*|) for the pair (X, X*)
constructed in the proof of Lemma 5.1 similar to the upper bound of Lemma 5.2.

5.5. Maximal coupling and absolutely regular sequences

In this section, we give a relation between maximal coupling and absolutely regular
sequences. Theorem 5.1 below, which can be found in Goldstein (1979) and Berbee (1979),
generalizes a result of Griffeath (1975) for Markov chains.

Theorem 5.1. Let (&;)icm be a sequence of random variables with values in some
Polish space X. Assume that (2,7 ,IP) is rich enough to contain a random variables U
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with uniform distribution over [0,1], independent of (§;)icm. Let Fo = o(& : i < 0)
and G, = o(& : i > n). Then one can construct a sequence (£ );cz with the same joint
distribution as the initial sequence (&;);cz, independent of Fy and measurable with respect
to the o-field generated by U and (&;)icz, in such a way that, for any positive integer n,

(a) IP (& # &G for some k > n | Fy) = esssup {|IP(B | 7o) —IP(B)| : B € G, }.
In particular

(b) IP (& # & for some k > n) = B(Fo,Gn).

Remark 5.2. The S-mixing coefficients of the sequence (&;);cz are determined uniquely
by property (b). Hence Theorem 5.1 contains all the information needed to explore the
properties of S-mixing sequences. In Chapter 8 we will apply this result to uniform limit
theorems for empirical processes.

5.6. An extension of Lemma 5.2 to unbounded random variables *

In this section, we give an extension of Lemma 5.2 to unbounded real-valued random
variables. The result below is due to Peligrad (2002).

Lemma 5.4. Let A be a o-field in (2, 7,IP) and X be a real-valued and integrable
random. Let § be a random variable with uniform distribution over [0, 1], independent of
the o-field generated by X and A. Then there exists a random variable X*, with the same
law as X, independent of A, such that

a(A,X)
E(X - X*|) <2 / Qx (w)du.

Furthermore X* is measurable with respect to the o-field generated by A and (X, ).

Proof. Asin Lemma 5.2, the random variable X* is defined from X by (5.2) and (5.3).
For the so-defined random variable X*, (5.5) still holds true. Proceeding exactly as in the
proof of (5.6), we then get that

(5.26) IX - X7, = /R E(|Fa(t) — F(1)])dt.
Since |Fa(t) — F(1)] = |IP(X > t | A) — P(X > 1)),
/OOO E(|Fa(t) — F(t)])dt = /000 E(P(X >t]|A) —P(X > t)|)dt.
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Next
/ " B(FA) - PO)))dt = / " B(P(X < ¢ A) — P(X < 1)),

— o
whence

(5.27)
1X = X*||y :/ E(P(X >t | A) = P(X > t)] + [P(—X > ¢ | A) — P(—X > £)])dt.
0

Now, by (1.10¢),
E(P(X>t|A) -P(X>t)|+|P(-X >t]|A) —IP(—X >1t)]) <2a(A,X).
Furthermore
P(X >t| A)-P(X >t)|+P(-X >t| A)-IP(—X >t)| <IP(X|>t)+P(|X]| >t]| A,
whence
E(P(X >t|A) —P(X >t)|+[P(—X >t| A) —P(—X >t)|) < 2IP(|X]| > t).
Combining (5.27) with the two above upper bounds, we get that
I1X = X*||) < 2/000 inf(a(A, X), P(|X| > t))dt.
Since

[e’e] a(A,X)
/0 inf(a(A, X), P(|X| > t))dt = /O O (u)du,

Lemma 5.4 follows. m
EXERCISES

1) Let A be a o-field of (2,7,IP) and X be a random variable with values [0,1]. Set
a = a(A,o(X)) and let X* be the random variable constructed in the proof of Lemma
5.2.

a) Prove that, for any positive integer NV,
IP( there exists 7 € [1,2V] such that(X, X*) € In,; x In;) > 1 —20+D/2q,

Infer that, for any positive A, P(|X — X*| > \) < 2A71/2q.
b) Prove that IE(|X — X*|) < 4a.

We now assume that the random variable X takes its values in [0,1]¢ equipped with
the distance d.
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c) Prove that there exists a bijective and bimeasurable transformation from [0, 1] dans

[0,1]¢ such that, for any positive integer N, the images of the dyadic intervals Iy ; are
dyadic boxes with diameter bounded up by 2~ [V/4.

d) Construct a random variable X* independent of A and with the same law as X in

such a way that
P(doo (X, X*) > 4XV9) < (2/0) 20

From the above upper bound, deduce an upper bound on IE(dy (X, X*)). Compare this
upper bound with the upper bound which can be deduced from Lemma 5.1 in the S-mixing

case.

2) On the optimality of Lemma 5.3. - Bradley (1983) - Recall that the correlation
between two square-integrable random variables X and Y is defined by

Corr(X,Y) = (Var X VarY)~'/2 Cov(X, Y).
If A and B are two o-fields in some probability space, we set

p(A, B) =sup{Corr(X,Y) : X € L*(A),Y € L*(B)}.

Let N be an even natural integer. Let ©; = [0, 1] equipped with its Borel field, which
is noted here Fi, and P; be the Lebesgue measure on F;. Let Qo = {1,..., N} equipped
with 5 = P(3). On Qs we consider the uniform distribution, which is noted Ps.

Set m = N/2. Let hy, hg, ... be the Rademacher functions given by h;(x) = (—1)[”32”.
On Q = Q; x Qs equipped with F; ® Fa, we define the probability measure P as follows:
the density with respect to the Lebesgue measure of the conditional law of w; conditionally
to (w2 = j) is equal to 1 — h;(x) for j in [1,m] and to 1 — hj_,,(x) for j in [m + 1, N].

Let then A= {F; x Qy: F} € F1} and B = {Q X Fy: Fy € Fa}.

a) Prove that (A, B) =1/2.

b) Prove that any numerical function g on {1,2,..., N} has the decomposition g =
g1+ g2 with g1(j + m) = —g1(j + m) and g2(j + m) = g2(m) for any j in [1,m]. Prove
that this decomposition is unique. Next, prove that, under the law P, Varg > Var g;.

c) Let f be a square integrable Borelian function on [0, 1], with mean 0. Prove that

Cov(f,g) = Cov(f,g1). Infer that | Corr(f,g)| < |Corr(f, g1)|-
d) Let ¢; = g1(j). Prove that

1 m
Cov(f,g1) = %/0 chhj(x)f(x)dx.

Infer that p(A, B) < (2/N)'/2.
e) Prove that p(A, B) > 2a(A, B). Conclude that a(A, B)(N/2)'/? < B(A, B).

99



6. FUK-NAGAEV INEQUALITIES, APPLICATIONS

6.1. Introduction

In this chapter, we generalize the classical exponential inequalities for sums of inde-
pendent random variables (we refer to Annex B for these inequalities) to sums of strongly
mixing random variables. Our approach is based on coupling, as in Bradley (1983) and
Bosq (1993). We improve their results by using Lemma 5.2, which provides a more efficient
coupling for strongly mixing random variables. Starting from the initial sequence and ap-
plying this coupling lemma, we will replace the initial sequence by a g-dependent sequence
of random variables. The cost of this coupling depends on gq. We refer to Theorem 2
in Berkes and Philipp (1979) for a similar method in the ¢-mixing case. Next, applying
the usual exponential inequalities for sums of independent random variables to this new
sequence, we obtain inequalities with two parts in the upper bound: an exponential term
and a term depending mainly on the mixing coefficient o,. For power-type rates of mixing
the second term does not decrease exponentially. This is the reason why our inequalities
are similar to the inequalities of Fuk and Nagaev (1971) for sums of unbounded random
variables. In Section 6.3, we derive a Fuk-Nagaev type inequality for unbounded random
variables from the inequalities of Section 6.2. Next, in Section 6.4, we apply this inequlity
to get moment inequalities in the style of Rosenthal (1970) and Marcinkiewicz-Zygmund
type inequalities. Our method is similar to the method used in Petrov (1989). In Section
6.5 we give an application of our Fuk-Nagaev type inequality to the bounded law of the
iterated logarithm.

6.2. Exponential inequalities for partial sums

In this section, we apply Lemma 5.2 together with the Bennett inequality for sums of
independent random variables to get a new maximal inequality for partial sums of bounded

random variables in the strong mixing case.

Theorem 6.1. Let (X;)i>0 be a sequence of real-valued random variables such that
| Xil|loo < M for any positive i, and (ay,)n>0 be the sequence of strong mixing coefficients
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defined by (2.1). Set X; = 0 for any i > n. Let Sj = Zle(Xi —E(X;)). Let q be any
positive integer, and v, be any positive real such that

vg 2D TB((Xig—gr1 + -+ + Xig)?).
>0

Set M(n) =>""_, | Xilloo and let h(z) = (1 + x)log(l + =) — x. Then, for any X\ > ¢M,

v )\qM Qg+1
P > (1 2)A) < dexp(——21h 4M (n)=
(5 190 > (1o +5/202) < desp (i (%50 + avrin) 5

log<1 + )\qM>> +4M(n) aq/\H :

Uq

A
S46’(1@(_2 M
q

Proof. Set U; = Si; — Siq—q. Since X; = 0 for any ¢ > n, the random variables U; are
almost surely equal to 0 for ¢ large enough. Now, for any integer j, d(j,qZZ) < [¢/2]. It
follows that

J
sup |Sk| < 2[q/2]M—|—sup\ZUi\.
ke[1,n] 320 =

Hence Theorem 6.1 is a byproduct of the inequality below:

(O ]P<§313 1> Ui 2 5M/2)< 46Xp(—((f7q)2h(AqM/vq)) +AM () 2L

The inequality in Theorem 6.1 follows immediately from both (6.1) and the lower bound

1 1
h(z) > x/ log(1 + tx)dt > zlog(1 + I)/ tdt > xlog(1+ x)/2.
0 0

Proof of Inequality (6.1). Let (J;);>0 be a sequence of independent random variables
with uniform law over [0, 1], independent of the sequence (U;);~o. Applying Lemma 5.2
recursively, we obtain that, for any integer ¢ > 3, there exists a measurable function F; such
that the random variable U = F;(Uy,...,U;_2,U;, d;) satisfies the conclusions of Lemma
5.2 with A=0(U; : 1 <i—1). Set then U = U, for i =1 and ¢ = 2. The so constructed
sequence (U);>o has the properties below:
1. for any positive ¢, the random variable U} has the same distribution as U;.
2. the random variables (Us;);>0 are independent and the random variables (Uj;_;)i>0
are independent.
3. For any integer ¢ > 3,
iq
BV - U7) <2001 Y [Xulke:

k=iq—q+1
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Replacing the initial random variables U; by the random variables U}, we get that

J J J
(6.2) sup | > Uil <Y |U; = Uf|+sup| Y Us;|+sup| Y Uz 4.
>0 i>3 J>0 i1 >0

By property 3 together with the Markov inequality,

(6.3) ]P(Z U, — U] > )\/2) < AM(n)agii A~

i>0
To complete the proof of Inequality (6.1), it then suffices to apply twice Theorem B.1(b)
in Annex B with K = M¢ and v = v, to the random variables (Uj;);~o and the random
variables (U3, _1)i>0. m

6.3. Fuk-Nagaev inequalities for partial sums

In this section, we give an extension of the Fuk-Nagaev inequality for sequences of
independent random variables to strongly mixing sequences of random variables. However,
in order to get an efficient inequality, we have to assume that the tails of the random
variables are uniformly bounded. We refer to Dedecker and Prieur (2004) for an extension
of this inequality to a weaker notion of dependence and to Merlevede Peligrad and Rio
(2011) for more efficient inequalities in the case of exponential or semi-exponential rates

of mixing.

Theorem 6.2. Let (X;);>0 be a sequence of real-valued and centered random variables
with finite variances. Let (a,)n>0 denote the sequence of strong mixing coefficients defined
in (2.1). Set Q = sup;~ Qi and

(6.4) sp=>_ Y | Cov(X;, X;)l.

i=1 j=1
Let then R(u) = o '(u)Q(u) and let H(u) = R~ '(u) denote the generalized inverse
function of R. Then, for any positive A and any r > 1,

H(\/T)

A2\ —r/2
. P >AN)< 41+ == Ap ! .
(6.5) <kil[lf,)n]|s’“|— A< 4 tio ) +ana /O Q(u)du

Remark 6.1. As in Theorem 6.1, we may assume that X; = 0 for ¢ > n. Consequently

(6.5) remains true if o= (u) is replaced by a~!(u) A n.

Proof. We may assume that X; = 0 for any ¢ > n. Let ¢ be any positive integer and let
M be a positive real. Set

(6.6) Ui = Sig — Sig—q and U; = (U; AgM) V (—qM) for any i € {1,...,[n/q] }.
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From the assumption X; = 0 for i > n, U; = 0 for i > [n/q]. Let then ¢y (x) = (|2| - M),
We start by proving that

(6.7) sup |Sk| < SUP|ZU | +qM+ZsoM (X)-
kell,n] >0 b—1

To prove (6.7), we notice that, if the maximum of the random variables |Si| is obtained
for ko, then, for jo = [ko/q|,

Jo Jo ko
(6.8) sup |Sk| <D Uil + > U= Uil + > |Xal.
kell,n] i=1 i=1 k=qjo+1
Now, by convexity of the function ¢y,
qjo
(6.9) Z|U U|<Z¢M X).
Moreover
k'() kO
(6.10) Xkl < ko —aio)M+ D em(Xk),
k=qjo+1 k=qjo+1

and combining the three above inequalities, we get (6.7).

In order to apply Theorem 6.1, we have to center the random variables U;. Since the

random variables U, are centered,

J J
sup ZUi < sup Z(Uz — IE(UZ))‘ + ZIE(|U2 —Ui)
>0 ) i>0
J n
(6.11) < sup | (0~ B(0:)| + D Bl (X)),
) k=1

by convexity of ¢,s. Hence
(6.12) sup |Sk| <sup’Z (U; — E(U ‘+qM+Z (om(Xg)) + om(Xg)).

ke[l,n] j>0

We now choose M and q. Let x = A\/r and v = H(x). If v = 1/2, then
H(M\7) 1 n
(6.13) 4n)\_1/ Q(u)du > 2n)\_1/ Q(u)du > 2271 ZIE(]XZD
0 0 i=1
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In that case, Inequality (6.5) follows immediately from the Markov inequality applied to
the random variable | X;| + -+ + | X,|. If v < 1/2, then a1 (v) > 0. In that case, we set

(6.14) ¢=a"t(v) and M = Q(v).
With this choice of ¢ and v,
(6.15) gM = R(v) = R(H(z)) <z <A\

We now apply Theorem 6.1 to the random variables U; . Setting ¢ = 1 and M = z in
Theorem 6.1 and noticing that

(6.16) EU7) <EU) < Y. [Cov(Xi, X)),

l,me€lig—q,iq]

which ensures that Theorem 6.1 holds with v; = s2, we get that

J 2 _
_ _ A r/2
. . — . > < R -1
(6.17) 1P<§1>1% ;:1:([5 ]E(UZ))‘ 5)\/2> 4(1 i ) + AnMorg 1\

It remains to bound up the deviation of the second random variable on right hand in
(6.12). (6.17). By the Markov inequality,

<Z (o (Xi)) + om(Xi)) >)\/2 Z/ (Qx(u (v)ydu

k=1
4n

(6.18)) <=

; (Q(u) — Q(v))du.

Since ¢ > a~!(v), one can prove that a; < v and Ma,41 < vQ(v). Putting together
(6.13), (6.17), (6.18), and noting that Mg < A, we then obtain Theorem 6.2. m

An application to power-type rates of mixing. Let (X;);>0 be a strongly mixing sequence.
Assume that the strong mixing coefficients «,, satisfy «,, < cn™? for some constants ¢ > 1
et a > 1. Suppose furthermore that there exists some p > 2 such that

IP(|X;| >t) <t P for any ¢t > 0.
Then, setting b = ap/(a + p), an elementary calculation yields H(z) < c¢*/%(2/z)?, whence
H(X/r)
ANT1 / Q(u)du < ACT~H(\/r)~(atbp/(atp)
0
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with C' = 2p(2p — 1)~ (2%¢)(P~1)/(e+P) " Consequently, by Theorem 6.2, for any r > 1 and
any positive A,

2\ -r/2
(6.190) P sup [5i] > 40)<a(1425) " 4 dcm I (rn)er0n ),

2
kE[l,n] TSn

If || X;]|oo <1 (which corresponds to p = c0), Theorem 6.2 applied with @ = 1 yields

2\ -r/2
(6.190) IP( sup |Sk| > 4)\>§ 4(1 + A—) + 2ner—H(2r /X))

2
kG[l,n] rsn

6.4. Application to moment inequalities

In this section we adapt to the strong mixing case the method proposed by Petrov
(1989) in the independent case to derive moment inequalities in the style of Rosenthal
(1970) from the Fuk-Nagaev inequality. Our first result is an extension of Theorem 2.2 for
algebraic moments to moments of any order p > 2.

Theorem 6.3. Let (X;);~0 be a sequence of real-valued and centered random variables
and (o, )n>0 be the sequence of strong mixing coefficients defined by (2.1). Suppose that,
for some p > 2, IE(|X;|P) < oo for any positive integer i. Then

1
IE( sup ]Sk]p>§ apsh + nbp/ [ (u) A n]P~ QP (u)du,
kell,n] 0
where
Q=sup Q. ap=pt" (p+ 1)P/? and b, = 247 (p 1),
i>0 p—1
Remark 6.2. We refer to Annex C for more about the quantities involved in these moment

inequalities. Note that @ can be replaced by Q) = sup;cpy ,,) @i in Theorem 6.3.

Proof. Asin the proof of Theorems 6.1 and 6.2 we may assume that X; = 0 for any ¢ > n.
under this assumption case a~!(u) < n. First

1E< sup ]Sk]p):p4p/ Ap_1]P< sup |Sk| 24)\)d)\.
ke(l,n] 0 ke(l,n]

Now, applying Theorem 6.2 with »r = p + 1, we get that

(6.20) ]E( sup |Sk|p>§ pAP (4B, + 4nEy),
kell,n]

with

00 2\ —-r/2 o rl
Ba= [ (14 25) v and B= [T Qi
0 0 JO

rsy,
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We now bound up Ey. Since H is the right continuous inverse of R, (H(\/r) > u) if
and only if (A < rR(u)). Hence, interverting the integrals, we obtain that

(6.21) E1<p—p+1p1/Q JRP™H (u)du
To bound Es, we introduce the change of variable z = A\/(s,+/7). Then
Ey, =(p+ l)p/Qsﬁ /OO xP72(1 4 ;132)—(1’+1)/2xd:£.
0
Since 2772 < (1 + 22)(P=2)/2 it follows that
Ey < (p+1)P/2sp/2 /00(1 +22) 73 2 d.

0

Consequently
Ey < (p+1)P/2s0/2,
Both (6.20), (6.21) and the above inequality then imply Theorem 6.3. m

Let

1 1
M@ = [ o™ P Q) and Myan(Q) = [ a7 ) Al QP (wdu

0 0
If M, ,(Q) < oo, then Theorem 6.3 yields a Rosenthal type inequality. Since M, o »(Q)
converges to M, (@) as n tends to infinity, this is not the case if M, ,(Q) = oco. Never-
theless, one can still obtain a Marcinkiewicz-Zygmund type inequality. In order to state

this inequality, we need to introduce weak norms.
Definition 6.1. For any real » > 1 and any real-valued random variable X, we set

An(X) = sup(t'P(|X| > 1)) "".
t>0

With this definition lim, o0 Ap(X) = || X oo-

Corollary 6.1 below gives a moment inequality which improves on the results of Yokoyama
(1980).

Corollary 6.1. Let p > 2 and (X;);~0 be a sequence of real-valued and centered random
variables and (a,)n>0 be the sequence of strong mixing coefficients defined by (2.1). Sup-
pose that, for some r > p, A.(X) < oo for any positive integer k and that the strong
mixing coefficients satisfy

an < Kk(n+ 1)_”/(27'_21’) for any n > 0, for some positive k.
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Then there exists some positive constant C(k,p) such that

P
IE( sup ]Sk|p>< —C(/i Pk~ p/rnp/Q(supA (Xk))) :
ke[l,n] k>0

Remark 6.3. Corollary 6.1 still holds in the case r = oo. In that case the mixing
coefficients have to satisfy o, < x(n +1)~P/2 and

B( sup [Sil”)< Clk, pn?’? sup | X 2
ke[l,n]

Proof of Corollary 6.1. Let K = sup;-, A, (X%). By the Markov inequality,
P(|Xk| > t) < (K/t)" for any positive ¢,

whence Q(u) < Ku~/" for any u in [0,1]. Now both the above bound on @ and (C.10)
ensure that

n—1 o
My on(Q) < KP(p Z i+ 1)P" 2/ u”P/" du
1=0 0
r _
SKpr—p k1= p/r ZJ 2+(p/2)

Now, for p < 4,

n

j=1 0

and, for p > 4,

n

j=1 !

It follows that

r 2(p—1) 1— 2
6.22 nMy 0n(Q) < . KPrl—P/mpp/?,
We now bound up s2. By Corollary 1.1 together with the fact that Q2(u) < K2u=2/" | we
have:

n

n—1 L.q;
s §4nKQZ/ " < - T p2gi-2/r D@2 ¢ AP a1z
-2 p—2

7j=1
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under the mixing assumption of Corollary 6.1. Now, both the above bound, (6.22) and
Theorem 6.3 imply Corollary 6.1 with

_ 4p p/2 p/2 2(p )
Clen) = (523) ™ + 5 grat bon

6.5. Application to the bounded law of the iterated logarithm

The first known results on the law of the iterated logarithm for strongly mixing seuqneces
are due to Oodaira and Yoshihara (1971a, 1971b). Later Rio (1995b) obtained the func-
tional law of the iterated logarithm in the sense of Strassen (1964) under condition (DMR)
via the above Fuk-Nagev type inequality and the coupling lemma of Chapter 5. Since the
proof is rather technical, we will prove here only a bounded law of the iterated logarithm.

Throughout this section we use the notations Lz = log(x V e) and LLx = L(Lx).

Theorem 6.4. Let (X;);~o be a strictly stationary sequence of real-valued and centered
random variables, satisfying condition (DMR) for the sequence of strong mixing coefficients
defined by (2.1). Then, with the same notations as in Theorem 6.2,

i ES
im sup

n—oo Spyv/loglogn

Proof. We first notice that, from the stationarity assumption,

< 8 almost surely.

(6.23) lim n~'s? = Var X, + 22 | Cov(Xo, X;)| =V > 0.

n—oo
i=1
To prove Theorem 6.4, it is enough to prove that

(6.24) Zn 11P< sup |Sk| > 8snvLLn>< 00,

n>0 kell,n]

and next to apply the Borel-Cantelli lemma, as in Stout (1974, Chap. 5).

In order to prove (6.24), we now apply Theorem 6.2 with » = 2LLn and A = \,, =
25,V LLn. Let 2, = \/r = s,,(LLn)~/2. Summing on n, we get that

(6.25) Y n'P( sup |Sk|>8sn\/LLn><4Z 13 LL"+Z /

n>0 ke[l,n n>0

H(mn)

The series » n~137LLm is clearly convergent. To bound up the second series on right
hand, we intervert sum and integral: since (u < H(z,)) if and only if (R(u) > z,), we
thus obtain

Z / Q(u u<H(acn)dU_4/ Q(u xn<R(u)>d

n>0 n>0 n
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Now, by (6.23), the terms in the series are similar to (nV LLn)~'/2. Tt follows that
Tn
> 2 Le.<r@) < OR(u)
n>0 "

for some positive constant C'. Consequently

1 H(zy) 1
(6.26) ;}A—n /0 Qu)du < C /0 R(u)Q(u)du,

which implies (6.24). Hence Theorem 6.4 holds true. m

EXERCISES

1) Let (X;)i>0 be a sequence of real-valued and centered random variables and (o, ),>0 be
the sequence of strong mixing coefficients defined by (2.1). We assume that s,, > 1. Prove
that, if | X;||cc < 1 for anny positive i, then, for any X in [s,, s2],
)\2

(1) IP< sup |Sk| > 4)\)§ 4exp<——2> +4nX"ta(s2 /).

kell,n] 4s;,
Compare the terms on right hand in this inequality under the mixing assumption a,, =
O(a™) for some a in |0, 1].

2) An inequality of Doukhan and Portal. In this exercise, we will give an improved
version of the exponential inequality of Doukhan and Portal (1987). We assume that
| Xilloo < 1 for any positive i and that the strong mixing coefficients defined by (2.1)
satisfy ay < cexp(—aq) foa any ¢ > 0, for some positive constants a and c. Prove that,
for any n > 4 and any x > logn,

(2) 1P(|Sn| > 5(s, V2V5 )V + ;—2:1:2) < cexp(—x).

3) Kolmogorov’s law of the iterated logarithm. Let (X;);~o be a sequence of iden-
tically distributed and independent centered random variables, with variance 1.

a) Prove that, for any € > 0 small enough,

(3) > nT'P(S; > (1+¢)*V2nLLn ) < 0.
n>0
Hint: apply Theorem B.3(b) in Annex B with Az = en.
b) Infer from (a) that

lim sup (2nLLn)~1/2|S,| < 1 almost surely.

n—oo
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7. EMPIRICAL DISTRIBUTION FUNCTIONS

7.1. Introduction

In this chapter we are interested in functional limit theorems for the empirical distribu-
tion function associated to a stationary and strongly mixing sequence of random variables
with values in IR?. In the iid case, the functional central limit theorem for the suitably
normalized and centered empirical distribution function is due to Donsker (1952). Donsker
proved in particular that the Lipschitzian functionals of a suitably normalized and centered
version of the empirical distribution function converge in distribution to the distribution
of the corresponding functionals associated to a Brownian bridge. For this reason, the nor-
malized and centered version of the empirical distribution function is often called empirical
bridge. Dudley (1966) extended the results of Donsker to the multivariate case, with a
more rigourous approach. Following the approach of Dudley (1966), the proofs of these
theorems generally include two steps. The first step consists in proving the finite dimen-
sional convergence of the empirical bridge to a suitable Gaussian process. The second step
consists in proving the asymptotic equicontinuity of the empirical bridge for the uniform

metric.

We now give a brief review of existing results before year 2000 in the strong mixing
case. Yoshihara (1979) extended the uniform central limit theorem of Donsker (1952) for
the empirical bridge to stationary and strongly mixing sequences of real-valued random
variables satisfying the strong mixing condition «,, = O(n~%) for some a > 3. Next
Dhompongsa (1984) generalized the result of Yoshihara to the multivariate case: he proved
that, for random variables in IR?, the uniform central limit theorem of Dudley (1966) for
the multivariate distribution function holds if o, = O(n™?) for some a > d + 2. Next
Shao and Yu (1996) weakened the condition of Yoshihara (1979): they obtained Donsker’s
uniform central limit theorem under the strong mixing condition «a,, = O(n~%) for some
a > 14 +/2. In the B-mixing case, Arcones and Yu (1994), Doukhan, Massart and Rio
(1995) and Rio (1998) obtained the uniform central limit theorem under slowler rates of
mixing in a more general setting. In particular Rio (1998) proved that, for any d > 1, the
uniform central limit theorem of Dudley (1966) for the multivariate distribution function

holds if ) B, < oo. Since this condition is the minimal 8-mixing condition implying
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the finite dimensional convergence, this result cannot be improved. In Section 8.3 of
Chapter 8, we will give an other proof of this result. Nevertheless the proofs in the (-
mixing case involve coupling arguments and cannot be extended to the strong mixing case.
In this section, we give less technical results in the strong mixing case, for the empirical
distribution function. In particular we will prove in Sections 7.4 and 7.5 that the uniform
central limit theorem of Dudley (1966) for the multivariate distribution function holds if
a, = O(n~%) for some a > 1. Before proving these theorems, we give in Section 7.2 an
elementary L2-estimate for the maximum of the empirical bridge. Next, in Section 7.3, we
recall some facts of the theory of functional limit theorems. For further work on empirical
distribution functions and empirical processes for dependent data, we refer to Dehling,
Mikosch and Sgrensen (2002).

7.2. An elementary estimate

Let (X;)icz be a sequence of real-valued random variables with common distribution
function F. We set

(7.1) Fo(z) = %Z Mx,<, and v,(z) = Vn(F,(z) — F(z)).

The centered empirical measures P, and Z,, are defined by (1.37). In this section we
will study the rate of uniform convergence of F;, to F. Proposition 7.1 below provides an
estimate of the L?-norm of the maximal deviation. If the series of strong mixing coefficients
is convergent, this estimate is optimal up to a logarithmic factor.

Proposition 7.1. Let (X;);cz be a strictly stationary sequence of real-valued random
variables and let (ay)r>o denote the sequence of strong mixing coefficients defined by
(1.20). Suppose that the common distribution function F' of the random variables is
continuous. Then

n—1

logn \2
(7.2) E(ig]gm(a;)ﬁ) < <1+4kz_()ak) (3+ 210g2) .

Proof. For any Borelian A, let I,,(A) be defined as in Exercise 5, Chapter 1. Let (g;)i>0
be a sequence of independent and symmetric random variables with values in {—1,1}.
Then, for any finite partition Aq,..., Ay of A,

k k
(7.3) Y Var Z,(A;) = E(Zg (Z ei]IAi)>,
i=1 i=1
which ensures that
(7.4) I,(A) <sup{Var Z,,(fll4) : || flloo < 1}.
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In order to prove Proposition 7.1, we now introduce a chaining argument. Let N be
some positive integer, to be chosen later. For any real = such that F'(z) # 0 and F(x) # 1,
let us write F'(x) into basis 2:

N
F(z) = Zbl(x)Z_l +ry(x) with ry(z) € 0,277V,
=1
with b, = 0 or b, = 1. For any L in [1, N], set
L
HL(.I‘) = Zbl(l‘)Q_l and iL = HL($)2L.
=1

Let then the reals (zp)r be chosen in such a way that F(zp) = IIp(x). With these

notations

N

(7.5)  va(@) = va(i(@) + Y (ra Iz (@)) = va(z—1(2))) + va(@) — vy (2)).

Let then the reals zy,; be defined by F(zr, ;) = i27L. From (7.5) we get that

N
(7.6a) sup |va(2)] <> AL+ Ay,
z€[0,1] I—1
with
(7.60) Ap = sup |Z,(|Jxri-1,20:)| and Ay = sup |Z,(|IIn(z),z])|.
1€[1,21] ze€R

Let us now bound up the L?-norm of the maximum of the empirical process. By the
triangle inequality,

12 N
(7.7) (BCsup pa(@)®) " < 3 1AL+ [ AY e
z€[0,1] =1
Since
2L
A} <322 - 1275 27 ),
=1

(7.8) E(A%) < QZVar Zn((i =127 27 ) <1+ 4n§ -
=1 k=0
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It remains to bound up A%. from the inequalities

—vn2™" < Z,(lin(2),2]) < Z, (T (2), Iy (2) +277]) + V2™,
we get that
(7.9) AN < Ax +vn27V.

Both (7.7), (7.8) and (7.9) then ensure that

1/2 n-l 1/2
(7.10) (]E( sup |yn(g;)|2)) < (1+N+\/52’N)(1+4Zak> .
z€[0,1] k=0
Taking N = 1+ [(2log2)~!logn] and noticing that \/n2=" < 1 for this choice of N, we
then get Proposition 7.1. m

7.3. Functional central limit theorems

In Section 7.2, we proved that, under the strong mixing condition (1.24), the order
of magnitude of the supremum of the empirical bridge is at most O(logn). Now, if the
strong mixing coefficients are defined by (2.1), the mixing condition ) c, < oo implies
the finite dimensional convergence of the empirical bridges v,, to a Gaussian process G

with covariance function

(7.11) Cov(G(z), G(y)) = Y _ Cov(Ix,<a: Ix,<y)-

teZ,
Here we are interested in the uniform convergence with respect to x of v, to G. Such
a result will be called uniform central limit theorem or functional central limit theorem.
In this section we give a precise definition of the notion of uniform central limit theorem
and sufficient conditions for the uniform central limit theorem to hold. Our exposition is
derived from Pollard (1990, Section 10).

Let (T, p) be a metric or a pseudo-metric space. Denote by B(T") the space of real-valued
and bounded functions on 7. On B(T') we consider the uniform distance

d(z,y) = sup |z(t) = y(?)].

Let {X,(w,t) : t € T} be a sequence of real-valued random processes on 7. We are
interested in the convergence in distribution of this sequence under the distance d. More
precisely we have in view the functional convergence to a Gaussian process with trajectories

in the space
Uy(T) ={x € B(T) : x is uniformly continuous under p}.
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Under the distance d, the space U,(T") is countably generated if and only if (7}, p) is totally
bounded. In that case, a Borelian probability measure P on U,(T’) is uniquely determined
by the finite dimensional projections

P(B|ty,...,tx) = P{lz € U ,(T) : (x(t),...,x(ty)) € B},

where {t1,...t;} ranges over the set of finite subsets of 7' and B is any Borelian of IR¥.

For example, in the case of random variables with uniform distribution over [0, 1], the
space T' = [0, 1] is equipped with the usual distance on IR. Then the Gaussian process
G with covariance function defined by (7.11) is uniquely defined as soon as his law is

concentrated on U,(T).

We now recall the definition of the finite dimensional convergence (fidi convergence).
The fidi convergence of (X,,(.,t)) holds true if and only if for any finite subset {t1,...tx}
of T there exists a probability measure P such that

(7.12) (Xn(.st1), ..o, (Xn(.ytr)) — P(. | t1,...,tx) in distribution.

We now give a criterion for the convergence in U,(T)

Theorem 7.1. - Theorem 10.2 in Pollard (1990) - Let (T, p) be a totally bounded pseudo-
metric space and let {X,,(w,t) : t € T} be a sequence of random processes on T. Suppose
that

(i) The fidi convergence in the sense of (7.12) holds true.

(ii) For any positive € and 7, there exists a positive § such that

lim sup IP*{ sup | X, (w,s) — Xp(w,t)| > 77} <e.
n—00 (s,t)ETXT
p(s,t)<d

Then there exists a Borelian probability measure P concentrated on U,(T") witht finite
dimensional margins given by (7.12). Furthermore X, converges in distribution to P in
the space B(T).

Conversely, if X,, converges in distribution to a probability measure P concentrated on
U,(T), then conditions (i) and (ii) are fulfilled.

Condition (ii) is called stochastic equicontinuity. If the limiting process is a Gaussian
process then (X,,) is said to satisfy the functional central limit theorem or the uniform
central limit theorem. We refer to Pollard (1990) for a proof of this result. Now, in Section
7.4 below we apply this result to the functional central limit theorem for the empirical

bridge in the strong mixing case.
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7.4. A functional central limit theorem for the empirical distribution function

In this section, we prove a functional central limit theorem for the empirical distribu-
tion function associated to a stationary strongly mixing sequence of real-valued random
variables. In order to give elementary proofs, we will assume that the common distri-
bution function of the random variables is continuous. Nevertheless this result can be
extended to arbitrary distribution functions. Theorem 7.2 below improves previous results
of Yoshihara (1979) and Shao and Yu (1996). We refer to Doukhan and Surgailis (1998),
Louhichi (2000), Dehling, Durieu and Volny (2009) and Dedecker (2010) for other types
of dependence.

Theorem 7.2. Let (X;);cz be a strictly stationary sequence of real-valued random vari-
ables with common continuous distribution function F'. Assume that the sequence (o, )n>0
of strong mixing coefficients defined by (2.1) satisfies

(1) a, < cn”® for some real a > 1 and some constant ¢ > 1.

Then there exists a Gaussian process G with uniformly continuous trajectories on IR
equipped with the pseudo-metric dr given by dp(xz,y) = |F(z) — F(y)|, such that v,
converges in distribution to G in B(IR) as n tends to cc.

Proof. Considering U; = F(X;) it is sufficient to prove Theorem 7.2 for random variables
with the uniform distribution over [0,1]. Now, by Corollary 4.1, the fidi convergence to
a Gaussian process G with covariance defined by (7.11) holds. According to Theorem
7.2 it remains to prove the stochastic equicontinuity property (ii). This property follows
immediately from the proposition below.

Proposition 7.2. Let (X;);cz be a strictly stationary sequence of random variables with
uniform distribution over [0, 1]. Assume that (X;);cz satisfies the strong mixing condition
(i) of Theorem 7.2. Let Iy (x) = 27K [2Kz]. Then

im limsup]E*< sup |vn(z) — Vn(HK(x))|> =0.

|
K=o nooo x€[0,1]

Proof of Proposition 7.2. Proceeding as in the proof of (7.6), we first obtain that
N
sup [va(@) — va(Mx(@)| < 3 Ap+ A
z€[0,1] L=K+1
Now, applying (7.9), we have:
N
(7.13) sup |vn(z) — v (Mg (2)| < Y AL+ Ay +vn2 ™V i=A
z€[0,1] L=K+1
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By the triangle inequality,

N-1

(7.14) 1Al <vR2™ 4+ Y (ALl + 2] Ax ]
L=K+1

Let then N be the natural integer such that 2¥~1 < n < 2V, For this choice of N, by
(7.14),

N
(7.15) 1A <7242 > ALl
L=K+1

Hence Proposition 7.2 follows from the lemma below.

Lemma 7.1. Let N be the natural integer such that 2V~ < n < 2N, Then there exists
a positive constant Cy depending only on a and c such that

ALl < Cop2~ (e DL/ for any I € [1, N].

Proof of Lemma 7.1. Define the dyadic intervals I, ; by I ; =](i — 1)27%,i27F] for
any integer i in [1,2%]. In order to prove Lemma 7.1, we will refine the symmetrization
technique introduced in Section 7.2. As in Section 7.2, let (g;);c1,02) be a sequence of
independent symmetric signs, independent of the sequence (X;);cz.

Let J be a finite subset of integers in [1,2L]. Assume that the supremum of the random
variables | Z, (Ir ;)| when ¢ ranges over J is more than z. Let then j be the smallest integer
in J such that |Z,(Ir ;)| > =. Then, for any choice of the signs (¢;);c.n (;}, either

Zn< Z €i]IIL,i>+Zn(IlJ) or Zn( Z gi]IIL,i>_Zn(Il7j)
€ J\{j} ieJ\{j}

does not belong to the interval | — z, x[. Consequently

Card {z € J such that ‘Zn (; Si]I]l!i>) > :1:} > 2=t

whence

(7.16) IP<$uI; Zo(I1)] > x) < 2]P((Zn (Z 57;]IIL,Z.>‘ > ac)
= ieJ

Let then M be an integer of [1, L] to be chosen later. For any k in [1,2M], let
Je={(k—1)2E"M 41, k2l=M}
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Applying (7.16), we obtain that

o
(7.17) P(AL > z) < 2];1P< Zn (;k gi]IIL,iﬂ > x)

Throughout the sequel, C' denotes a positive constant depending on a and ¢, which may
change from line to line. Let us fix the values of the signs ;. Applying Corollary 1.1 to

the random variables Y; = > ., &;1;, ,(X;), we have:

1€ Jg
n n o—M 00
(7.18) > ) | Cov(V, V)| < 4 / o M(u)du < 4¢) " inf(i=*, 27 M) < c2MU-a)/e
1=1 m=1 0 i=0

Therefrom, applying inequality (6.19b) to the random variables Z,, (3, 5, &l 1, ) condi-
tionally to the values of the signs,

P

Now, by (7.17),

Zn<z 5i]IIL,i>‘ > 4)\> < Opr/2gM=a)r/(2a) =1 4 g0 (gp)atly(1=a)/2) a1
1€Jg

IP(AL > 4)) < Cr'/? min(1, 2M(2“+(1*a)7“)/(2a))\7r>
(7.19) +2¢(2r)*t min(1, 2M (- ®/2\ a1,

Let then r = 4a/(a — 1). For this value of r, inequality (7.19) yields

(7.20) P(Ap > 4)\) < Cmin(1,27MA™") + C min(1, 2Mp(=0)/2 7o~ 1),
Integrating (7.20) with respect to A, we get that

(7.21) E(A;) < 8C (2—M/’“ + 2M/<“+1>n<1—“>/<2“+2>).

Now, choosing M = [L(a — 1)/(4a)] = [L/r] and noticing that n > 2L71 we infer from
(7.21) that

(7.22) E(AL) < 160<2—L/Tz + 2—L<2a—1>/<m+r)> < 3209-L/7*

which implies Lemma 7.1. Hence Proposition 7.2 holds, which completes the proof of
Theorem 7.2. m
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7.5. Multivariate distribution functions

Throughout this section, R? is equipped with the usual product order. Let (X;)iez be
a strictly stationary sequence of random variables with values in IR?. We set

Fo(z)=n"" Z Ix,<, and F(x)=1P(X, < z).
i=1
The so defined empirical distribution function corresponds to the empirical process indexed
by the class of lower-left closed orthants. We then define the empirical bridges v,, by

The result below extends Theorem 7.2 to the multivariate case. The most striking fact
is that, for multivariate distribution functions, the mixing condition does not depend on
the dimension d, contrary to the previous results on the same subject. We refer to Biicher
(2015) for an extension of this result to the sequential empirical process.

Theorem 7.3. Let (X;);cz be a strictly stationary sequence of random variables with
values R®. For each j in [1,d], let F; denote the distribution function of the j-th component
of Xy. Suppose that the distribution functions F}; are continuous. Assume furthermore
that the strong mixing condition (i) of Theorem 7.2 holds true for the strong mixing
coefficients defined by (2.1). Then there exists a Gaussian process G with uniformly
continuous trajectories on RY equipped with the pseudo-metric dr given by

dF(.T,y) = Sl[lp] |FJ('CCJ) - F](y]>|7 where x = ('xlw . .(,Cd) and Yy = (?417- . 'yd)a
JEl,d

such that v, converges in distribution to G' in B(R?) as n tends to co.

Proof. Let X; = (X},..., X%). Define the random variables Y; in [0,1]¢ by Y; =
(Fi(X}),..., Fa(X®)). Since the marginal distributions functions F; are continuous, the
random variables Y; have uniform margins. Consequently, in order to prove Theorem 7.3,
we may assume, without loss of generality, that the random variables X; are with values in
[0,1]¢ and with marginal distributions the uniform distribution over [0, 1]. In that case dp
is the distance induced by the norm || . ||o. Under condition (i) of Theorem 7.2, the strong
mixing coefficients are summable. Hence Corollary 4.1 implies the fidi convergence fo a
Gaussian process with covariance defined by (7.11). In view of Theorem 7.1, it remains
to prove the stochastic equicontinuity property. This property follows immediately from
Proposition 7.3 below.

Proposition 7.3. Let (X;);cz be a strictly stationary sequence of random variables
with values in [0,1]%. Suppose that the coordinates of Xo have the uniform distribution
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over [0,1]. For any = = (z1,...z4) in R? and any relative integer K , let Tl (z) =
(2= K[2Kz4],...,27K[2K24]). Then, under the assumptions of Theorem 7.3,

lim limsup IE* ( sup |vn(z) —I/n(HK(:I;))|) =0.

K—+00 pn—oo z€[0,1]¢

Proof. Let N be the unique integer such that 2V—! < n < 2V, Clearly

Vn () = vn(2) = vn (Tl (2)) + v (Ln (7))

Hence

(7.23) sup  |vn(z) — v, (g (2))| < sup |y, (I (x)) — vn(llk (2))] + Ry
z€0,1]4 z€]0,1]4

with

Ry = sup |vn(x) —v,(IIn(x))].
z€[0,1]¢

In order to bound up Ry, we will use the elementary result below.

Lemma 7.2. Let u be a probability measure on R with distribution function G. For
each j in [1,d], let G; denote the distribution function of the j-th marginal of y, which is
defined by Gj(z) = u(IRj_lx] — 00, x] X IRd_j). Then, for any x = (x1,...x4) and any
y=(y1,...yq) In RY,

|G (z (x5 V) — Gy(x; Nyj)).

“M&

Proof of Lemma 7.2. Let Q, = {z € R? such that z < z}. If A denotes the symmetric
difference, then

G(x) = Gy = [1(Qx) — (Qy)| < (L AQy).

Now Q,AQ, C U;'i:1 R/1 xJa; Ayj, x5 Vy;]x IRY™7, which, together with the subadditivity
of 1 and the above inequality implies Lemma 7.2. m

Using Lemma 7.2 we now bound up Ry. Let F), ; denote the empirical distribution
function associated the the j-th components Xij of the random variables X;, which is
defined by F, j(z;) = Fn(1,...,1,2;,1,...,1) and let v, ;j(z;) = V/n(Fn(x;) — Fj(x;)).
By Lemma 7.2 applied twice,

M&

Ry < v sup (32 (Fuy(ay) = Fug(ln(ay) + o5~ Ty(ay)).

z€0,1]¢ ]:1
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Now z; — Iy (z;) <27V, which ensures that

RN<\/_d2 N"J’_\/ﬁ sup Z n,j x] Fn,j(HN(xj)»'

z€[0,1]4

Next, from the monotonicity properties of the empicial distribution functions F, ;,

\/5<Fn,j(90j) - Fn,j(HN(ﬂfj))> < \/_( Fp (M (z) +277) = Fn,j(HN(xj))>
< V2N v (T (2) +277) = v 5 (T ().
Since 2V > n, it follows that
d

Ry < 2dn~ Y% + Z su[(l)o ](z/mj(HN(xj) +27N) — Vn,j(HN(a:j))).
j=1 z;€(0,1

Now the sequence of real-valued random variables (Xj )i>o still satisfy the strong mixing
condition (i). Hence Lemma 7.1 can be applied with L = N to each of the random variables
in the sum on right hand, yielding

(7.24) E(Ry) < 2dn~/? + dCon~—(a=D*/(4a)*,
We now bound up the main term in (7.23). For any = = (z1,...,24) in the unit cube
10,1]¢, let ]0, 2] =]0, 1] x - -+ x]0, 24]. For any j in [1,d] and any natural integer M,

10, ar ()] = | Wi, (), T, ()]

(note that II_;(x;) = 0). Hence, taking the product,

0,y ()] = | J H Mg, —1(25), Mz, ()]

Le[o,M]d i=j
Consequently
d
(7.25) 0, In(2)NO Tk (x)] = | [Tz, -1(x;), I, ()],
Lelo,N]? j=1
L¢[o,K]4

Notation 7.1. For any L = (L1,...,L4) in IN?, let Dy be the class of dyadic boxes
Hle](k:i — 1)27 % k;27L4] (here k = (ky,...,kq) are multivariate natural integer). Let
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Zn n(P, — P) denote the normalized and centered empirical measure, as defined in
(1.37). We set
A = sup |Z,(9)|.
SeDy,

With these notations,

(7.26) A= sup |v,(In(2)) — va(Ig(z))| < > Ar.
z€[0,1] Le[0,N]4\[0,K]4

For a fixed L we now consider the smallest integer j such that L; = max(Lq,...,Lq).
Suppose, for example, that j = 1. Let M be a fixed integer in [1, L1], and k in [1, 2M], let
Ji be the set of elements of Dy, contained in the strip (k — 1)2_M <z < k2™M,

We now adapt the symmetrization method of Section 7.4 to the multivariate case. Let
(es)sep, be a sequence of independent symmetric signs, independent of the sequence
(Xi)iezm- Inequality (7.17) still holds in the multivariate case, and has the following struc-

ture:
2M
k=1 SeJy
Now
‘ > eslsg(Xi)| = Txiery,,,

SeJg

and consequently (7.18) remains true (recall that the random variables X! are uniformly
distributed over [0, 1]). Next, applying Inequality (6.19b) with » = 4a/(a—1) as in Section
7.4, we get that, for any M in [1,max(Lq,...,Lqg)],

(7.27) P(Az > 4)) < Cmin(1,27MA") + C'min(1, 2M 1 -0/2\ 7o 1),

Let then |L|o = max(Li,...,Lq) and choose M = [|L|o/r]. Since n > 2N=1 > 2lllec—1
integrating (7.27) with respect to A, we get that

(7.28) E(|AL]) < 32027 l>  with § = r~2 = (a — 1)2/(1642).

Now the cardinality of the set of integers L in IN% such that |L|., = J is exactly (J+1)%—J<.
Consequently, both (7.23), (7.24), (7.26) and (7.28) yield

(7.29) B sup |vn(w) —va(llk(2))]) < (320 3 (J+1)727 70+ Codn 0+ 2dn"1/2),
z€[0,1]4 ISK

which implies Proposition 7.3 and, consequently, Theorem 7.3. m
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8. EMPIRICAL PROCESSES INDEXED
BY CLASSES OF FUNCTIONS

8.1. Introduction

In this Chapter, we give new uniform central limit theorems for general empirical pro-
cesses indexed by classes of sets or classes of functions. In Section 8.2, we consider convex
sets of functions embedded in spaces of regular functions. In that case, the conditions
implying the uniform central limit theorem are described in terms of regularity of the
functions. Here the theory of approximation of functions [confer DeVore and Lorentz
(1993)] is a fundamental tool. This tool is used to get the stochastic equicontinuity in
Theorem 8.1 under the minimal strong mixing condition ), o < co. This result is simi-
lar to previous results of Doukhan, Leén and Portal (1987) and Massart (1987) for classes

of regular functions.

In Section 8.3, we give new results for empirical processes indexed by absolutely regular
sequences. Arcones and Yu (1994) and Doukhan et al. (1995) give extensions of the results
of Pollard (1982) and Ossiander (1987) to absolutely regular sequences. Nevertheless these
results still lead to suboptimal applications: for example the uniform central limit theorem
holds for the normalized and centered multivariate empirical distribution function as soon
as the B-mixing coefficients satisfy 8, = O(n~?) for some b > 1. By contrast Rio (1998)
obtains the uniform central limit theorem for the multivariate empirical distribution func-
tion and more generally for empirical processes indexed by Vapnik-Chervonenkis classes
of sets under the minimal absolute regularity condition ) ., 8; < oo. The proof of Rio
(1998) is based on the maximal coupling theorem of Goldstein (1979). In Section 8.3, we
will adapt the proof of Rio (1998) to classes of functions satisfying bracketing conditions.
Again the results of Section 8.3 yield the uniform central limit theorem for the multivari-
ate empirical distribution function under the minimal regularity condition ) . . f; < oo,
contrary to the results of Arcones and Yu (1994) and Doukhan et al. (1995).

8.2. Classes of regular functions

In this section, we are interested in convex subsets of classes of regular functions. We
will prove in Proposition 8.1 that, for unit balls of some spaces of regular functions, the
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stochastic equicontinuity property holds true for the empirical process. We then derive
from this first result an uniform central limit theorem for the empirical process indexed by

compact subsets of this unit ball.

Here we will consider generalized Lipschitz spaces, such as the Zygmund space. We
start by some definitions and elementary properties of these spaces. We refer to the books
of Meyer (1990) and Devore and Lorentz (1993) for more about these spaces and their
properties. In order to define these spaces, we need to introduce the integrated modulus
of regularity. For sake of brievity, we give the definition only in the real case.

Définition 8.1. For any real t, let T}, be the shift operator, which maps the function f
on the function T}, f, which is defined by T}, f(z) = f(x + h) for any z. Let

Ay (f,2) = (Th — To)" f ().

Let p be any real in [1,+o0] (p = oo is included). For any closed subinterval I of IR and
any function f in LP(I), we define the integrated modulus of regularity of order r of f by

1/p
anlf.y = swp ([ 1aq(roa)
helo,t] N Iy,

where I, is the closed interval such that inf I, = inf I and sup I, = sup I — rh.
We now define the generalized Lipschitz spaces of order s in the univariate case.

Definition 8.2. Let s be any positive real. Set r = [s] + 1. We denote by Lip*(s, p, I) the
space of functions f in LP(I) such that for some positive constant M,

1/
(/ |AL(f, x)]pdx> ' < Mh® for any h > 0.
Ip

On Lip*(s,p, I), we consider the semi-norm
|f|Lip* (s,p) — Sup t_swr(fv t)p
t>0
We define a norm on Lip™(s, p, I) by [|fl|Lip* (s.p) = |f|Lip*(s.p) + || fllp- Let B(s,p, I) denote

the unit ball associated to this norm.

Remark 8.1. In the case p = 2, the space Lip*(s,2,IR) contains the Sobolev space of
order s. For s = 1 and p = oo, the space Lip*(1,00,1) is the Zygmund space Z(I) of
functions f such that |f(z + 2t) — 2f(x + t) + f(x)| < Mt. This space contains the space
Lip(1, 00, I) of Lipschitz functions on I.

In order to prove the stochastic equicontinuity property for empirical processes indexed
by balls of these classes of functions, it will be convenient to use the wavelets expansions
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of these functions. Below we give the characterization of the spaces Lip* (s, p, ]Rd) for any
d > 1. We refer to Meyer (1990, T. 1., pp. 196-198) for a definition of these spaces in the

multivariate case and for more about wavelets.

For any nonnegative integer j, let us consider A; = 277 /A \ 277 7ZZ%. Let us define
A =7° U(UJE]N A;). We consider a multiresolution analysis in L*(R%). For X in A\ Z*,
we denote by 1) the wavelet of the multiresolution analysis corresponding to A. Then the
wavelets {¢y : A € A;} form an orthonormal system. For j > 0, we denote by W, the
subspace of L? (]Rd) generated by this system. Let ¢ denote the father function. For A in
%, we set px(x) = p(x — \) and we denote by V; the subspace of L2(IR?) generated by
the orthonormal system {y : A € Z%}. Then

L2(]Rd) =V ELB <j6i90 Wj>.

Throughout the sequel we assume that the scaling functions have a compact support and
are 1 + [s] times continuously differentiable. For sake of convenience, we set 1)) = @, for
Ain Z¢. Then any function f in L?(IR?) has the orthogonal expansion

(8.1) F=D axpr+d ) axa=Y_ axs.

AEZ? J=0 Xe€A; AEA

Let Lip*(s,p,IR?) denote the generalized Lipschitz spaces, as defined in Meyer (1990),
and let B(s,p,IR?) denote the unit ball of this space. Meyer (1990) gives the following
characterization of these spaces.

Proposition 8.1. For f in Lip*(s, p, IRd), let

s =su0(( 32 lest) ™ sup((32 o) 2002000

\eZA AEA;

Then || . ||ona is a norm on Lip* (s, p, IR?). Furthermore this norm is equivalent to the usual

norm || . re) on Lip*(s, p, R%).

||Lip*(s,p,
In order to compare these spaces, it will be convenient to use the elementary result

below.

Lemma 8.1. Let K be a countable set and (ar)rcx be a family of nonnegative reals.
Then for any reals ¢ > p > 0,

(Ca)" < (Ta)”

keK keK
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By Lemma 8.1, for any p in [1,2],

1/2 ‘ 1/2
82 (X )" <Uflona? D and (30 @) < fllona

AEA; xezd

It follows from (8.2) that Lip*(s,p,IRY) ¢ L*(R%) for s > (d/p) — (d/2). Moreover
Lip* (s, p,IR%) ¢ L>*(IR?) for s > d/p. Let us now give the main result of this section.

Theorem 8.1. Let (X;);cz be a strictly stationary sequence of random variables with
values R?. Suppose that the strong mixing coefficients (ay)r>o defined by (1.20) satisfy
Y k>0 ¥k < 00. Let p be any real in [1,2] and let s be any real such that s > d/p. Let
a be a positive real and let F = aB(s,p,R?). Let Cr = sup{||fllona : f € F}. Set
0 =d/(d+2(s—d/p)). Let Z, be defined by (1.37). Then there exists some positive
constant k such that
(a) | sup  Zn(f —g)lla <k C%e' ™ for any e €]0,Cx].

(fi9)EFXF

If=glla<e
Consequently, if F is equipped with the usual norm of L*(IR?), then the empirical proces
{Z,.(f): f € F} satisties the stochastic equicontinuity condition (ii) of Theorem 7.1.

Remark 8.1. In the case p = 2, Theorem 8.1 holds true under the condition s > d/2. In
that case 8 = d/(2s) and 1 —6 = (2s—d)/(2s). For example, if s = d, then§ =1—-0 = 1/2.

Proof of Theorem 8.1. Clearly

(8.3) | sup  Zp(f—g)ll2 <2[| sup |Zn(f)] [
(f,9)€FxF jeF
if=glla<e Iflp<e

Next, by the Schwarz inequality,

201 <| Xz + 2| Y arZaa)]

AeZd J=0 ' €A,
s (X)) (X z2e) " (T @) (T zw)”
ez AeZ? J=0 X€A; AEA;

Both (8.2), (8.4), Lemma 8.1 and Proposition 8.1 together with the orthonormality of the

wavelets basis imply that

I s 1Zu(D)] <= 3 m(z2))

I Fll2<e AEZ?
> . . . 1/2
(8.5) +3 inf(Cfgaw/p—s),gdi/z)( Z2‘JdlE(Zi(sz))> .
j=0 AEA;
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We now adapt the symmetrization method introduced in the proof of Theorem 1.3.

Let (ex)aea be a sequence of independent symmetric signs, independent of the sequence
(XZ')Z'G%. Then

(8.6) > 222 () = B(Z2( Y27 enun ).
ACA;

)\GAJ'

We now fix the values of the signs (€ ). Since the father function and the scaling functions
have compact supports , there exists a positive constant K such that

D 27y ()| < K

)\EA]‘

for any z in IR?. Consequently, if P denotes the law of X, then for any family (¢)) of
signs, the quantile function of the random variable

<22_jd/26A¢A(X0>>2

)\EAJ‘

is bounded up by K2. Hence, both (8.6) and Corollary 1.2(b) ensure that

n—1
> 2T IMR(Z2 (1)) < 4K oy
)\GAJ‘ k=0

The same upper bound holds true for the scale Vj, whence

(8.7) (]E( sup Z2( f)))l/ * < 2K<§ak>1/ ’ (s+iinf(cfgﬂd/p—s),gzjdm)).
j=0

fer
Ifll2<e =

Suppose now that ¢ < Cr. Let r be the nonnegative real such that C27(#/P=s) = g9rd/2,
Then

Z inf(Cx29(4/P=9) g9id/2) — Z £974/2 | Z C £2(d/p=5)
=0 j<r i>r
(8:8) < g2rd/2(1 — 9=/ =1 4 Cpord/p=s)(1 _ 9d/p=s)=1,

Next, by definition of r,

Cr2r(d/p=s) — gord/2 C}/(1+2(3/d)_2/p)€(2(s/d)—2/p)/(1+2(s/d)—2/p) _ C’?: c1-6

Let C(d,p) = 1+ (1 —2742)=1 4 (1 — 2%/P=%)~1 Both (8.7) and (8.8) together with the
above equalities ensure that

n—

(8.9 (B swp 22(1))"" < 2KC(@.p)(

fer

1
1/2
Oék> 02:81_0,
I fllz<e k=0
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provided that € < C. Theorem 8.1 follows then from (8.3) and (8.9). m

From Theorem 8.1, Corollary 4.1 and Theorem 7.1 (Theorem 10.2 in Pollard (1990)) ,

we now derive the following uniform central limit theorem.

Corollary 8.1. Let (X;);cz be a stationary and ergodic sequence of real-valued random
variables with values in IR?. Suppose that the strong mixing coefficients defined by (2.1)
satisfy Y o0 < 00. Let p be a real in [1,2| and let s > d/p. Let F be a bounded
and closed subset of Lip* (s, p, ]Rd). Suppose furthermore that F is totally bounded in
L%(IR?) (see Definition 8.4). Then there exists a Gaussian process G with a.s. uniformly
continuous trajectories on the space F equipped with the usual metric in L*>(IR?), such
that {Z,(f) : f € F} converges in distribution to G in the sense of Theorem 7.1.

8.3. Maximal coupling and entropy with bracketing.

Throughout this section, (X;);cz is a strictly stationary and absolutely regular sequence
of random variables with values in some Polish space X'. The absolute regularity or (-
mixing coefficients are defined as in Section 5.5. Below we recall the definition of these
coefficients.

Definition 8.3. The absolute regularity or S-mixing coefficients (53,,)n>0 of the sequence
(X;)iem are defined by Sy = 1 and

(8'10) Bn = sup B(Fkagk—l-n) for n > 0,
keZ

with the same notations as in Definitions 1.2 and 2.1.

Throughout the sequel, we denote by P the law of Xy. Z, denotes the normalized
empirical measure, as defined in (1.37). We will assume that the sequence of S-mixing
coefficients satisfy the summability condition ) ., fn, < co. Our aim is to extend the
uniform central limit theorem of Dudley (1978) for empirical processes indexed by classes
of function with an integrable L!(P)-entropy with bracketing to the S-mixing case. Using
the maximal coupling lemma of Goldstein (1979) or Berbee (1979), we will construct a
positive measure () with finite total mass, absolutely continuous with respect to P with
the following remarkable property: for any class F of uniformly bounded functions with an
integrable L!(Q)-entropy with bracketing, the empirical process {Z,(f) : f € F} satisfies

the uniform functional central limit theorem.

We now recall the definitions of metric entropy and of metric entropy with bracketing
and Dudley’s (1978) functional central limit theorem for empirical processes associated to
strictly stationary sequences of independent random variables. We start by the definition
of metric entropy.
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Definition 8.4. Let (V,d) be a pseudo-metric space. Let

N, V,d) =min{n € N : 3 5, = {x1,...,x,} C S such that d(x,S,) < ¢ for any = € S}.
(V,d) is said to be totally bounded if N (6, V,d) < oo for any positive §. The metric entropy
function H is defined by H (4, V,d) = log(N (4, V,d) V 2).

Dudley (1967) has given an entropy criterion ensuring the a.s. uniform continuity of
Gaussian processes. Let H be an Hilbert space and B be a Gaussian process indexed by
H, with covariance function the scalar product of H. If V is a totally bounded subset of
H and if

(8.11) /1 VH@,V.d) dz < .

then there exists a version of B with a.s. uniformly continuous trajectories on V.

However, as shown by some counterexamples, condition (8.11) does not imply the uni-
form functional central limit theorem for empirical processes. Some additional conditions
are needed, such as bracketing conditions. Below we define the notions of brackets and

diameter of brackets and the notion of entropy with bracketing.

Definition 8.5. Let V' be a subspace of the space of numerical functions on (X, P). Let
A :V — R" be a function such that, for any f and any g in V,

(8.12) |f] < |g| implies that A(f) < A(g).

Let F C V. If f < g, we denote by [f, g] the set of functions h such that f < h < g. This
set is called interval of functions. The nonnegative real A(g— f) is called diameter of [f, g].

A class F of functions in V' is said to be totally bounded with bracketing if, for any
positive 0, there exists a finite family S(d) of intervals of functions in V' with diameter lass
than ¢, such that

(8.13a) for any f € F, there exists [g, h] € S(d) such that f € [g, h].

The covering number Njj(6, F) in (V,A) is the minimal cardinality of families S(J) satis-
fying (8.13a). The entropy with bracketing is defined by

(8.13b) H[]((S,JT,A) :logM](5,F)V2.

If A is a norm on V and if dy is the distance corresponding to this norm, then the
following relation between entropy and entropy with bracketing holds:

(8.14) H(8,F,dp) < Hy(26,F, A).
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In the general case, the converse inequality does not hold. The notions of entropy and
entropy with bracketing are not equivalent. The only notable exception is the case of the
uniform distance, which corresponds to

(8.15) AS) = fllee = Egg\f(fv)\-

In that case B(f,0) = [f — J, f + 6], and consequently balls are intervals. Then

We now recal Ossiander’s theorem (1987) for empirical processes indexed by classes of
functions. This result is an extension of Dudley’s (1978) Theorem to L?(P). Let (X;)icz
be a strictly stationary sequence of independent random variables and let P denote the
law of Xy. Throughout the sequel, let the normalized empirical measures Z,, be defined
by (1.37). In the iid case, for any f in L?(P),

(8.17) Vaan(f):/f2dP— (/fdp>2.

Consequently, if F is a class of function of L?(P), then the fidi convergence of {Z,(f) :
f € F} to an a.s. uniformly continuous Gaussian process G with covariance function
L'(f,g) = [ fgdP — [ fdP [ gdP holds, as soon as Dudley’s criterion is satisfied, i.e.

(8.18) /01 VH(z,F,dp)dr < oo,

where dp is defined by

(5.19) B(f.9)= [(¢=92ap - ([~ g)ap)"

Condition (8.18) does not imply the asymptotic stochastic equicontinuity of Z,,. However
the corresponding bracketing condition implies the functional central limit theorem for the

empirical process.

Theorem 8.2. - Ossiander (1987) - Let (X;);cz be a sequence of independent random
variables with common law P and let F C L*(P). If F is totally bounded with bracketings
in L?(P) and if

1
(8.20) / \/H[] (:L',./r, d27p) dx < 00,
0

then the empirical process {Z,(f) : f € F} satisfies the uniform functional central limit
theorem.
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Ossiander’s theorem is a remarkable extension of Dudley’s (1978) theorem for classes
of uniformly bounded functions with integrable entropy with brackteing in L!(P). We
refer to Andersen et al. (1988) for more precise results in the independent case. Doukhan,
Massart and Rio (1995) give the following extension of Ossiander’s theorem to [-mixing
sequences. For any numerical function f, we set, for sake of convenience, Qy = Q(x,)-
Let us define the norm ||. ||z, by

1/2

(8.21) 125 = ( / 5 (0)Q3 ()

This norm satisfies (8.12). Hence we may consider the entropy with bracketing with respect
to this new norm. Let Lo g(P) be the space of functions f such that || f||2,3 < co. Doukhan,
Massart and Rio (1995) prove that the uniform functional central limit theorem holds for
a class of functions F included in Ly g(P) as soon as

1
(8.22) / H) @ F |l do < o0,
0

Let us now apply this result to classes of uniformly bounded functions. Let F be a
class of numerical functions with values in [—1, 1]. Then the fidi convergence to a Gaussian
process holds as soon as the summability condition ) _, 8, < oo is satisfied. In the
general case, (8.22) needs a stronger mixing condition. The same gap appears in the paper
by Arcones and Yu (1994). Nevertheless, since

1126 < 1 £lloe 3 Ba

n>0

(8.22) implies the functional uniform central limit theorem under the minimal mixing

condition ), Bn < 0o if F satisfies the stronger entropy condition

(8.23) /0 VH(x, F,| . |le) dz < oco.

However Condition (8.23) is not relevant for classes of sets. If F is the class of indicator
functions of orthants or Euclidean balls, (8.22) needs the mixing condition

(8.24) Z n~"Y(logn) /2 (Z ﬁi>1/2 < 0.

n>2 >n

For example, if 3, = O(n~!(logn)~?), (8.23) needs the too restrictive condition b > 2. By
contrast, Rio (1998) obtains the uniform functional central limit theorem for these classes
of sets under the minimal mixing condition ) _,B, < oo. His approach is based on
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repeated application of the maximal coupling lemma. Here we will adapt Rio’s approach
to the case of entropy with bracketing. As in Rio (1998), we construct a nonnegative
function B in L'(P) such that the positive measure Q = BP has some nice properties,
which will allow us to prove the stochastic equicontinuity of the empirical process as soon
as the class of functions F has an integrable entropy with bracketing in L!(Q).

Before stating the main result of this section, we need to define (). In order to define
@, we will use the maximal coupling theorem (see Theorem 5.1). Applying Theorem 5.1
to (X;)iez, we get that there exists some sequence (X} );ez of random variable with the
following properties: the sequence (X);cz has the same law as (X;);cz, is independent
on Fy =o(X;:4<0) and

IP(X, = X forany i > k) =1 — B.
We now define ) from the above coupling sequence. Since X is independent of Xj,

(8.25) Cov(f(Xo), f(Xk)) = E(f(Xo)(f(Xk) — F(X})))

for any bounded function f. Consequently

(8.26) | Cov(f(Xo), [(Xk)) < 2[fllcTE(f(Xk) — F(XE)])-
Now
(8.27) (] f(Xk) — F(XD]) < E(f(Xe)[Ux,zx;) + E(f (X)) Ux,2x7)-

Let us then define the measurable functions b) and b; from X" into [0, 1] by
(828)  Bu(Xp) = P(Xy £ X[ | X,) and b(X]) = P(Xy # X} | X[).
From (8.27) we get that

(8.29) E(]f(Xe) = F(X0)]) < (| f (Xi) by (Xe)) + (| f (X5)0 (X))
Hence, if by, = (b}, + b7)/2,

(330 B(F(X0) — (DD <2 [ nliap,

which, together with (8.26), implies

(5.31) Var Zu(£) < e | (1 by oo+ dby o)l 1P,
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We then define the nonnegative measure () by

(8.324) Q=BP = (1 +4)° bk>P.

k>0

From (8.25) and (8.28), the functions by, satisfy the additional conditions

(8.32()) 0<b,<1 and / brdP < Bp.
X

Consequently, under the summability condition , the measure () has a finite total mass and
is absolutely continuous with respect to P. Furthermore, the following uniform functional
central limit theorem holds for the measure @ defined by (8.32a).

Theorem 8.3. Let (X;);cz be a strictly stationary sequence of random variables with
values in some Polish space X', with common law P, and let () be the nonnegative measure
defined by (8.32a). Suppose that the sequence (Bx)k~o of absolute regularity coefficients
defined by (8.10) satisfies the summability condition ), . fr < co. Let F be a class of
measurable functions from X into [0,1] . Let

1o = /X ldQ and dv.o(f,9) = IIf — gll1.o-

Let L*(Q) be the space of numerical functions f such that || f|1,o < oco. Suppose that F
is totally bounded with bracketings in L'(Q) and that

(8.33) /O 1 \/H[](:z:,]-", di.0)/z) dz < oo,

Then the empirical process {Z,(f) : f € F} satisfies the uniform functional central limit
theorem of Theorem 7.1.

Applications of Theorem 8.3. Let us first note that Theorem 8.3 is not adequate for classes
of regular functions satisfying entropy conditions in L°°(P). Indeed condition (8.23) does
not imply (8.37). The main interest of Theorem 8.3 lies in the applications to classes of
sets. Suppose that F = {llg: S € S}. Since

(8.34) [Ts — |1, = QISAT)

(here A denotes the symmetric difference), the notions of entropy with bracketing and
entropy with inclusion are equivalent (see Dudley (1978) for a definition of the entropy
with inclusion and a detailed exposition). In that case condition (8.33) is equivalent to the
following condition of entropy with bracketings in L2(Q):

(8.35) /01 JHy (@, Frdyo) du < 0o with ds o(f, g) = (/X(f _ g)QdQ>1/2.
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Since || fll2.o < 2[/fll2,3, (8.35) is weaker than Doukhan, Massart and Rio’s entropy con-
dition (8.22). Generally (8.35) provides better results for classes of sets. For example, for
the class of orthants, the uniform central limit theorem holds under the minimal mixing
condition ), Br < 00, as shown by Corollary 8.2 below.

Corollary 8.2. Let (X;)icz be a strictly stationary sequence of random variables with
values in R?, satisfying the S-mixing condition > k>0 Bx < 00. Assume that the marginal
distribution functions F}; of the law of X, are continuous. Then there exists a Gaussian
process G with uniformly continuous trajectories on R¢ equipped with the pseudo-metric
dpr given by

dF(.'If,y) = Sl[lp] |FJ('IJ) - Fj(yj)|7 where x = (‘Tla' . .Id) and Yy = (?Jl»- . 'yd)a
Jj€[1,d

such that the normalized and centered empirical distribution function v,, defined in Section
7.5 converges in distribution to G in B(IR?) as n tends to oc.

Proof of Theorem 8.3. We start by replacing the initial entropy function by some

function H with additional monotonicity properties.

Lemma 8.2. Let Hy g(x) = Hpy(x,F,dy,q). There exists some continuous and nonin-
creasing function H > Hy o such that the function x — x?H (z) is nondecreasing and

(8.36) /0 C(H(2) /) 2de < 2 /0 “(Hi o(x)/2)2dz for any v €)0,1].

Proof. Let H(x) = supte]oyw](t/x)QHl,Q(t). By definition H > H; g, H is nonincreasing
and x — x?H (z) is nondecreasing, which implies that H is continuous. Next

oVH@ < sw t[Ho® < [ \[Ho®d
t€]0,x] Q 0 <

whence

/O U(H(a:) Jx)2dx < /0 ’ /O ’ Mo/ Hio(t)z ™% 2dtds < 2 /0 U(HLQ(:);) Jx) 2 dx

by the Fubini Theorem. Hence Lemma 8.2 holds true. m

We now prove Theorem 8.3: the main step is to prove the stochastic equicontinuity
property. If the function H is uniformly bounded, then § is finite. In that case the
uniform central limit theorem follows directly from the fidi convergence. Consequently we
may assume that limg H(z) = +00. We start by some definitions.

Definition 8.6. Let d be a fixed positive real. Let K be the first nonnegative integer such
that 225X H(8) > nd. Set qo = 25. For any integer k in [1, K], let qx = o2~ " and let §; be
the unique positive real satisfying ¢ H () = ndg. Let dp = 4.
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The first step of the proof is to replace the initial sequence by a sequence of independent
blocks of length gg. This will be done using the coupling lemma 5.1. Applying recursively
Lemma 5.1, we get that there exists some sequence (X?);~o with the properties below.

XO

1. Let ¢ = go. For any i > 0, the random vector U? = (X2 it

AR ) has the same
law as U; = (Xig+1,- - » Xig+q)-

2. The random vectors (U3;);>o form an independent sequence. and the same property
holds for (U3, ;)i>o-

3. Furthermore IP(U; # U?) < B4 for any ¢ > 0.

Using properties 1-3, we now bound up the cost of replacement of te initial sequence
by this new sequence.

Lemma 8.2. Let SO(f) = f(X?) + -+ f(X2) and Zo(f) = n=Y2(S%(f) — nP(f)). Set
q = qo. Then

B (sup |Za(f) = Z0(F)) < 2vn 8,

fer

Proof. Set S,(f) = f(X1)+ -+ f(Xy). For any f in F,

(8.37) 1S,.(f) |<Z|f X0|<QZ]IX¢X0

1=1

Hence, by Property 3,

835 E(suplZ,(f) - Z07)1) < 2072 YK £ XD) < 2y
=1

feF

which completes the proof of Lemma 8.2. m

Now, from Definition 8.6, ¢3 > nd/H(J). Since limtoonB3, = 0, it ensures that
limy, 100 vV13q, = 0. Consequently the upper bound in Lemma 8.2 tends to 0 as n tends
to co. Therefrom the stochastic equicontinuity property holds for Z,, if and only if this
property holds true for Z9.

Let us now prove the stochastic equicontinuity property for Z°. The main problem
which arises here is that the length of blocks ¢y is too large to get efficient Bernstein’s
type exponential inequalities. In order to improve the results of Doukhan, Massart and
Rio (1995) or Arcones and Yu (1994), we will replace recursively the sequence (X9),, by
sequences (X)), with independent blocks of length g; = ¢p277. In order to construct the
sequences (X7),,, we will assume that the underlying probability space is rich enough in
the following sense: there exists an array (u;,;)(;,ijenxw of independent random variables
with uniform law on [0, 1] independent of the sequence (X7);.
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We first construct the sequence (X}'); from (X?);. Let ¢ = go. Then ¢; = ¢/2 and

XO

W2 = (U?, V) with U? = (X31+17~--X3i+q1) and V= (X, aitao)-

qitq1+10 -

By the maximal coupling theorem (Theorem 5.1) applied to the sequence (£x)_q, <k<q
defined by &, = Xj_qi—q, together with the Skorohod lemma (Lemma E.2), there exists a
random sequence (£})—q, <k<q, With the same distribution as ({x)_q, <k<gq,, Which is a mea-
surable function of ug; and WY, such that the random vector (£}, ..., ) is independent
of U?, has the same distribution as V. We then set (here ¢ = qo)

(8.39) X! =X} forl€lig+1,ig+ q] and X} =&\ g, for I €lig+ q1,iq + q.

From (8.39) together with (8.30) and (8.32), for any bounded function f,

1qo+qo

Y. EUAXD) - fXHD < I flhe-

l=igo+1
Proceeding by induction one can prove the proposition below.

Proposition 8.2. Let (X‘ )icz be defined from (X;);cz via Theorem 5.1. Then one can

construct sequences (X?);~, for j in [1, K] with the properties below:

(i) Let ¢ = qo. Set T/ = (quH, . ,ngJrq)je[O,K]. Then the blocks (T?)i>¢ are identically
distributed. Furthermore the blocks (T3;);>o are mutually independent and the blocs
(Tg¢+1)i20 are mutually independent.

(ii) For j in [0, K], let

W/ = (U, V)) withU} = (X7

ayittr - Xgitg,,,) and V= (X7

j J
qjitgj+1+17 'qu"i'f‘qj)'

Then, for any j in [1, K| and any nonnegative integer i, Wgz = U,L-j_l, I/VQjZ-Jrl is a
measurable function of W) ™" and u;_,;, and the random vector (Wij_l,ngH) has
the same distribution as (Xi—g;,..., Xq;, X{,... X7 ).

Properties (i) and (ii) ensure the following additional properties:

(iii) For any j in [0, K], the random vectors W{,...,WJ, | are independent and identically

distributed, and W{ has the same law as (X1, ... , Xg;)-
(iv) For any bounded function f, any j in [0, K — 1] and any i > 0,

ZQJ +q;

> B = 1D < e

l=ig;+1

In order to control the fluctuations, we will define di-nets Fj as well as projections ITj
on Fy.
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Definition 8.7.  For any k in [0, K], let Jx = {Bik,Bak,...} be a totally ordered
collection of intervals of functions with diameter less than ¢ with respect to || . ||1,¢, such
that & C Uy, e, S 9] and log Card Fi, < H(0y). For each interval By = [gjk, hyjk] in
Ji, we choose a point f; in B NJF. For any f in F, let j be the first integer such that
f belongs to Bj . We set I, f = f;r and Apf = hjr — gjr. We denote by Fj, the set of
functions Il f when f ranges over F and by G, the set of functions Ay f.

From Definition 8.7, the operators II; and Ay satisfy
(8.40) |f =1 f] < Arf and [|Akfll1,q < 0k, [[Apflloe < 2.

We now introduce our chaining argument. Since this chaining argument has to be adapted
to the dependence setting, the above defined sequences will play a fundamental role. Here

we need to introduce additional notations.
Notation 8.1. Let S¥(f) = f(XF) + -+ f(XF) and ZE(f) = n=1/2(SE(f) — nP(f)).

We now give our chaining decomposition:

ZEYALf — o f)

M=

Zo(f —of) = ZK(f — Ok f) +
l

I
—_

(Zn ™" = Z3)(f = i f).

M=

(8.41) +

>
Il
—

From the decomposition (8.41),

(8.42) E*(sup | Z2(f — o f)|) < IEy + IEy + [Es,
feF

with

Ey =E(sup | Z, (f — Tk f)]),
fer

K
E, :Z]E(supﬂZ,lfl(Hzf — 1)),

=1 fer
K

Es = E(sup(|(ZF " = Z8)(f =Tk f))).
1 fer

Control of IE;

Since the random variables XX have common law P, by (8.40),

1ZE(f =Tk f)l < n V2(SE(f = Tk f]) + nP(|f — Tk f]))
<n V2SE(Akf) +nP(Akf))
(8.43) < ZEK(Akf) + 2v/nP(ALf).
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Now P < Q and Q(Ak f) < dxk, whence

(8.44) B, < 2n'/265 +E(sup ZX(g)).
LIS %

By Proposition 8.2(ii), the random vectors (X5, |, X%, ,) have he same law as (Xo, X7).
Consequently, by Proposition 8.2(iii), the random variables X#,..., X ég are independent

and with common law P. Next

SK(g) = A+ B with A = Z g(X5) and B = Z g(X5).
(i—l)/<q062N (i—l)/vq<0€2N+1

Now, by the Schwarz inequality,

log IE (exp t(SX (9) — nP(g))) < <log IE(exp(2t(A — IE(A)) + log E(exp(2t(B — ]E(B))).

DN |

By Proposition 8.2(i) (and (iii)), A and B are sums of independent random variables with
the same law as g(X7). Hence, applying Inequality (B.4) in Annex B to A and B, we
obtain that

(5.45) log E(expt(S1 (9) ~ nP(9)) < T2 < Ty

for any g with ||g]lcc < 1. Since ||g||lcc < 1 for any ¢ in Gy and the logartihm of the
cardinality of Gy, is less than H (dx ), both (8.45) and Inequality (B.5) together with Lemma
D.1 in Annex D then imply that

E(sup ZX(g)) < 24/0xH(0x) + 2n~ Y2 H(5k).

9€0K

Now, by definition of dj,
(8.46) n 2 H(8k) = n'?(0/qr) = (65 H (5x))"/2.
Since gk = 1, combining (8.44) with the above inequalities, we finally get that

(8.47) B, < 6y/0xH(0x).

Control de IEq
Fix [ in [0, K — 1] and let

By, = E(sup(|Z;, (W1 f — 1L f)])-
feF
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By Proposition 8.2 (ii)-(iii), the random vectors (qulﬂ, o aXéi+1)ql)ie[0,2l—1] are inde-
pendent and indentically distributed. Next

Sh(g)=Ai+ B with A=) g(X!) and B = > g(X).
(i—1)/qp€2N (i—1)/qp€2N+1
i<n i<n

Again, by Proposition 8.2(i) and (iii), 4; and B; are sums of independent random variables
with the same law as g(X1)+---+g(X,,), at the exception of the last block, which has the
same distribution as g(X1)+- -+ g(Xp—g,[n/q])- Suppose now that ||gcc < 1. Then these
independent random variables are bounded up by ¢;||g||~ and, by (8.31), their variance is
bounded up by the length of the block multiplied by ||||g||1,o. Hence, as previously, by the
Schwarz inequality together with Inequality (B.4),

(8.48) log IE(expt(S;,(9) —nP(g)) < nllglliot*/(1 — dait/3).

Let then
Z/{[ = {Hlf — Hl+1f . f c .F}

For any g dans U, ||g]|cc < 1, and ||g|l1,0 < 2d;. Since the logarithms of the cardinalities of

U, and —U; are less than 2H (§;41), both (8.45) and Inequality (B.5) together with Lemma
D.1 in Annex D applied successively to U; and —U; then imply that

(8.49) Eo; < 4v/6H(6141) +4n Y2 H (014 1).
Now, by definition of §;41,
@ H (0141) = 2(qi H(0141) H(8141))"? = 2(nr1 H (6141)) ",

whence [Eg; < 12(6,H (6;41)) /2. Tt follows that

K-—1 K-—1
(8.50) Ey < Y oy <12 /6 H(d141).
=0 =0

Control of IE3.
For k in [1, K], let

B3, = E(sup(|(Zy" = Zy)(f — L f))).
feF

Let hy = f — I f: since |hg| < Agf, using (8.40) we get that

St () = Sp(hi)l < Y Thie(XF) = hu(XF )]

=1

(8.51) <D M1 (AR f(XF) + A f(XET).
=1
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Hence, if ny is the first entire multiple of 2¢; greater than n,

Nk
(8.52) Box <07 PB(sup S Ky (0(XF) +9(X17))).
9=k =1

In order to apply Lemma D.1, we now need to bounded the Laplace transform of the

random variables

s
=1

From Proposition 8.2, the random variables T},, x(g) is the sum of two random variables,
which are sums of independent random variables with the same distribution as Tbg, (9)
(with the exception of the last random variable). By Proposition 8.2(ii), the random
variable Ty, 1(g) has the same distribution as

T(g) = Z Mx,2x: (9(X:) + 9(X])).

Now, from (8.28), proceeding as in the proof of (8.30), we get that

B(T(0) = [ O +b)9ap =23 [ vigap

Since || T(9)|co < 4qy, it follows that
2IE(T(9)) < llglli.q and E(T*(9)) < [IT(9)ll<E(T(9)) < 2axllgll1.0-
Hence, for any g in Gy,
(8.53) 2I(T(g)) < 6k, [IT(9)lloc < 2ax and E(T*(g)) < 2qxJy.
Now, by (8.53) and Inequality (B.4),
(8.54) log IE(exp(tT'(g))) < (6xt/2) + quort®/(1 — 8qit/3).

Next, proceeding as in the proof (8.49) and applying (8.46), we get that

(8.55) B3 < nY2(2q1) 10k + /80 H(0k) + 80~ Y2q H(6) < 12+/0,H (6).
Finally

K K
(8.56) Es <) s, <12)  \/6:H(0).

k=1 k=1
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End of the proof of Theorem 8.3.
For n large enough, H(6) < nd. Then gy > 2 and therefrom

GRH(5) >nd and ¢IH(S) < né,
whence 0 > §;. Recall that (dy)y satisfies the recursive equations
S H(Oky1) = 46, " H(6y).
Let then G(z) = 2?H (x). From the above equation,
6pG (Ok41) = 467.1G (k).
Since G is nondecreasing, it follows that 6 > 447, ;. Hence
(8.57) 22/36k41 < O for k> 1 and 6, < 0.

Now, both Lemma 8.2 together with (8.42), (8.47), (8.50), (8.56) and (8.57) yield
K
E(sup | Z(f ~To )] < A/nBy, + 61/ 0k H(0x) +24> /0, H(0k).
€ k=1
Now, by (8.57) again, vy < 3(6x — dx+1)/v/ 0k, whence
K
6\/5KH(5K)+24Z VorLH(8;) <
K—1
k:l

Since H is decreasing and §; < §, we thus get that

1)
(8.59) B(sup 12, ~ Taf)| < 4, +72 [ (H(a)/a)!2da,

ferF

From the definition of gy, v/n8,, converges to 0 as soon as lim, ¢, = 0. Hence, by (8.59),
the stochastic equicontinuity holds true, which completes the proof of Theorem 8.3. m

Proof of Corollary 8.2. Let

Cﬁ—1+42/de

>0
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Throughout this proof, IR? is equipped with the product order. As in the proof of Theorem
7.4, we may assume that the components of X, are uniformly distributed over [0,1]. Let
P denot the law of Xg. For ¢ in [0, 1], let

(860) Gj(t) :Q($Z (1‘1,...,5Ed) ERdZ.CEj §t)
For any (s,t) in [0,1]¢ with s < t,
Gi(t)—Gji(s) = Q(x = (x1,...,2q) e R : s < ; < 1).

Now @ is absolutely continuous with respect to P, which implies that the marginal distri-
bution function G is continuous and has a bounded variation. Furthermore, since @ > P,
G;(t)—Gj(s) > t—s. Hence G, is a one to one continuous mapping from [0, 1] onto [0, Cj].
Let then

(8.61) G(x1,...34) = (C5'Gi(x1),...,C5 " Galza)) and Y; = G(X;).

The sequence of random variables (Y;); has the same [-mixing properties as the initial
sequence (X;); Furthermore, from the definition of G, for any ¢ in [0,1]¢, X; < t if and
only if G(X;) < G(t). Hence it is enough to prove that the empirical distribution function
associated to (Y;); satisfies the uniform central limit theorem. Set

Mg (t) = (27525, ..., 27 5[25¢y)) and T3 (¢) = (275 (1+125t)), ..., 27 K (1 +[25¢4))).

(8.62)  TP(Mx(t) <Yy <TIj(t P([25¢,] < 25V < [28tj]+ 1) < dCz2~ K.

HM@.

Hence the entropy with bracketing Hp ¢ associated to the new sequence (Y;); and the
class of lower-left orthants satisfies Hy g(x) = O(log(1/z)) as x tends to 0, which implies
Corollary 8.2. m

EXERCISES
1) Use Exercise 4 in Chap. 1 to prove that the map f — || f||2,3, which is defined in (8.21)
is a norm on Lo g(P).

Problem. In this problem, we will prove the uniform central limit theorem of Pollard
(1982) for classes of functions satisfying an universal entropy condition, in a particular
case.
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Let (X;)i>0 be a sequence of independent random variables with values in some mea-
sured space (X, &), with common law P. Let A(X) be the set of probabilities measures on
X with finite support. For any @) in A(X'), we denote by dg the pseudodistance associated
to the usual norm in L?(Q). Let F be a class of measurable functions from X into [—1,1].
We set

(1) H(x, F) = sup H(z,F,dg),
QeA(X)

where H(z,F,dg) is defined as in Definition 8.4. The function x — H(z,F) is called
universal Koltchinskii-Pollard entropy. The universal entropy of F is said to be integrable
if

(2) /0 VH(z, F)dr < .

The class F is said to fulfill the measurability condition (M) if there exists a countably
generated and locally compact space (K,B(K)) equipped with its Borel o-field and a
surjective map 7" from K onto F such that the map (z,y) — T'(y)(x) is measurable with
respect to the o-fields (X x K,€ ® B(K)) and B(RR).

I. A symmetrization inequality.
Here G is a class of measurable functions from X into [—1, 1], satisfying condition (M).

1) Prove that the map

(T1, - Tpy Y1, -5 Yg) = supig(@r) + -+ g(wp) —g(y1) — - —g(yy) : g € G}

is universally measurable in the sense of Definition E.1, Annex E.

2) Let (X/)i>0 b an independent copy of (X;);>0 Let P, be the empirical measure

associated to Xi,...,X,,, as defined in (1.37) and let P/ denote the empirical measure
associated to X{,..., X, . Prove that the variables in (3) are measurable and that
(3) B (sup|Pa(9) — P(9)]) < I(sup |Pug) — Pal9)]).

geSG geyg

Hint: apply Jensen’s inequality conditionally to Xy,...,X,.

Let (g;);~0 be a sequence of symmetric independent signs, independent of the o-field
generated by (X;)i>o and (X/);>0. Let (X7, X/®) be defined by (X7, X/*) = (X, X/) if
g, = 1 and (XZS,XZIS) = (X{7XZ) if E; = —1.

3) Prove that the sequence (X7, X/*); is a sequence of independent random variables
with common law P ® P.
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4) Starting from (3), prove that

B (sup Pa(9) = Pr(0)l) = 'B(sup | 3~ eilg(X0) - g(XD))-

5) Prove that

(4) E(sup | Palg) = P(g)]) < 20 ' B(sup | Zezg

g€y 9€g

II. Stochastic equicontinuity of the symmetrized empirical process

Thoughout Part II, we fix (z1,...,2z,) in ™. We assume that the class of functions G
satisfies the universal entropy condition (2). We set

(5) o(o,G) = /OU VH(x,G)dx.

Let Q, = n"1(0,, +---+0,,) denote the empirical measure associated to (x1,...,z,). We
define the empirical maximal variance V by V = V(z1,...,2,) = sup{Q.(¢?) : g € G}.
Let 0 be any real in ]0, 1].

1) Let I be a finite subset of G with cardinality exp(H) > 2. Prove that

(6) (sup ‘ Z eig(x;

gel

)<2\/_sup<Zg x;) >1/2.

gel

2) Prove that, for any nonnegative integer k, there exists a finite subset Gy of G with
cardinality at most exp(H (27%0)) and such that there exists some map II; from G into Gy
satisfying the condition below:

dg, (9,1rg) <2776 for any g € G.

3) Prove that, for any function g in G and any integer [,

‘ Z ei(g — ) (z;)| < n2706.
i=1
Infer from this inequality that
]E(sup gig(x;) > = hm ]E(sup gig(x;) )
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4) Let 0, = 27%5. Prove that, for any g in G; there exists a collection of function
9o, - - -, g1 satisfying g; = g and g = I gx+1 for any integer k in [0,[[. Infer that

<sup’2z€zg x;) ><225k 1v/nH () +2\/nT

g€eq;

5) Prove that

]E<Sup > eigla)
9€9 "=

) < 8v/np(6/2,G) + 2/nHO)V .

Infer from the above inequality that

(7) E(zlelrg) ; eig(X;)

) < 8vnp(6/2,G) + 2/nHG)EV (X1, .., Xn)) .

III. Modulus of continuity of the normalized empirical process.

Let H be a nonincreasing entropy function such that

/ vV H(z)dr < oo and let p(o / vV H(z)dx.

Let £(6,P,H) be the set of classes of functions G from X into [—1,1], satisfying the
measurability condition (M), such that H(x,G) < H(z) and sup{P(g?) : g € G} < §%. We
set

w(®)= s B(sup|Zu(g)])-
Ge&(6,P,H) geg

1) Let G be any class of functions in (6, P, H). Prove that the class {¢g?/2 : g € G}
still belongs to £(, P, H). Infer that

8) w(8) < 169(6/2) + 4/H(8) /82 + 2n~1/20(3).

Starting from (8), prove that

w(6) < 16¢(0) + 4w(0)/ H(6)/(nd?).
2) Prove that w(§) < 32¢(8) for any positive § satisfying 20 H (§) < nd?.
3) Prove that the class
={(f-9)/2:(f,9) € F x F.dp(f,9) <}
belongs to £(4, P, H) for H = H(., F). Infer that, if nd?> > 26 H(§), then

(9) IE)(Sup | Zn(29) > <64/ VH(x, F)dz.

9€Gs

Apply then Theorem 7.1 to conclude.
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9. IRREDUCIBLE MARKOV CHAINS

9.1. Introduction

In this chapter, we are interested in the mixing properties of irreducible Markov chains
with continuous state space. More precisely, our aim is to give conditions implying strong
mixing in the sense of Rosenblatt (1956) or S-mixing. Here we mainly focus on Markov
chains which fail to be p-mixing (we refer to Bradley (1986) for a precise definition of
p-mixing). Ley us mention that p-mixing essentially needs a spectral gap condition in
L? for the transition probability kernel. This condition is often too restrictive for the
applications in econometric theory or nonparametric statistics. However these Markov
models are irreducible. In that case, one can apply general results on irreducible Markov
chains. We refer to Nummelin (1984) for more about irreducible Markov chains and to
Meyn and Twedie (1993) for a detailed exposition on Markov chains.

In Section 9.2, we give a brief exposition of the theory of irreducible Markov chains.
In Section 9.3 we introduce the regeneration techniques. Our exposition is based on the
lecture notes of Nummelin (1984) and on Nummelin (1978). In Section 9.4, we give an
example of irreducible and positively recurrent Markov chain, and we apply the results
of the previous sections to this example. For this example, we are able to estimate the
strong mixing and the S-mixing coefficients precisely. In Section 9.5, we give some relations
between the integrability properties of return times, the rates of ergodicity, and the absolute
regulariy properties of the chain. Our exposition is based on papers by Lindvall (1979)
and Tuominen and Tweedie (1994). In Section 9.6, we give relations between the rates of
ergodicity, the absolute regularity coefficients and the strong mixing coefficients. Starting
from papers of Bolthausen (1980, 1982b), we prove that, under some adequate assumptions,
the coefficients of absolute regularity and the coefficients of strong mixing in the sense of
Rosenblatt are of the same order of magnitude. Section 9.7 is devoted to the optimality
of the central limit theorem of Chapter 4. The lower bounds are based on the example

introduced in Section 9.4.
9.2. Irreducible Markov chains

In this section, we recall some classical results on irreducible Markov chains. We start
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by the definition of the transition probability and the notion of irreducibility. Let (X, X)
be a measurable space. Throughout this chapter, we assume that the o-field X is countably
generated, which means that X’ is generated by a finite or a countable family of sets. When
X is topological, then X will be taken as the Borel o-field of X, but otherwise it may be
arbitrary.

Definition 9.1. If P: X x X — IR is such that

(i) for each A in X, P(., A) is a nonnegative measurable function on X,

(ii) for each x in X, P(x,.) is a nonnegative measure on X,

then we call P positive kernel. The kernel P is said to be finite (resp. o-finite) if, for
any x in X, the measure P(z,.) is finite (resp. o-finite). P is said to be bounded if
sup{P(z,X) : z € X} < co. P is said to be stochastic or to be a transition probability
kernel if P(x,X) =1 for any x in X. P is said to be substochastic if P(z, X) < 1 for any
rin X.

The product P; P, ot two positive kernels P; and P; is defined by

Plpg(l‘,A) = /X Pl(l’,dy)Pg(y,A)

The powers P™ of P are defined by P°(z, A) = §,(A) = Myca and P* = PP" 1 If P is
a transition probability kernel, then we call P™ the n-step transition probability kernel.

Throughout, we call I the transition probability kernel defined by I(x, A) = 6,(A). If
P is a transition probability kernel, then G =), ., P™ is called potential of P.

Let v be a Radon measure and let f be a numerical measurable function. For any z in
X and any A in X, let

YP1(A) Z/P1(I,A)7(df€),P1f(I) Z/f(y)ﬂ(%dy) and yPy(f) Z/P1f($)’7(df€)-

With these notations, for f = M4, yPi(f) = vP1(A) . We now define a relation on X x X,

called communication structure.

Definition 9.2. Let (x, A) be a element of X x X. We say that A is accessible from z
under P if there exists a positive integer n such that P™(x, A) > 0. In that case we write
r— A. Theset A= {x € X : G(x,A) > 0} is the set of points from which A is accessible.

Starting from definition 9.2, we now give an extension of the notion of irreducibility to
continuous state spaces.

Definition 9.3. Let ¢ be a positive and o-finite measure on X, such that ¢(X) > 0. The
stochastic kernel P is called ¢-irreducible if A = X for any A in X such that p(A4) > 0.
The measures ¢ satisfying these conditions are called irreducibility measures under P. An
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irreducibility measure m under P is called maximal irreducibility measure under P if any

irreducibility measure ¢ under P is absolutely continuous with respect to m.

The proposition below, due to Tweedie (1974), gives a characterization of the maximal

irreducibility measures.

Proposition 9.1. Suppose that P is p-irreducible under P. Then
(i) There exists a maximal irreducibility measure m under P.
(ii) Any irreducibility measure ¢ under P such that ¢P is absolutely continuous with
respect to ¢ is maximal.
(iii) If m(B) = 0 then the set BT = BU{z € X : x — B} satisfies m(B*) = 0.

Throughout the rest of this section, P is an irreducible stochastic kernel and m is a
maximal irreducibility measure under P. The theorem below, due to Jain and Jamison
(1967), gives a characterization of the irreducible stochastic kernels.

Theorem 9.1. Let P be an irreducible stochastic kernel and let m be a maximal irre-
ducibility measure under P. Then there exists a positive integer mg, a measurable function
s with values in [0, 1] such that m(s) > 0 and a probability measure v such that

M(myg, s,v) P (x,A) > s(z)v(A) for any (v,A) € X x X.
The substochastic kernel (x, A) — s(x)v(A) is noted s ® v.

Remark 9.1. (i) A positive measure ¢ is irreducible under P if and only if for any
nonnegative function f such that ¢(f) > 0, the potential G associated to P fulfills the
following positivity condition: PG f(x) > 0 for any z in X.

(ii) In Theorem 9.1, one can assume that v(s) > 0 (confer Section 2.3 in Nummelin
(1984) for more about Theorem 9.1).

Assume now that M(my, s, v) is satisfied. From the above remark, P is v-irreducible,

since
(9.1) PG>G(s®v)=GsQw.

Consequently, if v(f) > 0 then PGf(z) > Gs(x)v(f) > 0 (the fact that Gs(z) > 0 is
implied by the condition m(s) > 0). This fact together with Proposition 9.1(ii) lead to the

remark below.

Remark 9.2. If M(1, s, v) is satisfied then m =}~ -, 2717"y(P — s ®v)" is a maximal
irreducibility measure under P.

We now define the period of an irreducible Markov chain. Let (s, v) satisfy condition
M(my, s,v) for some positive integer mgy. Suppose furthermore that v(s) > 0. Let then
the set I be defined by

I'={m>1: M(m,ds,v) is fulfilled for some § > 0}.
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The greatest common divisor of I is called period of the chain. One can prove that the
period does not depend on (s,v). The chain is said to be aperiodic if d = 1. For example,
if condition M(my, s,v) holds true with mg = 1, then the chain is aperiodic.

9.3. Renewal process of an irreducible chain

In this section, we consider an homogenous Markov chain with transition probability
kernel P(z,.) and state space X = [0,1]. Throughout the section, we assume that condi-
tion M(my, s,v) of Theorem 9.1 holds true for my = 1, which ensures that the chain is
irreducible and aperiodic. We will also assume that v(s) > 0.

Definition 9.4. Let the substochastic kernel ) be defined by Q = P — s ® v. The
stochastic kernel )7 is defined from @ by

(1—-5(2))Q1(x,A) = Q(z,A) if s(x) <1 and Qi(z,A) =v(A4)if s(z)=1.

We now construct a stationary Markov chain with initial law p and transition probabil-
ity measure P(x,.) Let (y be a random variable with law . We assume that the underlying
probability space is rich enough to contain a sequence (U;, €;);>o of independent random
variables with uniform law over [0, 1]2, and that this random sequence is independent of (.
For any x in [0, 1] such that s(x) < 1, let F, denote the distribution function of Q;(z,.).
Let F' denote the distribution function of v. The sequence (&, )n>0 is defined by induction

in the following way: &, = (y and, for any nonnegative integer n,

(9.2) En1 = Wae, )20, F 1 (En) + Lye, )<, Fe, ' (en)-

By the Kolmogorov extension theorem, there exists a unique sequence [£,,),>0 of random
variables satisfying the above conditions. Furthermore this sequence is a Markov chain.

Now
P(ln1 €A & =2,Up =u,en =€) = Luysullr-1c)ea + Lsay<ulp-1o)ea-
Hence, integrating with respect to €, we get that
IP(€ny1 € A& = 2,Up = u) = Uga)suV(A) + o) <u Q1 (7, A),
Now, integrating on [0, 1] with respect to u, we obtain that
(9.3) P(&nt1 € A &n =) = s(x)v(A) + (1 — s(2))Q1(z, A) = P(z, A),

which proves that the transition probability kernel of this chain is P(x,.). Let us now
define the renewal process associated to the so constructed chain. The law of the renewal

process will mainly depend on s and v.
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Definition 9.5. Let the sequence (7;);en of random variables with values in {0,1} be
defined by n; = My, <(¢,)- This sequence is called incidence process associated to the chain
(&)ien. The renewal times (7;);>¢ are defined by

T;=1+inf{n>0:Y n;=i+1}.
§=0
We set 7 =Ty and 7, = T;41 — T for « > 0.

Let IP,, be the law of the chain with transition probability kernel P and initial law u.
When p = d,, we denote by P, this law. By definition of 7,

(9.4) AQ"(s) =Px(r=n+1) and A\Q"(1) =Px(7 > n).
Let us make some comments about (9.4). For any initial law A,
AP" = AQ" =D AQ"H(P — Q)P
k=1

Since P — Q = s ®@ v, \Q" ¥ (P — Q)P* 1 = A\Q" % (s)vP*¥~!, which leads to the identity
(9.5) AP" = AQ" F(s)yPF! +AQ"
k=1
The equality of total masses in (9.5) yields
(9.6) D AQMH(s) + Q" (1) =1
k=1
The last equality corresponds to the trivial identity
Pr(r>n)+ Y Py(r=Fk) =1

k=1

The identity (9.5) provides more information, and will be used again in the next sections.

We now give the definition of recurrence and classical results on the recurrence prop-
erties of irreducible chains.

Definition 9.6. Let (&;);>0 be an irreducible Markov chain with maximal irreducibility
measure m. The chain is said to be recurrent if, for any B in X* = {4 € X : m(A) > 0},

h% (x) =P, (Z ¢ e = oo) = 1 m-almost everywhere.
k>0
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One can prove that the chain with transition probability P starting from &, = x is re-
current if and only if 7 is finite almost surely for any nonnegative integer i. Consequently,
applying (9.4), we get the lemma below.

Lemma 9.1. The irreducible Markov chain (&;);>o is recurrent if and only if

lim vQ"(1) =0 and lim 6,Q"(1) = 0 m-almost everywhere.

n—oo n— o0

We now prove that the second condition appearing in Lemma 9.1 can be removed.
Assume that lim, vQ"(1) = 0. By (9.6) applied to A = d,,

n—1
> Q's(x) +6,Q"(1) =1.
=0

Let the nonnegative kernel G¢g be defined by Gg = > ., Q™. From the above identity,
Ggs(r) < 1 and Ggs(x) = 1 if and only if lim, 530@”(1) = 0, which is equivalent to
P,(t = o0) = 0. Now, since lim, vQ"(1) = 0, P, (1 = oo) = 0. Consequently, if
Ggs(z) = 1, then the chain with transition P starting from x is recurrent ( hp(z) = 1
for any B in X1). Let then m by the maximal irreducibility measure defined in Remark
9.2. The Markov chain with transition P is recurrent if and only if Ggs(z) = 1 m-almost
everywhere. Since Ggs(x) < 1, this equality holds m-almost everywhere if and only if

mGqg(s) = /XGQS(:U)m(dm) = /X 1.m(dx) = m(1).

Consequently the chain is recurrent if and only if

(9.7) 22_1_" ZVQP(S) = 22_1_"1/62”(1).

n>0 p>n n>0
Now
(9.8) vQ" (1) — Z vQP(s) =P, (7 = o0).
pz>n

Hence the equality holds in (9.7) if and only if IP, (7 = o0) = lim,, vQ™(1) = 0. Thus we
have proved the proposition below.

Proposition 9.2. Let m be the maximal irreducibility measure of Remark 9.2. The
irreducible chain (§;)i>¢ Is recurrent if and only if

lim »Q"(1) = 0.

n—oo
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9.4. Mixing properties of positively recurrent Markov chains: an example

Throughout this section X = [0, 1]. For Markov chains, the strong mixing coefficients
defined in (2.1) and the S-mixing coefficients defined in definition 8.3 satisfy

(9.9) apn =sup a(o(Xg),0(Xktn)) and S, = sup B(0(Xk), 0(Xktn))-
keT keT

We refer to Davydov (1973) and to Bradley (1986) for a proof of this result.

Let us consider an irreducible Markov chain. Suppose there exists a couple (s,v)
satisfying condtion M(myg,s,v) with my = 1. Then the chain is aperiodic. Let @) =
P — s ®v. Assume furthermore that the positive measure ) ., vQ"™, which is usually
called Pitman occupation measure (see Pitman (1974) for more about this measure), has
a finite total mass. Then the probability measure

(9.10) = (Z VQn(1)>_1 S Q.

is an invariant law under P. Furthermore the chain is recurrent, the renewal times (7;);>0
are integrable and the return times in a recurrent set A (A is recurrent if m(A) > 0) are

also integrable. In that case the chain is said to be positively recurrent.

In this section, we will introduce some additional assumption which provides nice es-
timates of the mixing coefficients. This assumption will be called excessivity assumption.
Under this assumption the lemma below provides a rate of convergence to the invariant

law 7.

Lemma 9.2. Let P be an irreducible transition probability kernel satisfying M(1,s,v)
and A\ an initial probability law. Suppose that the following assumption holds true:

H(A, s) AP'(s) > n(s) for any 1 > 0.
Then, for any positive integer n,

IAP" — || < 27Q"(1).
Proof. Using the decomposition
AP" =3 AP (P - Q)QM ! + AQ™.
k=1
and proceeding as in the proof of (9.5), we get that
(9.11) AP™ = APF T (s)r@ T 4+ AQ"
k=1
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Apply now (9.11) with A = m: since 7 is an invariant measure, we get that

n

T = Z m(s)rQ"F + Q™.

k=1

Hence

n

(9.12) AP — 1= (AP*!(s) — m(s))v@Q"*F + AQ" — 7Q".

k=1

Since AP*~1(s) — 7(s) > 0, the measure
p=>Y (AP*(s) = m(s)Q" " + 2Q"
k=1

is a nonnegative measure. Now AP"(X) = 7(X) = 1, which ensures pu(X) = 7Q™(X) =
7Q™(1). Hence the decomposition (9.12) ensures that A\P™ — 7 is the difference of two
nonnegative measures with masses 7Q™ (1), which completes the proof of Lemma 9.2. m

Starting from Lemma 9.2, we now bound up the S-mixing coefficients the stationary
chain with transition P.

Proposition 9.3. Let P be a transition probability kernel satisfying the assumptions of
Lemma 9.2. with A = v. Then, for any positive integer n,

Bn = / |0, P" — |7 (dx) < 27Q™(1) + 2 Zkafl(s)wQ"*k(l).
X k=1

Remark 9.3. Let (&;);>0 be the stationary chain with transition P and 7 be the first
renewal time, as defined in definition 9.5. Let 7" be an independent copy of 7. Then
Proposition 9.3 is equivalent to the upper bound g, < IP(7 + 7" > n).

Proof of Proposition 9.3. Applying (9.5) with A = J,, we get that
(9.13) 5P = Q" s(x)y Pk 4 6,Q".
k=1
Next the equality of masses in (9.13) yields
> Q¥ ts(2) +6,Q"(1) = L.
k=1

Consequently

n

0Pt —m = Q" 's(x)wP"F — 1) +6,Q" — 6,Q" (1),
k=1
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which ensures that

(9.14) 102 P — 7| = ZQ'“ ts(@)|lvPTF = wl + 20,Q" (1),

k=1

Integrating (9.14) with respect to m, we get that
[ 18P = wlntn) < 37w Q 6 @ - 7] + 201,
A k=1

Applying Lemma 9.2 with A = v we then obtain Proposition 9.3. m

To conclude this section, we give an example of kernel satisfying the assumptions of
Proposition 9.3.

Lemma 9.3. Let v be an atomless law and s be a measurable function with values in
10, 1] such that v(s) > 0. Suppose furthermore that

1
(a) /X @y(dx) < 0.

Let P(z,.) = s(z)v+ (1 — s(x))d,. Then P is aperiodic, positively recurrent and satisfies
H(v,s).
Remark 9.4. Since v is an atomless law, the renewal times are observable.

Proof. Clearly Q = P—s®v = (1 — s(x))d,, whence vQ" = (1 — s(x))"v. It follows that
the Pitman occupation measure is equal to s~!v. By assumption (a), this measure has a

finite total mass, which ensures that the chain is positively recurrent. Furthermore

(9.15) T = </X %ﬂ/ﬁ)l/(dm»_lﬁv

is the unique invariant law under P.

Let ap = 1 and aj, = vP*"1(s) — m(s). The equality of masses in (9.12) yields

(9.16) an + ni arvQ"F(1) = 7Q™(1).
k=0
Set t(z) = 1 — s(z). From the convexity | — logIE, (),
(9.17) vQ"F(1) =B, (t" %) <, (t”_k_l)%.
Hence
018 7Q) St Za Q1) = a4 AR,
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which ensures that

(9.19) a, By (t"71) > mQ" (V)E, (t"71) — B, (t")7Q" ().

It follows that H(v, s) is implied by the weaker condition
IE,(t")E,(t" 1) — E,(t")E,(t"!) > 0.

From (9.15) and the fact that 1/s =3, t!, the last condition holds if and only if

3 (]Ey(tk)IE,,(t”_l) - Ey(t”)IE,,(tk—l)> > 0.
k>n

Now, from the convexity of | — logIE, (t!),
IE, (t*)IE, (t" ') — IE, (t")IE, (") > 0 for any k > n,

which ensures that each term in the above sum is nonnegative. Hence (9.19) holds true,
which completes the proof of Lemma 9.3. m

Starting from Proposition 9.3, we now give estimates of the S-mixing coefficients for
the transition P defined in Lemma 9.3 in the stationary case.

Proposition 9.4. Let v be an atomless law on |0, 1] and s be a function with values in
10, 1] such that v(s) > 0. Let P(z,.) = s(z)v + (1 — s(x))d,. Assume that the assumption
(a) of Lemma 9.3 holds. Let (&;);>0 be the stationary chain with transition probability
kernel P. Then the stationary law is the unique invariant law 7 defined by (9.16). Now,
let 7 =1inf{i > 0:& # &1} and 7' be an independent copy of 7. Then, for any positive
n,

P(r>n) < B, <P(r+71 >n).

Proof. The upper bound comes from Proposition 9.3 together with Remark 9.3. We now
prove the lower bound. From (9.12) applied with A = §,,

S P —m = (P s(x) — m(s))wQ"F + (1 - s(2))"d, — 7Q".
k=1

Since the measures Q"% and 7Q™ are atomless, it follows that
105 P — | = (1 = s(x))".

Integrating this lower bound with respect to the invariant law 7 then yields the desired

result. m
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In Section 9.7, we wil apply Proposition 9.4 to prove the optimality of the strong mixing
condition of Theorem 4.2. In the forthcoming sections, we give links between ergodicity,

regularity and strong mixing.
9.5. Small sets, absolute regularity and strong mixing
In this section, we give relations between the return times in small sets in the sense of

Nummelin and the various mixing coefficients.

Definition 9.7. Let P be an irreducible and recurrent transition probability kernel, m
be a maximal irreducibility measure and D be a measurable set such that m(D) > 0. A
set D is called a small set if there exists a positive integer m, a positive constant p and
a probability measure v such that P™(z,.) > plip(z)v. The chain is said to be Doeblin
recurrent if X is a small set. Then the above condition is called Doeblin’s condition.

The small sets are called C-sets by Orey (1971) and small sets by Nummelin (1984).
They differ from the petite sets defined in Meyn and Tweedie (1993).

We now prove that the Doeblin recurrent chains are geometrically uniformly mixing.
This result is essentially due to Doeblin (1938). Here we give a proposition which can be
found in Ueno (1960).

Proposition 9.5. Let P be a probability transition kernel satisfying Doeblin’s condition
with m = N. Then, for any measurable set A such that v(A) > 0, any (z,2') in X x X
and any positive integer k,

(4) [PYF(z, A) = PMM (', A)) < (1 - p)".

Furthermore there exists a unique invariant probability law m under P. The chain &;);cxz
with probability transition kernel P and initial law m satisfies

(”) YNk < (1 — p)k.
Proof. We prove (i) by induction on k. For k =1,
PN('T7A) - PN(xlvA) = (PN(.I‘,A) - pV(A)) - (PN(QC/7A) - pl/(A))

Hence
|PN(I‘7A) - PN(:I‘JaA)| <1l-p.

Suppose that (i) holds true at range k. Write

PYEEN (2, A) = PN (0!, A) = /X(PN(y, A) = pr(A)) (P (z, dy) — PM (', dy)).
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Now the function y — PN (y, A) — pv(A) takes its values in [0,1 — p]. Let
B, ={ye X :PN(y,A) — pv(A) > u}.

Then .
—p
PN(y,A)—pV(A)=/ Ip, (y)du.
0

Therefrom, by the Fubini theorem,

1—p

PNEEN (5 4) = PNEEN (37 4) = / (PN* (2. B,) — PVE(2/, By) )du.
0

Now |PN*(x, B,)— PN%(2', B,)| < (1—p)* under the induction hypothesis. Consequently,
if (i) holds true at range k, then (i) holds true at range k + 1. Thus, by induction on k&, (i)
holds true for any positive integer k.

We now prove (ii). We start by noting that
mo=v+v(PYN —pv)+ -+ (PN —pr)F 4.

is invariant under P", since mo(PYN — pv) = mo — v (the total mass of my is equal to 1/p).
Next the measure m = mg + TP + --- + 1o PN ~! is invariant under P. We then set
m =m /71 (X). 7 is an invariant law under P. Now, by (i), for any measurable set A,

PNF(2' A) — nPNF(A) = / (PNF(z', A) — PN* (2, A))r(dz) < (1 — p)F
X

which ensures that oy < (1 — p)*.

We now prove that 7 is unique. If 7’ is an invariant law, then

7' (A) — w(A) = 7' PNF(A) — nPNE(A)

_ //(ka(x, A) = PN A)r @ 7 (dee, da),

Hence |7/(A) — n(A)| < (1 — p)¥ for any natural integer k, which implies that 7 = 7/. m

Suppose now that the chain fails to be Doeblin recurrent. Then the rate of convergence
to the invariant measure depends on the initial law and the chain fails to be uniformly
mixing. Throughout the rest of this section, we are interested in the relations between
the integrabiliy properties of the renewal times and the rates of mixing for non uniformly
mixing Markov chains. Our aim is to remove the excessivity assumption of Section 9.4. We
will extend results of Bolthausen (1980, 1982b) to general rates of mixing. Our extensions
are based on a Proposition of Lindvall (1979) which gives a link between coupling and
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regeneration times. Thus, we start by introducing the coupling method, which goes back
to Doeblin (1938). Our exposition comes from Pitman’s (1974) paper.

Let us consider two initial laws p and A\. We define the chain (&;,&]);>0 on X x X
as follows: the initial law of the chain is © ® A, and the transition probability kernel is
P® P. Then (&);>0 is a Markov chain with initial law p and transition probability kernel
P and (§)i>o is a Markov chain with initial law A and transition P. Furthermore, from
the definition, these chains are independent. Let (1;);>0 and (7});>0 denote the incidence
processes associated to the chains (&;);>0 and (&]);>0 (see Definition 9.5 for the definition).
Set

(9.20) T=1+inf{i>0:m =n, =1}

Then &7 and & have the distribution v. Furthermore {7 is independent of (§;);<r and &/
is independent of (£));<r. We now define the coupled chain (£);>0 by &/ = & for i < T
and ¢ = & for i > T. By the Markov property, this new chain is a Markov chain with
initial law A. Furthermore &' = ¢; for i > T. We call T' coupling time of the chains. From
the definition of the coupling time,

(9.21) / |0, P™ — 6, P"|| p ® A(dx, dy) < 2P o1 (T > n).
XxX

We refer to Pitman (1974) for a proof of (9.21). If the kernel P is positively recurrent and
if 7 is the invariant law, then, applying (9.21) with A = p = 7, we get that

(9.22) Brn < Pror(T > n).

Consequently the rate of S-mixing is closely related to the tail of the coupling time. In order
to give more precise quantitative results, let us now introduce some classes of increasing

functions.

Definition 9.8. Let Ay be the class of nondecreasing functions ¢ from IN into [2,+o00|
such that the sequence ((logt(n))/n), is nonincreasing and converges to 0. For v in Ay,
define the cumulative function v associated to v by ¥°(k) = Zi:ol W (i).

The proposition below, due to Lindvall (1979), generalizes a previous result of Pitman
(1974). We refer to Lindvall (1979) for a proof of this result.

Proposition 9.6. Let P be a stochastic kernel. Assume that P is irreducible, aperiodic,
positively recurrent, and satisfies condition M(1,s,v). Let 1 be an element of Agy. If

(a) B, (4(Tp)) < 0o, Ex(¢(Tp)) < oo and IE,(¢°(Tp)) < oo,
then IE, g (Y (T)) < 0.
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In the stationary case A\ = p = 7, by (9.4) together with the definition of 7,

(9.23) E,(T))P,(To = n+1) =P, (Tp > n).

Hence

(9.24) E, (4°(Tp)) = B, (T0) > P (Th = k + 1)1h(k) < Er (1(T)).
k>0

From (9.22) and Proposition 9.6, we now get the corollary below.

Corollary 9.1. Let P be a stochastic kernel. Assume that P is irreducible, aperiodic, pos-
itively recurrent, and satisfies condition M(1,s,v). Let m denote the invariant probability
law. Then, for any 1 in Ag such that IE,((T)) < oo,

/O B(B (1)) du < +oo.

Remark 9.5. From Corollary 9.5, one can derive the following result. Suppose that Tj has
a finite Laplace transform in a neighborhood of 0. Let U be a random variable with uniform
law over [0,1]. Then 87(U) has a finite Laplace transform in another neighborhood of
0. To prove this fact, suppose that IE(exp(¢3~1(U))) = oo for any positive e. Then
one can construct a function 9 in Ag such that E((871(U))) = co. For this function
E,(¢(Ty)) = oo. Now, since Ty has a finite Laplace transform in a neighborhood of
0, IE;(¢¥(Th)) < oo for any ¢ in Ag, which leads to a contradiction. Hence geometric
ergodicity implies geometric S-mixing.

We now give quantitative relations concerning return times in small sets and absolute

regularity coefficients. Our results are derived from the paper of Tuominen and Tweedie
(1994).

Definition 9.9. Let f be a measurable function from X into [1, oc] and let m be a signed
measure. The f-variation of m is defined by ||m|; = sup{|m(g)|: |g| < f}.

Definition 9.10. Let 7p = inf{n > 0: &, € D}. The aperiodic and irreducible chain
(&)i>0 is said to be (f,)-ergodic if and only if there exists a small set D such that

Tp—1

(9.25) sup IEx( Z 0, f(gi)) < 0.

xeD

We now give the ergodicity criterion of Tuominen and Tweedie (1994).

Theorem 9.2. Let P be a stochastic kernel. Suppose that P is irreducible and aperiodic.
Let ¢ be an element of Ag. The chain (&;);>0 with kernel P is (f,)-ergodic if and only
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if there exists a sequence (V,,)n>0 of measurable functions from X into IR+, a small set C'
and a positive constant b such that V{ is bounded over C, Vy(x) = oo implies Vi (z) = oo,
and, for any n > 0,

(9.26) W(n)f < Vi — PViyr + bip(n) 1.

Proof. Here we prove that (9.26) implies the (f,)-ergodicity. We refer to Tuominen and
Tweedie (1994) for a complete proof and for more details. Applying (9.26) with n = i to
x = &;, summing on ¢ from ¢ =0 to i = 7¢ — 1 we get that

To—1 To—1

B (S w()f(€)) € D2 Ba(Vil&) = PVia (&) + b(0) e

Now IE,(PV;y1(&)) = E.(Vit1(&+1)). Hence the above inequality ensures that

To—1

(9.27) . (Y $()f(&)) < Vola) + b(0) e

Since Vj is uniformly bounded over C, (9.27) implies (9.25). m

We now give applications of the (f,1)-ergodicity to estimates of the absolute regularity
coefficients of the chain. We refer to Theorem 3.6(i) and Theorem 4.3 in Tuominen and
Tweedie (1994) for more about this subject.

Theorem 9.3. Let P be a stochastic kernel. Suppose that P is irreducible and aperiodic.
Let v be an element of Ay. Assume that the chain (§;);>o with kernel P is (f,)-ergodic.
Then the chain is positively recurrent and, if m denotes the unique stationary law, then

> wt) [ 1P w..) = all () < .

In particular, if f = 1, then IE(4°(371(U))) < oo (here U has the uniform law over [0, 1]).
9.6. Rates of strong mixing and rates of ergodicity of irreducible chains

In this section, we give relations between the strong mixing coefficients and the inte-
grability properties of renewal times. We will prove that the tails of the random variables
a~1(U), Ty and B~1(U) have of the same order of magnitude, which implies, in particular,
that the strong mixing and the S-mixing coefficients are of the same order for irreducible,

aperiodic and positivley recurrent Markov chains.

We start by giving some relations between the strong mixing coefficients of the chain
(&)i>0 equipped with the usual filtration (Fy ) defined by Fj, = o(&; : ¢ < k) and the strong
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mixing coefficients of the extended chain (&;,U;);>o defined in Section 9.3 by Equation
(9.2). Our lemma is inspirated from Lemma 5 in Bolthausen (1982b).

Lemma 9.4. Let (&, )n>0 and (Bn)nzo denote respectively the sequences of strong mixing
and (-mixing of the completed chain (§;,U;);>o. Then, for any positive integer n,

dn—i—l S Oy S dn and 571—1—1 S 571 S 571-

Proof. If C is a o-field independent of A V B, then, as proved in Bradley (1986),
a(A,BVC)=a(A,B).
Now Uy, is independent of (§k4n,E&k—1,Ux—1). Hence, by (1.10b),

ant1 =sup sup IE[P(Exin € B | Fr—1) — P(€ktn € B)|.
k>0 BeB(R)

Now
E[P (¢4 € B | Fie1) = P(jqn € B)| < E|P(Epgn € B | Fre1 V(&) — P (Ektn € B)|.
Since &4, is a measurable deterministic function of & and (U;, si)ie[k,kJrn[,

IP(&ryn € B | Fi—1V0(&k)) = P(§ktn € B | 0(&r))-

It follows that &, 4+1 < ay,. The proof of the inequality £, < Bn+1 is similar. m

We now compare the strong mixing coefficients and the tail functions of the regeneration

times.

Proposition 9.7. Let P be an irreducible and aperiodic stochastic kernel, satisfying
M(1,s,v). Let 1 be a function in Ag. Suppose that the stationary chain (&;);>o with
transition P and invariant law 7 satisfies ), 1)(n)o, < co. Then, with the notations of
Proposition 9.5, IE.(¢°(Ty)) < oo, and consequently > (n)B, < oc.

Remark 9.6. Proceeding as in Remark 9.5, one can prove that, if the above chain is
geometrically strongly mixing, then the renewal times have a finite Laplace transform in
a neighborhood of 0, and consequently the chain is geometrically S-mixing.

Application to arithmetic rates of mixing. Suppose that (n) = max(2,n?"1) for some
g > 1. By Proposition 9.7, E;(Tf) < oo & >, n? 16, < oo & >, nita, < .
Moreover, by (9.24), these conditions are equivalent to the condition IE(1d™") < oo

Next, using the fact that Proposition 9.7 holds for any function v in Ay, one can prove
that, for any ¢ > 1, IP.(Tp > n) = O0(n™9) < 5, = O(n™?) & a, = O(n~ 7). Moreover,
by (9.24), these conditions are equivalent to the tail condition IP(1p > n) = O(n=971).
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Proof of Proposition 9.7.  Let us apply (9.12) with A = v. From the equality of

masses, we have:

(9.28) 7Q (1) = S (PH(s) — w(s)r Q" (1) 4 vQ" (1)
k=0
Now, by (9.4),
m(s)vQ' (1) = m(s) > vQ " (s) =P (Ty = 1+ 1).

n>0

Hence (9.28) ensures that

n

m()Px(Ty > n) = _(VP¥(s) = w(s))Px(Th = n — k) + Pr(To = n+ 1).

k=0
Now
vP*(s) = 7(s) = Ex(s(&ks1) | 5(60) = Uo) = En(s(&1)).
Therefrom
(9.29) 7(s)|[vP*(s) — m(s)| < Gpy1 < .

Multiplying (9.29) by %(n), summing on n and noting that, by Lemma 1 in Stone and
Wainger (1967), ¢(i + j) < (i) (j), we infer that

(9.30) Y PA(To =n)’(n) < (x(s)) > (1 + amk)) > P (Ty = n)y(n).

n>0 k>0 n>0

For M > 2, let ¥pr(n) = 1(n) A M. Let us consider a function v in Ay such that
Yo, (n)ay, < oo. Set
Cy = (m(5)) 2 (14D aruo(h)).

k>0

By (9.30) applied to ¥y < 1), we get

(9.31) > PR (Ty = n)yf(n) < Cy Y Pr(Ty = n)u(n).

We now prove that the series ) P,(To = n)y(n) converges. Suppose that this series
diverges. Then, for any positive ng, the function g defined by

g(M) = 3" P (To = n)as(n)

n>ngo
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is equivalent to ), - Pr(To = n)yam(n) as M tends to infinity. Hence, by (9.31), for any

positive integer ng,

1
(9.32) lim sup

M—+o00 g(M) > Pa(Ty = n)ejy(n) < Cy.

n>ngo

Now, by Lemma 2 in Stone and Wainger (1967), for any positive € and any integer jo,
there exists a positive constant c(e, jp) such that

(9-33) P(n) < (L+e)p(n —j) + (e, jo)

for any n > jg and any j < jo. Hence, for any positive jg, there exists a rank ng such that,
for any n > ng and any j < jg, 2¢0(n — j) > 1(n). This inequality still holds true for the
function vp,. Hence 2¢/9,(n) > joyar (n) for n > ng. Consequently

ﬁ; P (Th = n)iy(n) > 22,

For jo > 4Cy, the above inequality does not hold under (9.32) for M large. Hence the
series ) IP(To = n)y(n) converges. The second assertion follows from Corollary 9.1. m

Proceeding as in Exercise 6, Chapter 1, one can derive the corollary below from Propo-
sition 9.7. In this corollary, the moment restriction on f(§p) comes from the fact that
the functions vy defined in Definition 9.8 from a function v in Ay fulfill the constraint

log ¢ (n) = o(n).

Corollary 9.2. Let P be an irreducible and aperiodic stochastic kernel, fulfilling M(1, s, v).
Let 7 denote the unique invariant law and let (§;)i>o be the stationary Markov chain with
transition P and initial law w. Then, for any numerical function f satisfying the in-
tegrability condition IE(f?(&y)log™ |f(&)|) < oo, the integrals below are simultaneously

convergent or divergent:
1 1 1
/OQTO(U)Q?(éo)(U)du, /Oa_l(u)Q?(éo)(u)du and Aﬁ_l(u)Q?(ﬁo)(u)du.

Corollary 9.2 proves that Theorem 4.2 can be applied in the case of Markov chains
as soon as the random variable Qr, (U )Q?(&))(U ) is integrable (here U denotes a random
variables with uniform law over [0,1]). In the forthcoming section, we prove that this

condition cannot be improved.
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9.7. On the optimality of Theorem 4.2

In this section, we prove that condition (DMR) is sharp for the central limit theorem
in the stationary case. In order to prove the optimality of this condition, we will construct
a stationary Markov chain of random variables with values in [0, 1] and strong mixing
coefficients of the order of n~% in such a way that, for any nonnegative decreasing function f
such that the integrals appearing in Corollary 9.2 diverge, the random variable Z;‘F:l;ol f(&)
(the times Ty and T are defined in Section 9.3) fails to have a finite second moment.
Applying then the converse of the central limit theorem, we will prove that the normalized
and centered partial sums do not satisfy the central limit theorem. The chain will be
defined from the transition probability kernel P introduced in Lemma 9.3. This transition
can also be used to get lower bounds in the law of the iterated logarithm of Chapter 6 and
lower bounds in the Marcinkiewicz-Zygmund type strong laws of Chapter 3 (we refer to
Theorem 2 in Rio (1995a) for lower bounds in the strong laws). We mention that Bradley
(1997) gives more general results with arbitrary rates of mixing.

Theorem 9.4. For any real a > 1, there exists a stationary Markov chain (U;);cgm of
random variables with uniform law over [0, 1] and S-mixing coefficients (f,), such that:
(i) 0 <liminf, . n®B, <limsup,_,, n*B, < oo,

(ii) for any measurable and integrable function f :]0,1] — IR such that

(a) /1 w2 (u)du = +o00,

0
n~Y230 [f(U;) — E(£(U;))] does not converge in law.

From Theorem 9.4 and Corollary 9.2, we get the following converse to Theorem 4.2 in

Section 4.

Corollary 9.3. Let a > 1 and let F' be the distribution function of a centered and
integrable random variable Z with atomless distribution. If

1
(a) | w Q= o,

0

then there exists a stationary Markov chain (Z;);cz of random variables with distribution
function F such that

(i) 0 <liminf, 4. n%q, < limsup,_, . n*B, < oo,

(i) n=Y/23" | Z; does not converge in distribution to a normal law.

Proof of Theorem 9.4. Let P(z,.) = s(z)v + (1 — s(x))d, be the transition probability
kernel of Lemma 9.3. Take X =|0, 1] and s(x) = z. Let A denote the Lebesgue measure
on [0,1]. For a > 0, let us define the regeneration measure v by v = (1 + a)x®A. Then the
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chain is positively recurrent and the invariant law 7 is given by 7 = ax®~1\ (see the proof
of Lemma 9.3). Let ¢(z) = 1 — z. for any positive k

k
(9.34) Po(r > k) = By (%) = k:/ (1 — 2/k)*az"da.
0
Consequently
(9.35) lim Ek°IE,(t") = al'(a),
k——+o00

where T' is the I' function of Euler. Since the distribution function of 7 is F(z) = =,
the stationary sequence (U;); defined by U; = &7 is a stationary Markov chain of random
variables with uniform law over [0, 1]. This chain has the same S-mixing coefficients as the
initial chain (§;);cz. Now Theorem 9.4(i) follows from Proposition 9.4 and (9.35).

We now prove (ii). We may assume, without loss of generality, that IE(f(U;)) = 0. Now,
using the renewal scheme, we prove thet some compound sums defined from the variables
f(U;) are partial sums of independent and identically distributed random variables. With
the notations of Definition 9.5.

T,—1 T—1 n—1
(9-36) Yo FWU) =) fU)+ Y mf(Un).
i=1 i=1 k=0
We now prove that
Tp—1 [nE(T1)]
(9.37) Z fU;) — Z fU;) = OP(\/E>'
i=1 i=1

To prove (9.37), we start by noting that the random variables (X7, , 7k ) x>0 are independent
and identically distributed. Let ( = X7, . The random variables (; are independent with

common law v. Now
(9.38) P(ry >n | =¢)=(1-",

which ensures that IE(73) < oo for any a > 1. Hence, by the usual central limit theorem,
(T,, — nlE(11))/+/n converges in distribution to a nondegenerate normal law. It follows
that, for any positive €, there exists some positive A such that

n—+oo

Now, by (9.38),

1
|7y f(Ur,)| = / F(C)a¢™d¢ < oo and E(rf(Ur,)) = 0.
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Therefrom, applying the strong law of large numbers to the sequence (7 f(Ur,))k>0, We
get that

n~1/2 sup

men—Avnn+A/n]’

IE(m f(Ur,)) ZIE % f(Ur,))| — , 0 as n — oo.
k=1

Now, from (9.36), the random variable n~ /2| S ~1 £(U;) — Z[nE(ﬁ)] f(U;)| is less than
the above random variable on the event (nlE(m1) € [Tj,,—am)> Tintaym))). Therefore,
putting together (9.38) and the above inequality we get (9.37).

From (9.37), if the compound sums A, = n~!/2 ZZ;& 7, f(Ur,) do not converge in
distribution to a normal law as n tends to oo, then the normalized sums n=/23"" | f(U;)
do not satisfy the central limit theorem. Now by the converse of the central limit theorem
(see Feller (1950) for more about this), A,, converges in law to a normal random variable
if and only IE(72 f?(Ur,)) < co. By (9.38), this condition holds if and only if

1
EC2 () = (1 +a) / (2 () 2AC < oo

Setting u = ¢ in the above integral, we then get Theorem 9.4(ii), which completes the
proof. m

EXERCISES

1) Let p > 2. Prove that, for any a > 1 and any continuous distribution function F' such
that [ |z[PdF(z) < oo and [ xdF(z) = 0, there exists a stationary sequence (X;)icz

of random variables with common law F' and [-mixing coefficients (; of the order of i~¢,

such that .
(S, ?) > cnp/ Q2 (w)du
0
for some positive constant ¢. Compare this result with Theorem 6.3 and Corollary 6.1.

2) Let (&)iez be a stationary Markov chain. Assume that the uniform mixing coefficients
©n, converge to 0 as n tends to co. Prove that ¢, = O(p") for some p in [0, 1].
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ANNEXES

A. Young duality and Orlicz spaces

In this annex we recall some basic properties of the Young transform of convex functions.
Next we define the Orlicz spaces and the Orlicz norms and we give elementary applications

of these notions.

Let us introduce the class of convex functions
d={¢p:R" — R": ¢ convex, nondecreasing, left-continuous, ¢(0) = 0}.

We denote by D, the set of nonnegative reals x such that ¢(x) < co. From the convexity
of ¢, the set D is an interval.

A.1. Young duality. For ¢ in ®, let
Gy = {(7,y) € Dy x RT such that y > ¢(z)}

denote the super-graph of ¢ and let G denote the closure of G 4. The Young dual function
of ¢ is defined by
¢*(A) = sup (Az — ¢(x)) for any X\ > 0.
€Dy
Thus z = ¢*(\) if and only if the straight line with equation y = Az — 2 is tangent to G4.
In that case, Dy . N C_?¢ #( and Dy, NGy = 0. It follows that

(A1) z> ¢*(A\) if and only if Dy, NGy = 0.

Starting from (A.1), we now prove that ¢* belongs to ®. Clearly ¢* is nondecreasing.
Noticing that the straight line Dy . with equation y = —z does not intersect G if and
only if z > 0, we get that ¢*(0) = 0. To prove that ¢* is a convex function, we will apply
the elementary lemma below (proof omitted).

Lemma A.1. For any set I and any collection (;);cr of convex functions, ) = sup;c; ¢i

is a convex function.
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The convexity of ¢* follows immediately from Lemma A.1 to the collection of functions
(Y2)zep, defined by ¢, (A) = Az — ¢(x). We now prove that ¢* is left-continuous. First
note that

(A.2) d(x) + ¢*(N) > Az for any (x,A) € Dy X Dy-.

This inequality is called Young’s inequality. If I = limy »y, ¢*(A) is finite, then, taking the
limit as A tends to Ag in the Young inequality, we get that ¢(x) +1 > Aoz for any z in
Dy, which ensures that ¢(\g) is finite and satisfies ¢(\g) < I. Since ¢* is nondecreasing,
it follows that | = ¢(\g).

We now prove that ¢** = ¢. From the Young inequality ¢(x) > ¢**(z). Suppose now
that y > ¢**(z). Then, for any nonnegative \, y > Az — ¢*(A). Now, from the convexity
of ¢, G is the intersection of all the half-planes y > Az — ¢*(\). Hence y > ¢(x), which
proves the converse inequality ¢(z) < ¢**(x).

Derivatives of ¢*. The derivatives of ¢* satisfy the relations below:
(4.3) (") (A+0) =¢' (A +0) and (¢*)'(A—=0) =¢'"' (A= 0) = ¢ (N).

To prove (A.3), we consider the intersection points of the straight line y = Az — ¢*(\) with
G . Since the inverse functions are left-continuous the intersection point (z()), y(A)) with
maximal coodinate z satisfy x(\) = ¢/~1(\ + 0). For arbitrary ¢ > 0, let us consider the
straight line with equation y — ¢(x(X)) = (A +¢)(z — z(A\)). For 2 = 0 in this equation,
y = ¢*(\) + ex(N). Consequently ¢*(A + &) > ¢*(\) + ex(N). Next, for any z > z(\),
¢'(x) > . Hence, for x > x(\) and e small enough, ¢'(x) > \ + e. Therefrom, for any
t>z, (A +e)t—o(t) < (A+e)z — ¢(x). Now, for any ¢t < z,

A+e)t = (9" (N) +ex) < At = ¢"(A) < o(1).

Both the two above inequalities ensure that (A +¢e)t — (¢*(\) +ex) < ¢(t) for any positive
t. Hence ¢* (A +¢) < ¢*(A) + ex. Thus we have proved that

(A.4) d*(N) +ex(N) <¢p*(A+¢) < od™(N) +ex.

The left hand side inequality in (A.3) follows immediately from (A.4). The proof of the
second part of (A.3) is similar.

Inverse function of ¢*. The lemma below furnishes a direct way to compute the inverse
function of ¢*.

Lemma A.2. For any ¢ in ® and any positive z,

¢*"H(x) = inf t7H(p(t) + ).

t€D¢
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Proof of Lemma A.2. The slope of the straight line D, ; containing (0, —x) and (¢, ¢(t))
is equal to t71(¢(t) + x). Let to be the point which realizes the minimum of this slope
and \g be the corresponding slope. Then the straight line D, ;, is tangent to the curve
y = ¢(t). Consequently ¢(\g) = x, which completes the proof of Lemma A.2.

A.2. Orlicz spaces. Let ¢ be any function in ® such that ¢ # 0. For any random vector
Z in a normed vector space (E, |.|), the Luxemburg norm associated to ¢ is defined by

(45) 1Z]l5 = in{e > 0 B(6(2]/c) < 1}

if there exists some positive real ¢ such that IE(¢(|Z|/c) < oo, and by [[Z||s = +oo
otherwise.

We now prove that ||.|s is a norm. Clearly [|[A\Z]|, = |A|AZ]|¢. Next, from the
convexity of ¢, for ¢ > ||Z||, and ¢’ > || 2’|,

/

E(6(121/0) + 5 B(6(Z'|/) < 1,

(46)  B(o(1Z+Z|/(c+c)) <

c+c

which proves the triangle inequality. Now, if ||Z]|, = 0, then, for any positive integer
n, ¢(n|Z]) = 0 almost surely. Consequently, for any positive a such that ¢(a) > 0,
n|Z| < a almost surely, which implies that Z = 0 almost surely, which completes the
proof. Throughout the sequel, we denote by L? the normed space of real-valued random
variables Z such that || Z||, < cc.

We now give classical extensions of the Holder inequalities to Orlicz spaces. Let X and
Y be nonnegative random variables. Then, by the Young inequality (A.2),

(A.7) E(XY) < E(¢(X) 4 ¢*(Y)).

Now, let ¢ > || X||4 and ¢/ > ||Y|
2¢c. it follows that

o+, Applying (A.7) to (X/c,Y/c"), we get that IE(XY) <

(A.8) E(XY) <2 X|4]|Y|l4- for any X € L? and any Y € L?".

We now give some applications of these theoretical results to particular functions. We refer
to Dellacherie and Meyer (1975) for more about theoretical results.

A.3. Applications to classical Orlicz spaces. First take p > 1 and ¢(x) = (2P/p).
Let ¢ = p/(p — 1) be the conjugate exponent. Then ¢*(y) = ¢~ 1y9. Hence, by (A.7),

(A.9) E(XY) < }DIE(XP) + é]E(Yq).

applying this inequality to X/|| X, and Y/||Y|4, we get the usual Hélder inequality
(4.10) E(XY) < (B(X7) /(Y 1)1,
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Note that (A.8) implies (A.10) only in the case p = ¢ = 2. For p # 2, a direct application
of (A.8) leads to the mutiplicative loss 2p~1/Pg=1/4.

Now, let ¢(x) = e* — 1 — x. Then the equation of the tangent to the curve (z,¢(z)) at
the point (¢, ¢(t)) is y — ¢(t) = (x — t)(e! — 1), whence ¢*(e! — 1) = (t — 1)e! + 1. Now, if
A =e' — 1, then t = log(1 + \) and consequently

(A.11) "N =1+ Nog(14+X) —1)+1=(1+A)log(l+A)— A

Affine transformations . Let A be defined by A(zx,y) = (ax,by + cx), with a > 0, b > 0
and ¢ > 0. Let ¢4 be the map whose graph is the image by A of the graph of ¢. Then

(A.12) da(z) =bod(x/a) + cx/a.

Since the tangent to G, with slope A is changed to the tangent to G4, with slope (bA+c)/a
by the map A, we get that

(A.13) &5 (N) =bp*((aN —¢)/b) for any X >c/a and ¢%(\) =0 otherwise.

B. Exponential inequalities for sums of independent random variables

This annex is devoted to some usual exponential inequalites for sums. We refer to
Chapter 2 in Bercu, Delyon and Rio (2015) more about this subject. Throughout the
section Zq,Zs,... is a sequence of independent real-valued random variables with finite

variance. Set
So =0, S = (Zl — ]E(Zl)) + -+ (Zk — E(Zk)) and S;; = maX(So,Sl, ceey Sn)

We start by recalling a version of Bennett’s inequality due to Fuk and Nagaev (1971).

Theorem B.1. Let K be a positive constant. Assume that Zi, Zs, ... satisfy the addi-
tional conditions Z; < K almost surely. Then, for any V > IE(Z%?) + --- + IE(Z2) and any

positive A,
(a) P(S; > A) < exp(—K *Vh(AK/V)),
with h(z) = (1 + z)log(1 + x) — . If furthermore |Z;| < K almost surely, then

(b) P( sup [Sp| > A) < 2exp(—K *Vh(AK/V)).
kell,n]

Proof. The proof is based on the classical Cramer-Chernoff calculation, which we now
recall in Lemma B.1 below.
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Lemma B.1. Let v be a nondecreasing convex function on IR™, such that ~(t) >
log IE(exp(tS,,)) for any nonnegative t. Then, for any positive A,

log(IP(S;, > X)) < inf (7(t) — 1) = =" (V).

Proof of Lemma B.1. For t in the domain of v, set My(t) = exp(tSk). Then, from
the Jensen inequality, (My(t))r>0 is a nonnegative submartingale. Hence, by the Doob

maximal inequality,
(B.1) IP(S; > X) < IE(exp(tS, —tA)) < exp(y(t) — tA).

Lemma B.1 follows immediately m

Proof of Theorem B.1. From Lemma B.1, it is enough to prove that
(B.2) log IE(exp(tS,)) < K2V (exp(tK) — tK — 1),

and next to apply (A.11) and (A.13). Now, using the independence of the random variables
Z; and next the concavity of the logarithm, we get that

n

log IE(exp(tSy)) = Z(log E(exp(t2;)) — tIE(Z;))

(B.3) < zn:IE(exp(tZi) —tZ; —1).

i=1
Next, the function 1 defined by (0) = 1/2 and ¥(z) = 272(e* — 2z — 1) for z # 0 is
nondecreasing. Since Z; < K almost surely, it follows that
E(exp(tZ;) —tZ; — 1) < K2 IB(Z?)(exp(tK) — tK — 1).
Combining this inequality with (B.3), we get (B.2). Hence (a) holds. To prove (b), apply
(a) to the random variables —Z1,...,—Z, and add the two inequalities. m

Below we give an one-sided version of the Bernstein inequality, which allows to consider
random variables with finite Laplace transform only in a right neighborhood of the origin.
We refer to Pollard (1984) for the usual Bernstein’s inequality.

Theorem B.2. Let Z1,...,Z, be a finite sequence of independent random variables. Set
Z;+ = max(Z;,0). Suppose that there exist positive constants K and V such that

n n 1 1
(a) Y E(Z}) <V and ) —E(Z]}) < §VKm—2 for any m > 3.
=1 =1
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Then, for any positive \,

IP(S;, > A) <exp(—2) < eXP<—m>7

where z = z(\) is the positive real defined by Kz 4+ 2V z = .

Proof. If A = Kz + V2V z then A\ < 2(V + K\)z, which implies the second inequality.
We now prove the first inequality. Starting from (B.3) and noting that e* — 1 — 2 < 22/2

for any negative x, we get that
log IE(exp(tS,)) < ﬁ Zn:]E(Z~2) + i i s E(Z")
T2 i=1 Z i=1 m=3 m! T

Therefrom, if assumption (a) holds, then, for any nonnegative ¢,

(B.A) log IE(exp(tS,)) < 7(t) = %w? 11— Kt).

From Lemma B.1, the proof of Theorem B.2 will be complete if we prove that
(B.5) v 2) = Kz 4+ V2Vz.

To prove (B.5), we apply Lemma A.2: setting v = (1/t) — K in the formula of Lemma
A2, we get that

7 z) = te](i)nlf/K[(Vt/(l — Kt) + (2/t)) = &r;%((V/u) +uz+ Kz)=vV2Vz+ Kz,

which proves (B.5). Hence Theorem B.2 holds. m

We now give an application of Theorem B.2 to bounded random variables in Corollary
B.1 below, which improves on the usual Bernstein’s inequality.

Corollary B.1. Let Zy,...,Z, be a finite sequence of independent random variables.

Suppose that Z; < M almost surely for any i. Set

n

D, = i]E(ZZ?) and L, = (MD,)~" ) "T(Z})).

=1 =1

Then, for any positive x,

IP(S; > v/2D,x + max(L,/3,1/4)Mzx) < exp(—xz).

Remark B.1. The usual multiplicative factor before Mz is 1/3. Since L,, < 1, Corollary
B.1 gives slightly better bounds.
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Proof of Corollary B.1. For any m > 4, since Z/t < M™ 373

1+
"1 Mm=3 Mm—QLn M~\m=3ML,
> B D T e S

=1

Now (M/4)™3(ML,/3) < (maX(M/4,MLn/3))m_2. Consequently, assumption (a) of
Theorem B.2 holds true with V' = D,, and K = max(M /4, M L,,/3), which completes the
proof of Corollary B.1. m

We now give some applications of Theorem B.1 to deviation inequalities for sums of
unbounded random variables. The inequalities below are due to Fuk and Nagaev (1971).

Theorem B.3. Let Z;,...,Z, be a finite sequence of independent and square integrable
random variables. Then, for any V > """ | I6(Z?) and any couple (A, x) of strictly positive
reals,

(a) P(S; > A) < exp(—z *Vh(Aa/V)) + ) P(Z; > x),
i=1
with h(z) = (1 + z)log(1 + x) — x. Moreover, for any positive ¢,

B) PS> (N < exp(—a VARV + o SO B((Z — 1))

i=1

Proof. Set

k
Zi = ZZ VAN xT, Sk = Z(ZZ - IE(ZZ)) and g,: = kSl[(l)p | gk
i=1 clo.n

with the convention that Sy = 0. Since

k k n
Se< S+ Y (Zi—2)p =) B(Z—2). <Sp+ Y (Zi—
=1 =1

i=1

we have:
(B.6) Sp<Sp+Y (Zi—

Let us prove (a). If Z; < z for any i in [1,n], then, by (B.6), S& < Sx. It follows that

P(S:> 8 <IP(Zy >2)+ -+ P(Z, > x).
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Therefrom
P(S; > \) <P(S; >N+ > P(Z; > x)
=1

(B.7) < exp(—z 2Vh(Az/V)) + iIP(Zi > )

i=1
by Theorem B.1(a), since IE(Z2) < IE(Z?).
We now prove (b). Applying (B.6), we obtain that
P(S; = (1+2)2) SP(S; 2 N+ P(Y (2 —2)4 2 e))

=1

<TP(S: > A\) 4 (eN) ! zn:IE(Zi — ),

by the Markov inequality applied to the second term on right hand. The end of the proof
is then exactly the same as the end of the proof of (B.7). m

We now state an inequality of Hoeffding for independent and bounded random variables

Theorem B.4. Let Zy,...,Z, be a finite sequence of independent bounded real-valued
random variables. Suppose that Z? < M, for any i in [1,n]. Then, for any positive \.

(a) P(S: > \) < exp(—x2 J@M, + -+ 2Mn)>.

Moreover

(b) P( sup [Sk| > \) < 2exp<—:v2/(2M1 Foot 2Mn)>.
ke(l,n]

Proof. It is enough to prove that, if Z belongs to [—m,m| almost surely, then
(B.8) E(exp(tZ — tIE(Z)) < exp(t*m?/2),

which ensures that logEexp(tS,) < t*(M; + --- + M,)/2, and next to apply Lemma
B.1. To prove (B.8), we may assume that m = 1. From the convexity of the exponential

function,
2exp(tZ) < (1 — Z)exp(—t) + (1 + Z) exp(t).

Set ¢ = IE(Z). Taking the expectation in the above inequality, we get that
E(exp(tZ)) < cosht + gsinht.
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Let f(t) = cosht + gsinht. Taking the logarithm in the above inequality, we have:

logE(exp(tZ — tIE(Z)) < log f(t) — qt.

Now (log )" = (f"/f) — (f'/f)? < 1, since f” = f. Hence, integrating twice this differen-
tial inequality, we get that log f(t) < gt + /2, which implies Theorem B.4(a). Theorem
1.4(b) is obvious. m

(*) Sums of non independent random variables. Consider now a random variable which
is equal to A+ B, where A and B are real-valued random variables, and B may depend on
A. Suppose the the Laplace transforms of A and B are finite on a right neighborhood of
0 and let 74 and g denote the log-Laplace transforms of A and B respectively. Adding
Chernoft’s deviation inequalities yields

P(A+B 27 (2) +75 ' (2) < 2exp(—2).

In fact, the above inequality can be improved of a factor 2, as proved by the lemma below,
stated by Rio (1994). The original proof in Rio (1994) was due to Jean Bretagnolle. Here
we will give a shorter proof based on Lemma A.2.

Lemma B.2. Let A and B be real-valued and centered random variables with respec-
tive log-Laplace transforms 4 and ~yg. Suppose that v4 and ~p are finite in a right
neighborhood of 0. Then, for any positive z,

*—1 *—1 *x—1
(a) Yarp() <74 (2)+g (2)
Consequently, for any positive z,

(b) P(A+B >3 (2) +75 ' (2)) < exp(—2).

Remark B.2. Clearly (a) may be extended to a finite sum of random variables. For
example suppose that A;, As, ... A, is a finite collection of random variables satisfying

log IE(exp(tA;) < o2t?/(1 — ¢;t) for t € [0,¢;[, with ¢; > 0 and o; > 0.
Then Inequality (B.5) together with Lemma B.2 yield
(B.9) P(Ay+As+ -+ A, > 0V2z+ cz) < exp(—2),

witho=014+00+---+o,andc=cy+co+ -+ cp.

Proof of Lemma B.2. By the Holder inequality, for any reals p > 1 and ¢ > 1 with
(1/p) +(1/q) =1,

log IE(exp(t(A + B)) = yat5(t) < p~'valtp) + ¢ 'vs(tq).
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Applying Lemma A.2, we infer that

(’YA(tp) +z N ve(tp/(p— 1))+ 2 )

*=1 () < inf inf
Varp(2) < tp tp/(p—1)

p>1t>0

Now, the map (t,p) — (tp,tp/(p — 1)) is a diffeomorphism from IR’ x]1, oo[ onto ]Rf. It
follows that the term on right hand in the above inequality is equal to 757! (2) + 75 *(2),
which completes the proof of Lemma B.2(a). Part (b) is a direct consequence of (a).

C. Upper bounds for the weighted moments

In this annex, we give upper bounds for the quantities M, ,(Q) introduced in chapters
one to six. Throughout Annex C, let @) be the quantile function of a nonnegative random
variable X. For p > 1, let

(C1) M, (Q) = /0 0 (W) QP (u)du, My o n(Q) = /0 o= () A n]P~1QP (u)du.

Here we give sufficient conditions ensuring that M, ,(Q) is finite. We also give some precise
upper bounds on M, ,(Q) and M, ».,(Q) depending on the mixing rate and the quantile

function @) or the tail function of X.

We first bound up M, »(Q) under moment conditions on X. Let U be a random variable
with the uniform distibution over [0,1]. Then X and Q(U) are identically distributed.
Hence

1
(C.2) E(X") :/0 Q" (u)du for any r > 0.

Suppose now that IE(X") < oo for some r > 1. Then, for any p in |1,r[, by the Holder
inequality applied with exponents r/(r — p) and r/p, we get that

(C3) Mya(@) < ( /0 o @)oo (T_p)du>1_p/r ( /0 1 Q’"(u)du>p/ B

Now, proceeding as in the proof of (1.25), we note that, for any positive g,
1
(&) [l @ltdn = 3G + 1)7 = i)
0 i>0
Next (i +1)? — 39 < max(g,1)(i + 1)?~!, and consequently
1
(C.5) / [a™ ! (u)]%du < max(q, 1) Z(Z + 1) qy.
0 i>0
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Both (C.3) and (C.5) ensure that
1-p/r
(C6)  Mya(Q) < max(, (p— 1) #/7er/m) x2S 4+ 1)r 20/, )
i>0
If the random variable X is bounded, then, taking r = oo in (C.6), we get that
(C.7) M, o(Q) < max(L,p— 1)|| X2, > (i + 1)’ *a
i>0
Consequently M), (@) is finite as soon as there exists some real r > p such that

(C.8) E(X") < oo and Z(z +1)(Pr=2r4p)/ (1Pl < 0.
i>0

We now bound up the quantities M, (Q) and M, o »(Q) in a slightly different way.
Clearly

@ P = (= 1) [ ucat
0
Hence, by the Fubini-Tonelli theorem

a(t)

Mpol@ = -1 [ ( [ Qdn)a

Next o
(p — 1)/ tP=2dt = (i + 1P~ — P~ < max(1,p — 1)(i + 1)P~2.
Therefrom
(C.9) M, o(Q) <max(l,p—1 Z (i + 1)p2/ QP (u)du
=0 0
and
n—1 o
(C.10) Mp on(Q) <max(l,p—1) Z i+ 1)p_2/ QP (u)du
=0 0

We now apply (C.9) to random variables satisfying a tail assumption. Suppose that
P(X >z) < (c/x)".

Then Q(u) < cu~'/", and consequently, if r > p,

(C.11) M, .(Q) < < max(1l,p —1) E )P Qa;_p/r.
r—p
=0
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Hence M, »(Q) is finite as soon as there exists some r > p such that

(C.12) P(X >z) < (c¢/z)" and Z i+1)P 20 " < 0.

Assume now that p > 2. We have in view bounds for M) (@) in the case where
M, o(Q) = co. Recall that , by Theorem 6.3,

IE( sup \Sk|p) < apst +nbyMp on(Q).
kell,n]

Hence, if M, .»(Q) = O(n?) for some ¢ < (p—2)/2, the Marcinkiewicz-Zygmund inequality
of order p holds true. Now, let s < p — 1. From (C.10), the mixing condition

(C.13) / QU (u)du = O(( + 1))
0
ensures that
(C.14) nMy, on(Q) =O0NMP™7) as n — oo.

In particular, if p > 2 and s = p/2,
(C.15) nMy, on(Q) = O(np/2) as soon as / Z QP (u)du = O((i + 1)—17/2)'
0

In the case of bounded random variables, (C.15) holds true as soon as a; = O(i™?/2). In

the unbounded case, (C.15) holds true, for example, if there exists some r > p such that
(C.16) P(X >z) <(c¢c/z)" and «; = O(fpr/(2r—2p))'

Geometric rates of mixing. Assume that o; = O(a*) for some a < 1. Then, using the same
arguments as in the proof of (1.33), we get that M, ,(Q) is finite as soon as

(C.17) E(X?(log(1+ X))’ ") < oc.

D. Two versions of a Lemma of Pisier

In this annex, we give an upper bound for the expectation of the maximum of a finite
number of integrable random variables. This bound is then used to get upper bounds on
this expectation under some assumptions on the Laplace transform or on the moments of
the random variables in the style of Lemma 1.6 in Pisier (1983).
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Proposition D.1. Let Zy,...,Zy be a finite family of real-valued integrable random
variables. Let F; be the distribution function of Z;. Let F = F| + F5 + --- + Fy and let
F~1! denote the generalized inverse of F. Then

N

IE(max(Z1, Zs, ..., Zn)) < / F~Yu)du.
N-1

Remark D.1. Let H; = 1— F; denote the tail function of X;. Let H = Hi+Hy+---+Hy
and let H~! denote the generalized inverse of F.. Then Proposition D.1 is equivalent to

1
IE(max(Z1, Za, ..., Zn)) g/ H™(u)du.
0

Proof. For N = 1, Proposition D.1 is obvious. Let N > 2 and T = max(Z1, Z3,...,ZN).

For any real t,

N
T<t+ sup (Zi=f)e <t+) (Zi= 0 (D.1)
Hence
N
E(T) <t+ Y E(Z —t)4 (D.2)
Next N )
N
> E(Z 1) = [ G-t = [ - o

Choosing t = F~1(N — 1) in the above formula, we obtain:
b+ B(Z— 1), = FYN - 1)+ / (F~(u) — F~X(N — 1))du,

which implies Proposition D.1. m

Application to exponentail tails. Assume that H;(t) < exp(—t) for any positive ¢ and any
iin [1, N]. Then H(t) < N exp(—t), which ensures that H!(z) < log(N/x). It follows
that IE(T) < 1+1log N .
Application to power-type tails. Assume that H;(t) < (a;/t)? for some p > 1 and some
finite sequence (a;); of positive reals. Let ||a||, = (a]+---+a},)*/P. Then H(t) < (||all,/t)?,
which ensures that H =1 (u) < ||a||,u~'/P. Tt follows that (p — 1)IE(T) < p|lall,-

We now give an application of Proposition D.1 to random variables with finite expo-

nential moments. The lemma below is stated in Massart and Rio (1998). A short proof is
given in Rio (1998).
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Lemma D.1. Let (Z;);c; be a finite family of real-valued random variables. Suppose
there exists some convex and nondecreasing function L, taking finite values on a right
neighborhood of 0, such that log IE(exp(tZ;)) < L(t) for any nonnegative t and any i in 1.
Let hy, be the Young transform of L and let H denote the logarithm of the cardinality of
I. Then
E(sup Z;) < h; ' (H).
iel

Proof. We may assume that I = {1,2,...,N}. Let T" = sup;c; Z;. By Proposition D.1
and the Jensen inequality, for any positive ¢,

N

N
exp(tIE(T)) < / exp(tF~(u))du < /0 exp(tF~ 1 (u))du.

N—1
Now
N

/0 exp(tF—(u))du = /R exp(tr)dF(z) = 3 B (exp(tZ:)) < N exp(L(1)).

i=1

Taking the logarithm, dividing by ¢ and minimizing with respect to ¢, we infer that
E(T) < inf t Y (L(t) + H).
t>0

Lemma D.1 follows then from Lemma A.2. m
Application to exponentail tails (continued). From the assumption, we may apply Lemma
D.1 with the logarithm of the Laplace transform of the standard exponential law: Lemma
D.1 holds with L(xz) = —log(l — z) for x > 0. Then L*(t) = 0 for ¢t < 1 and L*(¢) =
t—1—logt for t > 1. Consequently Lemma D.1 yields IE(T) < M with M > 1 solution of
the equation M = 1+ log(M N). Note that M — 1 —log N > log(1 + log N'), which gives
the order of the loss, when applying Lemma D.1 instead of Proposition D.1.

We now consider random variables with finite moments.
Lemma D.2. Let (Z;);cr be a finite family of nonnegative real-valued random variables.
Suppose there exists some convex and nondecreasing function M, taking finite values on

a right neighborhood of 1, such that logIE(Z]) < M(r) for any r > 1 and any i in I. Let
har be the Young transform of M and H be the logarithm of the cardinality of I. Then

IE(SIElIID Z;) < exp(h&1 (H)).

Proof. We may assume that I = {1,2,...,N}. Let T = sup,;c;Z;. Starting from
Proposition D.1 and applying the Holder inequality, we get that

(B(T))" < / (P~ (u))"du < / (F~'(u))"du

N-1
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Now
N

/0 (F~(w)) du = /0 2"dF(z) = Y B(Z]) < Nexp(M(r)).

i=1
Taking the logarithm, dividing by r and minimizing with respect to r, we infer that

logIB(T) < inf r—(M(r) + H).

r>1

Lemma D.2 follows then from Lemma A.2. m
E. Classical results on measurability

In this annex, we first recall a Lemma of Skorohod (1976) on representation of random
variables. Next we give some properties of projections, which are helpfull to prove the
measurability of some functions (see Dellacherie (1972), Chap. 1). We first recall some
lemma which may be found in Skorohod (1976).

Lemma E.1. Let X be a Polish space. then there exists Alors a one to one mapping
f from X onto a Borel subset of [0, 1], which is bi-measurable with respect to the Borel
o-fields.

Starting from Lemma E.1, we now prove a Lemma of Skorohod (1976) stated below.

Lemma E.2. Let X be a Polish space and let X be a random variable from (2, T ,1P)
into X equipped with its Borelian o-field B(X). Let A be a o-field in (2,7 ,IP) and é be
a random variable with uniform distribution over [0, 1], independent of AV o(X). Then
there exists a measurable mapping g from (2 x [0, 1], A ® B([0,1])) into X and a random
variable V' with uniform law over [0, 1], measurable with respect AV o(X) V o(J) and
independent of A such that X = g(w, V') almost surely.

Proof. From Lemma E.1, it is enough to prove Lemma E.2 in the case X = [0,1]. Let
then F4(t) = IP(X <t |.A) denote the conditional distribution function of X. Then the
random variable

V= Fa(X = 0) +6(Fa(X) — Fa(X - 0))

is measurable with respect to AV o (X)Va(d), independent of A and V' has the uniform law
over [0,1] (see Annex F). Now the mapping ¢ defined by g(w,v) = F;l(v) is measurable
with respect to A ® B([0,1]) and g satisfies X = g(w, V), which completes the proof of
Lemma E.2. m

We now recall a theorem of Dellacherie (1972, Theorem T32, page 17) on projections.

Theorem E.1. Let (2, F,P) be a complete probabilised space and (K,B(K)) be a
countably generated and locally compact space equipped with its Borel o-field. Let us
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denote by w the canonical projection from K x € on ). Then, for any B in B(K)® F, the
set w(B) belongs to F.

We refer to Dudley (1989, Chap. 13) for more about the measurability properties
of projections and for universally measurable sets and universally measurable functions,

which are defined below.

Definition E.1. Let (X, X) be a measurable space and A be a subset of X. Then A is
said to be universally measurable if, for any law P on (X, X’), A belongs to the completed
o-field of X for P. Let (Y,)) be a measurable space. A mapping f from X intoY is said
to be universally measurable if, for any B in Y, the set f~1(B) is universally measurable
in X.

To complete this section, we now give a slightly different formulation of Theorem E.1,
using universally measurable sets.

Corollary E.1. Let (X,X) be a measurable space and let (K,B(K)) be a countably
generated and locally compact space equipped with its Borel o-field. Let us denote by
the canonical projection from K x € on Q). Then, for any B in B(K) ® F, the set n(B) is

universallly measurable.
F. The conditionnal quantile transformation

In this annex, we will study the properties of the so-called conditionnal quantile trans-
formation introduced in the proof of Lemma 5.2 and in the proof of Skorohod’s lemma. The
first step to define this transformation is to define a measurable selection of the conditional

distribution function.

Let A be a o-field in (©,7,IP) and X be a real-valued random variable. For any

rational number ¢, we set

Fulg) =P(X <ql|A).

The so defined random function is almost surely defined on Q, and this function is nonde-
creasing. The conditional distribution function is defined as the unique right continuous

function extending this function to the set of reals. Consequently, for any real x,

(F.1) Fa() = lim Fa(q).

The function F4 defined by (F.1) has the property below: the application which sends
(z,w) on F4(x) is measurable with respect to the completed o-field associated to B(IR)®.A.

We now define the conditionnal quantile transformation.
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Lemma F.1. Let X be a real-valued random variable, A be a o-field of (2, T,IP) and ¢
be a random variable with uniform distribution over [0, 1], independent of o(X) V A. Let
F 4 be the conditional distribution function defined by (F.1). Set

V=FA(X —=0)+06(Fa(X)— Fa(X —0)).

Then V' has the uniform distribution over |0, 1], and is independent of A. Furthermore
F7Y(V) = X almost surely.

Proof. Let v(w,z,t) = Fa(x —0) + t(Fa(x) — Fa(z — 0)). The so defined mapping v
is measurable with respect to A ® B(IR) ® B(IR). Hence V = v(w, X, ¢) is a real-valued
random variable. Let a be any real in [0, 1]. Let us consider

b=F;'(a+0)=sup{z € R: Fa(z) <a}.

If F4 is continuous at point b, then F4(b) = a. In that case (v(w,x,t) < a) if and only if
(x <b), which ensures that IP(V <a | A) =P(X <b|A) = Fa(b) =a.

If F4 is not continuous at point b, then a belongs to [F4(b — 0), F.4(b)], which implies
that

a = v(w,b,u) for some u € [0, 1].

In that case (v(w,x,t) < a) if and only if either (z < b) or (x =b and ¢t < u). Then
P(V<al|A) =Fab—0)+u(Fa(b)— Fa(b—0))=a.

Consequently V has the unifom distribution over [0, 1], conditionnally to A, and therefrom
V' is uniformly distributed over [0, 1].

Now, since = belongs to the set of reals y such that Fu(y) > v(w,z,t), we have:
x> F ' (v(w, z,t)) for any t € [0, 1].

It follows that X > F;'(V) almost surely. Let ¢ be the distribution function of the
standard normal law. Since (F;' (V) > t) if and only if (V > F(t)), we have:

E(p(F7 (V) | A) = /]R P(EL(V) > | A (t)dt
_ /}R PV > Fa(t) | A)e'(£)dt
~ [ (4= Pao)e at = B((X) | A)

It follows that E(¢(X)) = E(¢(F;'(V))). Since ¢(X) > ¢(F;'(V)) almost surely, it
implies that ¢(X) = ¢(F ;" (V)) almost surely. Hence X = F;'(V) almost surely, which
completes the proof of lemma F.1.
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Annex G. Technical tools

Lemma G.1. For any nonnegative reals a and c,

VAN
Wl Wi

(a) ac(c A1)
(b) a’(cnl) <

A(eNl)+ ta*(anl),

AeNl)+ad*(anl).

Proof of Lemma G.1. To prove (a), note that, if a < 1, then, by Young’s inequality,
ac(cN1) < %cS/Q(c/\ 1)3/2 4 1a® < 2P(enl)+ La*(anl).

Hence (a) holds. If a > 1, then
ac(c A1) < (a* +A(cn1)?)/2 < (a®*(a A1) +cP(cA1))/2.

Consequently (a) still holds true.

We now prove (b). If @ > 1, then a?(c A1) < a® < a?(a A1) and (b) holds true. If
a < 1, then, by Young’s inequality,

a®(cN1) < 2a® + (A1) <a’(aAl) + 1P (c AL,

which completes the proof of (b). m
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