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QCD and Symmetries related to nuclieon structure
and strongly interacting matter.
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Institut de Physique Nucléaire de Lyon
Université de Lyon, Université Lyon 1 et IN2P3-CNRS |, F-69622 Villeurbanne Cedex

Abstract

We discuss the impact of the symmetries of Quantum ChromoDynamics (QCD) on the observed
properties of hadrons and strongly interacting matter. We first introduce the fundamental color gauge
symmetry insisting on its non perturbative aspect at low energy. Particular emphasis is put on the
spontaneous breaking of chiral symmetry and its numerous consequences. Operational approaches,
such as chiral perturbation theory or QCD sum rules, allowing to implement this crucial symmetry
at the hadronic level are presented. We then explore the consequences of chiral restoration at finite
baryonic density and/or temperature on the properties of in-medium hadrons in connection with
experimental programs. Finally we give a short discussion of the phase structure of QCD in connec-
tion with chiral symmetry and the center symmetry associated with the confinement/deconfinement
transition.

1 Introduction

The aim of these lectures is to discuss the symmetry properties of Quantum ChromoDynamics (QCD)
which is now commonly accepted as the theory of strong interaction. More precisely we will show that
these symmetries can be utilized as a guide for the understanding of strong interaction physics to be
confronted with experimental observations. This concerns in first rank the elementary excitations of the
QCD ground state, namely the hadron spectrum, the description of ordinary nuclear matter as well as
the phase structure of QCD at high temperature and/or baryonic density.

The basic symmetry of QCD is the color symmetry. Each fundamental particle of QCD, the quark,
can exist in three different color states. Any transformation among color states should leave the theory
invariant. The mathematical realization of these transformations defines a group of SU(3)co10r “gauge”
transformations. Moreover this invariance has to be local : the theory is invariant if one transforms
the color states independently at different space-time points which implies that a connection must exist
between these different points. This connection or interaction between quarks is carried by eight gluons.
The situation is similar to the exchange of neutral photons between electrically charged particles but
there is a major difference since the gluons themselves carry a color charge and they interact with each
other. This is certainly the main origin of (what should be) the most crucial property, named color
confinement, of the resulting gauge quantum field theory. Isolated quarks have never been observed and
the only existing hadrons are uncolored or “white” objects with typical mass of 1 GeV and typical size
of order 1 fm.

In the low energy domain only light u and d quarks with masses of a few MeV’s are involved. In this
range the QCD lagrangian has essentially no dimensional parameter. This scale invariance is however
broken by quantum fluctuations. The consequence is that the coupling constant of the theory depends
on the momentum scale at which the interacting quarks and gluons are probed. It turns out that
due to the gluon self-interactions this effective or running coupling constant decreases with increasing
momentum: this is the famous asymptotic freedom of QCD. Conversely at low momentum the coupling
constant may become very large and QCD becomes a fully non perturbative theory which is supposed to
generate color confinement. The scale associated with the non perturbative regime, Agcp = 200 MeV,
is the parameter of the theory and is fixed by analysis of experimental data. The corresponding length
scale, fic/Agcp = 1 fm, coincides with the typical hadonic size. More generally all low energy QCD
observables, such as hadron masses, are just proportional to Agcp with the appropriate power, the
numerical constant being given by the non perturbative QCD dynamics. The non perturbative quantum
fluctuations also generate a gluon condensate directly related to the energy density of the QCD ground
state (or QCD vacuum).



As said previously the fundamental color symmetry is not directly visible in the hadron spectrum. There
is however another symmetry which is accidental in the sense that it is linked to the very small mass
difference between u and d quark of the order of a few MeV’s. The QCD lagrangian is almost exactly
invariant under global SU(2) transformations acting on w and d quarks independently of their colors. This
is the venerable isospin or vector symmetry. The observational consequence is the existence of isospin
multiplets made of hadrons with almost exactly the same mass. Well known examples are the doublet of
nucleons, or the triplets of ™ or p mesons. In reality, not only the mass difference but also the absolute
values of the v and d quark masses are very small. This results in another global symmetry named
axial symmetry. The vector and axial symmetries can be combined into the chiral SU(2);, ® SU(2)r
symmetry acting separately on left- and right- handed quarks. However the absence of degenerate chiral
partners with opposite parity indicates that the chiral symmetry is spontaneously broken. The QCD
ground state is not invariant under axial transformations and possesses a large scalar density of quark-
antiquark pairs generating the so-called quark condensate. One direct observational evidence of the
spontaneous symmetry breaking is the existence of soft (low mass) Goldstone particles identified with the
light pions. These symmetry considerations can be extended to the strange sector although the resulting
SU(3)r, ® SU(3)r symmetry is less accurate.

It is expected that chiral symmetry is progressively restored when the baryonic density and/or the
temperature increase, one consequence being the dropping of the quark condensate and the pion decay
constant. One key question is to relate this gradual restoration to the evolution of hadron properties
or more precisely to the modification of the hadron spectral functions, in particular those associated
with chiral partners. An important example is provided by the p meson and the axial-vector meson a;.
Although chiral symmetry breaking and its restoration can be studied by numerical simulations on a
lattice, it is useful to study it with models, a very popular one being the Nambu-Jona-Lasinio model
and its extensions. There are also operational approaches which allow to implement chiral symmetry
directly at the hadronic level. It is for instance possible to reformulate low energy QCD directly in terms
of hadron degrees freedom to study the dynamics of low momentum pions and their coupling to light
baryons. This is the famous chiral perturbation theory (ChPT) which successfully describes many low
energy processes and constitutes a basis for the description of nuclear matter at not too high density.
Another approach, which is also in principle model independent, is based on QCD sum rules (QCDSR).
It allows to relate the hadron spectral functions (in short mass and width) to the fundamental gluon
and quark condensates. One important point is the possibility of extending the QCDSR at finite density
and to relate the evolution of the hadron properties to the modification of the QCD vacuum through
the modification (dropping) of the QCD condensates. This constitutes one major way for addressing
the important question of in-medium hadrons which has motivated numerous theoretical works as well
as an important experimental activity. The very prominent example is the rho meson. An important
broadening of the p has been observed in dilepton production off relativistic heavy ion collisions by the
NAGO collaboration. The important theoretical challenge of this domain is to identify physical mechanisms
associated with chiral restoration which are compatible with experimental data and many-body hadronic
calculations.

Full chiral symmetry restoration at high density and/or temperature means a change of the symmetry
pattern associated with a different QCD phase in the thermodynamic language. Indeed lattice calcu-
lations show a sudden decrease of the quark condensate (playing the role of an order parameter) in a
narrow temperature window around T = 180 MeV which is accompanied by a simultaneous increase of
thermodynamic quantities (such as the energy density). This is attributed to the liberation of the most
numerous quark and gluon degrees of freedom, indicating a confinement/deconfinement transition. The
conclusion which can be drawn from the analysis of experimental data at SPS and RHIC is that the phase
boundary is really traversed in relativistic nucleus-nucleus collisions. The details of the phase structure
and the nature of the chiral transition depend on the quark masses. For physical quark masses a first order
transition is expected at non vanishing baryonic chemical potential and a critical end point (CEP) is pre-
dicted. Its experimental search is one of the central goal of the FAIR-CBM and of the RHIC-Energy-Scan
project. It also exists a symmetry aspect which is behind confinement. This symmetry, named center
symmetry, is nonetheless valid only for the pure glue theory. However even in the presence of dynamical
quarks the associated order parameter, the Polyakov loop, remains an indicator of the deconfinement as
demonstrated by lattice simulations or model calculations reproducing the QCD thermodynamics, such



as the polyakov-NJL model. Simultaneous studies of chiral restoration and deconfinement can be also
performed by looking at the evolution of the quark condensate and the Polyakov loop.

These lectures are divided in four parts along the lines given above. In section 2 we give a brief overview
of QCD and section 3 is devoted to a rather detailed discussion of chiral symmetry. In section 4 we
discuss some successful approaches, chiral perturbation theory and QCD sum rules, which largely utilize
the symmetries properties of QCD to describe the hadron spectrum, strongly interacting matter and the
in-medium behavior of hadrons. Finally the last section deals with QCD thermodynamics in connection
with relativistic heavy ion collisions. Throughout these lectures we use the natural system of units where
h = ¢ = 1. In this system there is only one type of dimension : [Energy| = [Momentum] = [Length]_1 =
[Time]_l. The connection with an usual system of units is done by taking hic = 197.3 MeV - fm. Hence
if one finds for the energy of a system with size R the result E = k/R, (k being some dimensionless
constant of order unity) it has to be understood as E = khi¢/R. It follows that in practice E (MeV) =
k- 1973/R(fm) or 1 fm~! = 197.3 MeV =~ 200 MeV. There are several textbooks or review articles
devoted to QCD. I give here two references [1, 2] that I personally use.

2 Overview of QCD

2.1 QCD as a SU(3) gauge theory

Historical introduction : the rationale for QCD. At the beginning of the sixties it has been
realized that all the known hadrons could be built with basic building blocks called quarks [3]. At this
epoch, only three quark flavors (u,d,s) were needed and the baryons appeared as made of three quarks
and the mesons made of a quark and an antiquark. However despite the important phenomenological
successes some conceptual problems were present : among them the existence of objects such as the AT+
in the spin state ms; = 3/2. Such a configuration made of three identical u quarks in the same spin-up
state clearly violates the Pauli principle. To solve this problem it was postulated that each quark in a
given flavor can possess three distinct color charges (i = 1,2,3 or red, yellow, blue). In this proposed
scheme the hadrons have in addition to be color singlets : they are “white”. Mathematically this means
that the hadron configurations are invariant under a unitary matrix transformation with unit determinant
(to eliminate an irrelevant global phase) acting on quark color coordinates : ¢; — Vig qx with VIV =1
and detV = 1. This defines the group of SU(3). matrices of the form V = exp(if4t,) where the 6, are
eight continuous real parameters and the eight generators ¢, are related to the Gell-mann matrices by
ta = Aa/2. The only irreducible possible singlet representations are

3c X 3. x 3. (baryons) 3. X 3. (mesons)

in agreement with the experimental observations. The color space baryon wave function writes

3

B= Y €jkaian (1)
1,5,k=1

which is fully antisymmetric under color exchange. Coming back to our previous example, the ms; = 3/2,
ATT state writes AT+ = Z,L ik €igk wi T uj T oug 1. Similarly a meson state has the form in color space :

M=) ¢g,=RR+YY + BB. (2)

To go beyond this very ad-hoc construction the next step has been to build a dynamical theory of color
whose consequences should be the non existence of quarks as free particle and the only existence of white
hadrons with typical size of 1 fm and typical mass of 1 GeV. This property is called color confinement.
This theory has progressively emerged as a SU(3). gauge theory.

Building of the gauge theory. Such a theory is based on a “local gauge invariance principle”. To
a large extent, given the gauge group, the structure of the lagrangian can be obtained. We show below



how this can be done. As a starting point let us consider a free fermion (quark) theory whose lagrangian
density is :

_ _ (G . o
L=ipy 0 —mpyp  with ¢ = 1 ¥ =1y0 = (41, 2, P3). (3)
Vs

For the moment we consider one flavor of quark and the field v; represents the quark with color i. The
gauge principle requires that the lagrangian has to be invariant under a local gauge transformation where
the continuous parameter, 6, (), is now a function of space-time :

Y(x) = V(z) ¥(x) with V(z) = efa(®) Ta, (4)

This invariance is clearly not realized due to the presence of a derivative in the lagrangian. To examine
this point in a more detailed way, let us discretize the theory on a four-dimensional lattice with lattice
spacing a (see fig. 1). We note e, = 0,1,2,3, the unit vectors along the four space-time axis (we do
not distinguish between Minkovski and Euclidean metrics). In the kinetic energy piece of the lagrangian
the derivative becomes a difference :

uAa I

Lk =i 070 = - 3 (B@n e+ a ) Ban i)
i p % k m }

Only the first term, which is non local, is non invariant since the V1 and V matrices are taken at different
space-time points :

@)y p(x +aen) = Y Vi@)V (2 +ae)d(e +aep). ()

To obtain a gauge invariant theory it is necessary to include some kind of connection between different
space-time points. For this reason one introduces new degrees of freedom, U(z;y), called link variables,
which are also elements of the gauge group and satisfy the very natural conditions : U(z;z) = 1,
U~Y(z;y) = U(y; z). The non invariant piece of the lagrangian is modified according to

L= 2 5 (Bar Utaia + ae,) vl +a ) = Banvio)) ©

"

which is gauge invariant provided the link variables transform as U(x;y) — V(z) U(z;y) Vi(y). The
elementary link variable being an element of the gauge group it has to be of the form U(z,z +ae,) =
etBua = 1 + iaB, + O(a?) with B#(z) = BH(x) t* This defines eight gluon fields, B¥(z). Tak-
ing the continuum limit (¢ — 0), one obtains the transformation law for the gauge fields, B, (z) —
V(z) Bu(x)VT(z) — iV (2)d, V1 (x), and the form of the lagrangian :

£ = B(@) (a - taBsm)w(a:) ~m Pa)(a). (7)

At this level the glue field has no dynamical content. The simplest kinetic or potential term is the
so-called plaquette term depicted on the middle panel of fig. 1
1
L= —gQa4 (Z) tr(Uig Usg Usq Uar) (10.2.12)
v

where g will be identified with the (strong) coupling constant and the 1/a* term ensures the correct
dimension. Thanks to the cyclic properties of the (color) trace, this plaquette lagrangian is obviously
gauge invariant. Taking again the a — 0 limit, the continuum limit lagrangian is obtained. The full QCD
lagrangian is obtained by summing on all possible quark flavors f in the kinetic and mass quark pieces
with the adjunction of the plaquette lagrangian

— — L e o
Laop = Y pmlid" — gt ALYy =D my §yvos — 5 GGl (8)
f f
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Figure 1: Left panel : discretized Euclidean space. Middle panel : plaquette term; the arrows indicate
the direction of the links. Right panel : ¢¢ and gluon loop corrections to gluon exchange between quarks.
Each vertex is weighted by the coupling constant g.
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where the canonical gluon field A* is defined by B* = gA* =g Zi\’:cl 't A#. The last term represents
the continuum limit of the plaquette term. It involves the gluon field tensor :

G = MAY — OUAM +iglAM, AY] = t, GMY
GUY = MAYL = 0" Al — g fan ALAL, 9)

The fupe coefficients are the fully antisymmetric structure constants originating from the SU(3) Lie
algebra [tq,ts] = % fabete. There is a standard Yukawa coupling term of the glue to the quarks which is
the exact analog of the Yukawa coupling of the electromagnetic field to electrons in QED. The new feature
peculiar to the non abelian QCD theory is the existence of the term g fape Al A¥ in the gluon strength
tensor. By inspection of the lagrangian (8) we see that it generates three- and four-gluon interactions
weighted by g and ¢g2. The gluons have self-interactions since they also carry a color charge at variance
with photons in QED which are electrically neutral. This feature has very profound consequences as we
will see below. From the lagrangian it is evidently possible to derive Feynman rules and develop a standard
perturbation approach for scattering processes. However such an approach will be meaningful only for
high momentum transfer (short range) interactions since, due to renormalization as explained below,
QCD is realized in a fully non perturbative way in the low energy-momentum domain corresponding to
the fermi scale.

2.2 Breaking of scale invariance; running coupling constant

The masses of the quarks entering the QCD lagrangian cover a very large domain : m, ~ 5MeV,
mg~9MeV, mg ~ 150 MeV, m, ~ 1.5GeV, mp ~ 4.5GeV, my ~ 175 GeV. In the low energy domain
of interest the heavy quarks are frozen and we only have to consider the light quarks, essentially v and
d, and also to a less extent the strange quark. The important point is that the light quarks are indeed
extremely light; their masses are essentially compatible with zero as compared to typical hadron masses
of the order of 1 GeV. We can conclude that the QCD lagrangian restricted to the light quark sector
has (almost) no scale since it involves only a dimensionless parameter, the coupling constant g. In the
following the m, 4 = 0 case, corresponding to exact scale invariance, will be referred as the chiral limit
(the reason of this terminology will be given in section 3).

It is however important to realize that from the very nature of a quantum field theory (QFT), the presence
of quantum fluctuations of arbitrary size explicitly breaks scale invariance. In other words a QFT should
be defined at each momentum scale p (or at each space-time resolution 1/u). For that reason one defines
an effective or running coupling constant g(u) for each scale p. This effective coupling constant contains
by definition the effect of quantum fluctuations of high momentum % > p (or size smaller than 1/u). To
clarify this very crucial notion let us take the example of quark-quark scattering. To leading order in
perturbation theory, it is described by a single gluon exchange and the amplitude goes like g?. However
during its path from one quark to the other quark, the gluon may very well fluctuate into virtual pairs of
quark and gluons which is allowed by the Heisenberg uncertainty principle as depicted on the right panel
of fig. 1. Such contributions of order ¢* are perfectly calculable using standard Feynman rules derived



from the QCD lagrangian. If the (space-like) exchanged momentum is g, it is convenient to consider the
QFT formulated at a scale p close to Q = \/—¢*q, = /@ — ¢3. To calculate the corrected scattering
amplitude we proceed qualitatively as follows : we divide the contributions of quantum fluctuation
momenta (the momentum % running into the quark or gluon loop appearing in fig. 1) into those smaller
than g and those larger than p. The small momentum fluctuations are treated as normal fluctuations
and the larger ones are absorbed in the definition of the coupling constant g(x). When going from one
scale u + dp to the scale u, the quantum fluctuations with momenta between p and p + dp originally
not included in the definition of g(u + du) are incorporated in the definition of g(u). This procedure is
called the renormalization. It follows implicitly that there is a one to one correspondence between the
coupling constant of the theory and the scale (renormalization point) u. To characterize the evolution
law we define the Gell-Mann beta function :

Blg) = & _ 9 (10)

T ding

It is important to notice that this beta function is an intrinsic property of the theory (QCD) and is a
function of the coupling constant g only. Hence 5(g) being given the evolution of g can be calculated
using the above relation (10) known as the Callan-Symanzik equation. In the perturbative regime where
g is small, 3(g) can be calculated with the result 5(g) = —Bog>® +319° + ... . The important point is that
(47)% By = %fv’c - %Nf is always positive for N, = 3, whatever the number of flavors, V¢, is. This means
that g(u) is a decreasing function of x4 and g = 0 where 8(g) = 0 is a true minimum of the function g(u).
Consequently when the momentum scale p increases, g will be “attracted” near the point g = 0 which is
said to be an attractive ultraviolet fixed point. Hence at very high momentum scales, or for very short
distances, the coupling constant goes to zero and QCD behaves like a free field theory. This property is
called asymptotic freedom. In the high momentum domain we can keep only the leading contribution to
B(g). Explicit integration of the Callan-Symanzik equation (10) yields

p=Aexp <ﬁ> (50 92) /2 (11)

where A is a certain mass scale which is a priori unknown.

Suppose that we want to calculate in QCD an observable with dimension D (for instance D = 1 for a
hadron mass). We start by formulating the theory at a certain (a priori arbitrary) scale u. Since the
QCD lagrangian in the chiral limit has no scale, all the dimensional physical quantities must be expressed
in term of the renormalization scale p with power D. From dimensional analysis this observable O has
thus to be of the form O = u® f(g(u)) where f(g) is a dimensionless function. However the numerical
value of this observable has to be independent of y. Hence one must have :

a0 ddg A dg

—=0 = Df+ypu = = —-D———. 12
dp dg dp f Blg) (12
Explicit integration in the perturbative domain gives
0= CuP eap <i> (B0 g2) P10 (13)
20 g*

where C is a numerical dimensionless constant. Combining eq. (11) and (13), the arbitrary scale p can
be eliminated in favor of A. It follows that:

0 =CAdcp. (14)

The quantity A, now called Agcp, appears as the fundamental scale of QCD. Each physical observable
(associated with light quarks) of QCD has to be proportional to this scale with the appropriate power
equal to its dimension. Solving QCD thus reduces to calculate the various constants C. This is what
is done in numerical lattice simulations. The system is discretized and the fields exist only at discrete
points. What plays the role of the scale is obviously = 1/a where a is the lattice spacing. Hence when
calculating an observable, what is really obtained is the dimensionless quantity O a” and the result is



a function of ¢ only. Once this is done one looks at the behaviour of the numerical results with ¢ and
check the low ¢ scaling (eq. 13) and the constant C' can be extracted. One important lesson is that the
origin of ordinary hadrons (nucleons) mass scale is the scale Agcp. It appears as a parameter of the
theory and has to be extracted from experimental data. To see this point let us consider deep inelastic
lepton (electron for instance) scattering on the proton which has revealed its quark-parton structure [2].
The exchanged virtual photon emitted by the electron carries a space-like momentum ¢ and probes the
distribution of quark-partons at momentum scale pu = @, or space-time resolution 1/Q. Said differently
the virtual photon probes a (weakly interacting) QCD system where quarks and gluons interact with
coupling constant g(u = Q). Inversing eq. (11), its explicit form at very high @ is given by :

2 2 _ 1 15
9-(Q7) 5o ln (QQ/AQQCD) (15)

It is also clear that high () means () much larger than the fundamental scale Agcp. Varying experimen-
tally @ allows to study the evolution law for ¢g?(Q?) and thus to extract the numerical value of the funda-
mental scale. The result is Agcp ~ 200 MeV and the associated length scale is Ry = 1/Agep ~ 1 fm.
For momentum scale below Agcp, or size of the order Ry, QCD becomes totally non perturbative. It
can be noticed that Ry corresponds to the typical light hadrons size. This also implies that the problem
of hadron structure is by essence a totally non perturbative problem.

2.3 Trace anomaly and gluon condensate; vacuum energy density

A quantity more fundamental than the lagrangian is the action. For instance it is well-known that
classical physics is based on a first principle, the least action principle, coupled with a relativity principle.
Quantum effects can be seen as fluctuations of the action around its extremal value associated with
the classical trajectory for particles or fields. Moreover the notion of scale transformation has to be
formulated at the level of the action. The action is defined as the space-time integral of the lagrangian
density. In case of QCD it reads :

S = /d4x£ = /d4x [@/_Ji'y” (i0p — toAap) ¥ — maptp — é@fj”éaw . (16)

To isolate the dependence of the coupling we have made the change of gluon variables A# = g A" such
that the gluon tensor G defined by G** = g G*¥ does not have an explicit dependence on g. We limit
our study to the light quark sector. We see that in the chiral limit (m = 0) no explicit scale appears
in the action. Hence the classical action is scale invariant and this invariance is only slightly broken by
physical quark masses. The mathematical consequences of this quasi scale invariance can be studied by
introducing an infinitesimal scale transformation

= (1—=0Nz Y — (1+DydN)p  AY — (14 Do\ A»

where Dy, = 3/2 and Dy = 1 are the dimensions (in unit of mass) of the fields. Let us calculate the
variation of the action under the above dilatation transformations. Formally, one obtains the general
result based on Noether theorem

68 = / d*z6\0, DYy, with  8,Dl, =0, (v, T"") =T¥, (17)

where T"# is the stress tensor of the system. The quantity D’ is the dilatation current. If there is
scale invariance the action should be invariant, which implies that the quadri-divergence of this current
vanishes, i.e., the dilatation current is conserved. We know calculate explicitly the variation of the action
for the particular QCD lagrangian. The result is :

op 1 dg

— 4 L . e s 25 YUY
58 /d x [6)\;(& DL + oA 357 d (G Gl | - (18)



The first contribution to the the variation of the action is purely classical and depends on the field
dimension D; of the various pieces of the Lagrangian. We see that only the mass term (D = 3) breaks scale
invariance. The second contribution is associated with quantum fluctuations. In this qualitative approach,
the action is seen as an effective action for the theory formulated at the scale a = 1/p. It is thus natural
that the change of scale affects pu as pu — (1 + dA\)u. Hence dg/0A = (dg/dp) (0u/0A) = pdg/du = B(g)
and the 8 function appears explicitly in the variation of the action. Identifying the two expressions (17)
and (18) of 65, one obtains the trace anomaly relation [4] :

-, Blg)
TH =miyp + 7 (P*GH Gap) - (19)
The second terms is anomalous in the sense that it is generated by quantum fluctuations and is absent
at the classical level.

From Lorentz covariance we expect that the vacuum expectation value of the stress tensor is
(1) = g

and e is the energy density of the QCD vacuum. We know take the expectation value of the trace anomaly
equation (19) on the QCD ground state. Ignoring the small quark mass term one obtains :

Bl9) / 9°
e = 471'2 2—93 HGZWGGHV (20)
In the above formula only non perturbative soft vacuum fluctuations are considered. The divergent sum
of zero point oscillations up to infinite momentum has to be substracted. From the general arguments
given above (see eq. 13,14) we expect for sufficiently large scale,

—4
e=Cc.utexp <W> =C. A60D7 (21)

which has to be understood as the energy density of the true QCD vacuum with respect to the perturbative
vacuum. Of course it has to be negative. The expectation value {(as/7) G Gqp) With ag = g2 /47 is
conventionally defined as the gluon condensate. It actually depends on the scale. It can be extracted
phenomenologically from QCD sum rule analysis at scale around 1GeV [5]. The accepted value is
{(as/m) GG) ~ 0.012 GeV?. Assuming that at this scale we can apply the leading order value for 5(g),
we can get an estimate of the vacuum energy density :

e=—0.5GeV - fm=3. (22)

The physical meaning of this result is the following: |e| represents the energy which has to be furnished
to expel non perturbative quantum fluctuations from a volume of one fm?.

2.4 Qualitative picture of the nucleon

Lets us consider the nucleon in the MIT bag model picture [6]. It appears as a color singlet made of three
free quarks moving in a spherical bubble of radius R of perturbative vacuum created by the confinement
mechanism. The quark orbital wave function and energy correspond to the lowest cavity mode. They are
obtained as a solution of a Dirac equation for a free quark with confining boundary conditions (infinite
scalar potential in 7 = R). Since R is the only scale the orbital energy should behave as e &~ 1/R. The
explicit solution of the Dirac equation gives e = Qo/R with Q¢ = 2.043. To get the full nucleon mass one
has to add the energy needed to dig a hole of perturbative vacuum of volume V = (47/3)R? in the QCD
ground state. This energy is Ey = BV where B is called the bag constant in the terminology used by
the MIT group [6]. In principle it has to be identical with the absolute value, |e|, of the vacuum energy
density. The quantity B also represents the pressure P = —e¢ exerted by the QCD vacuum on the bubble.
Hence in the simplest version of the MIT bag model the nucleon mass is :
38
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The equilibrium radius is obtained by minimization of the nucleon mass :

My 39
- = — B = =
4V AnR? 0= Rx (

3Q
47

/4y
> B/ ~ 1/Agecp ~ 1 fm. (24)
This is nothing but the mechanical equilibrium condition between the kinetic pressure exerted by the
quarks and the vacuum pressure. To recover a nucleon radius around 1 fm, we must have B ~ 0.1 GeV -
fm~2 which is much smaller than the value |¢| = 0.5GeV - fm~=3 deduced from the QCD sum rule.
Although phenomenologically not so bad, it is important to realize that the bag model is only an effective
realization of quark confinement, which must not be taken too literally. It is plausible that the non
perturbative fluctuations are expelled from a much smaller volume [7]. Indeed lattice simulations strongly
suggest that the true picture is a Y shaped color string or flux tube terminated by quarks. The length
of these flux tubes are Ry, ~ 1/Agcp and the quarks are probably constituent quark getting their mass,
M, ~ 300 MeV, from the chiral condensate. The size of these constituent quarks is presumably 1/A,sp
where 1/A,sp ~ 1GeV is a characteristic scale associated with a very important symmetry of QCD
named chiral symmetry. This topic is the subject of the next section.

3 SU(Nys)L® SU(N¢)r chiral symmetry

This section is devoted to a very important global symmetry of QCD in the light quark sector, the
SU(Ny)r @ SU(Ny)r chiral symmetry. The number Ny refers to the number of quark flavors which are
involved. For Ny = 2 only u and d quarks are considered, whereas Ny = 3 includes the strange quark.
The quality of the symmetry depends on the smallness of the quark masses as compared to typical hadron
masses, My ~ 1 GeV. This is clearly the case for Ny = 2 involving only v and d quarks. In the following
we will concentrate mainly on the Ny = 2 symmetry but all what we will say can be applied to some
extent to the strange quark sector (Ny = 3) although the symmetry under discussion is less good since
ms >~ 150 MeV.

We introduce a column vector (isospinor) made of u and d quark fields and the associated line vector :

A
‘b‘(wd)
P = P10 = (P, ¥a).

The QCD lagrangian (ignoring glue and quark colors which do not play any role for the symmetry
consideration under discussion) can be straightforwardly re-expressed in terms of these objects :

Loecp = itzu’y“@wu + Z'szd'yuau"/]d - mu&u"/’u - md&dqﬁd
My + My —l— mq

iy Oy — T gy — T Ty, (25)

We first notice that the lagrangian is invariant under the simple UU(1) phase transformation ¢ — €*® ).
The associated conserved Noether charge is Q = [ dr 1) which is nothing but (three times) the baryon
number. This symmetry (which can be extended to the heavy quark sector) is baryon number conser-
vation. In the chiral limit (when quark masses exactly vanish) there is another U(1) axial symmetry
associated with the transformation ¢y — €5 . This symmetry is actually broken by quantum loops :
this is the so called axial anomaly. We will not discuss this point here although it is by itself a very
important (and delicate) subject.

3.1 Vector, axial and chiral symmetry

Vector symmetry. Let us consider the SU(2) vector transformation :

P — e T )



where the ai’s (k = 1,2,3) are real continuous parameters and the 7;’s are Pauli matrices acting on
isospin indices. The only non invariant piece of the lagrangian (25) is the term proportional to m, —mg
since it involves a 73 matrix. However this (isospin) violation is very small : (mg —my,)/2 ~ 2 MeV <
Mg ~ 1GeV, and we will forget it most of the time. In this case QCD possesses an exact vector or
isospin SU(2) symmetry. The associated Noether current is the vector current, V', and the associated
charges coincide with the three components, Qi = I, of the isospin operator :

4 ol T =
=iy Q= [aretFu=1. (26)

In case of exact symmetry (m, = mgq) the current is conserved, §,V} = 0, and the isospin Qj is time
independent. The isospin operators satisfy the SU(2) Lie algebra

Qi, Q)] =i €iji Qk

which is exactly the same as the angular momentum algebra associated with rotational symmetry. These
operators are the generators of the SU(2) group and the quantum states transform as :

|®) = [®) =U |®)  with U =e "9, (27)

From the QCD lagrangian, the hamiltonian H can be built. In the limit of exact symmetry (m, = mg),
the Hamiltonian operator commutes with the isospin operators ([Qx, H] = 0). This symmetry associated
with the Lie algebra leads to a degenerate multiplet structure of the hadron spectrum analog to the
multiplets originating from rotational symmetry in atoms :

1
@M >=arnl0>  with I=0,2, 1. M =-I,~I+1,..1I. (28)

The index « represents all the other quantum numbers (spin, parity,...) needed to fully specify the hadron
state and ¢4 is some field operator acting on the QCD ground state and carrying the quantum numbers
of the state under consideration. This multiplet structure is actually a well established experimental fact
and well known examples are the doublet of J™ = (1/2)" nucleons or the triplet of J™ = 0~ pions.
In reality the degeneracy inside the multiplet is not exact. There is a small isospin splitting inside
the multiplets of the order of 1 MeV, the main origin being the combined effect of the mass difference
between the u and d quarks and the Coulomb interaction between quarks. In the case of the nucleon
the neutron-proton mass difference, AMy = M, — M, receives a contribution of ~ 2 MeV from the
quark mass difference and of ~ —1 MeV from the Coulomb interaction. This multiplet structure can be
extended to the strange sector. The hadrons can be classified according to the irreducible representations
of the flavor SU(3) group: nucleon octet, pseudo-scalar octet, resonance decuplet, .. . The mass splitting
inside the multiplets between strange and non strange hadrons is however much larger, of the order of
100 — 200 MeV.

It is important to realize that the very existence of the multiplet structure is related to the fact that the
isospin of the vacuum is zero, Q|0 >= 0. The operator ¢,sas has to transform as the quantum state

UbarmUT = Zap darney < aIM'|U|aIM > (29)
where < alM'|U|aIM >= D™ is a rotation matrix element. It follows that :
UleIM > = U ¢arpm|0>=U ¢orn UT U0 >
Sar barar U0 > < al M'|U|aIM >
= SwlalM' > < aIM'|UlaIM > .

&

Hence by application of the “isospin rotation” operator U it is possible to generate the full multiplet.
This is possible since :

Ulo)=10) <= @Q;0)=0. (30)

The multiplet structure is thus realized because the QCD ground state is invariant under an isospin
transformation, i.e., its isospin is zero.
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Axial symmetry. We now consider an “axial” transformation which differs from the vector transfor-
mation by the presence of the odd 5 matrix in the exponent :

W = T g, (31)

The associated Noether current is the axial current which is of pseudo-vector nature, from which one can
define the axial charges :

A= e, Qh= [avinZe. (32)

At variance with the vector case the pure mass term, (1., + mgq)¥1, in the lagrangian is not conserved
but the axial symmetry violation is very weak since m = (m, + mgq)/2 ~ 7MeV << Mpy. The axial
current is almost exactly conserved :

O Al = mipysTiap. (33)

To go further it is appropriate to reformulate the problem of vector and axial symmetries in a different
way by introducing the concept of chiral symmetry.

Chiral symmetry. One introduces left handed and right handed quark fields :

_1-7
2

1+

VL 5

Y, Yr Y. (34)

The QCD Lagrangian can be rewritten in terms of left and right fields as :
Loop = Wy 0ur + Wry" 0ubr — m (VLR + YRYL). (35)

The important feature brought by this new writing is the almost exact invariance of the lagrangian under
SU(2) transformations acting separately on left and right handed quarks :

SUQ)L :  Yr — € Fyn,  Yrp — Yr
SU2)r :  tr — €M Fgn P — Pr. (36)

One can accordingly define left and right charges

Qf = /dwi—,%’“m = (@ Q)
Qh = [arvhBen=;(@u+Qd) (37)
which satisfy separate and independent SU(2) algebra :
QhQh] =i @k QL] =iean @l |QmQi] =0 (38)

3.2 Spontaneous breaking of chiral symmetry

The existence of the chiral symmetry seems to imply that two independent L and R worlds exist hence
generating two identical sets of degenerate multiplets. In other words starting from an isospin multiplet
with definite parity (this is always possible since parity commutes with H and isospin operators), one
can generate a multiplet of degenerate chiral partners with opposite parity. Experimentally this is clearly
not the case. For instance the first hypothetical chiral partner of the nucleon is a J™ = (1/2)~ resonance
located around 1.5 GeV. Similarly the rho meson and the a; meson which are candidate to be chiral
partners have very different masses and spectral functions. As already mentioned the building up of a
mulitplet structure is actually related to the property of the vacuum under the symmetry. The multiplet
structure arises only if the vacuum is invariant under the symmetry. This is the case for the vector
transformation and one has : [H,Qr] =0 and Q]0) = 0. The symmetry is said to be realized a la
Wigner.

11



Spontaneous breaking of chiral symmetry manifests in the fact that the vacuum is not invariant under
an axial transformation or, said differently, the axial charge of the vacuum is not zero : Q3 |0) # 0. If we
introduce the axial transformation acting on quantum states,

U=e ™%  |0)=|9)=U ), (39)
one has Us|0 > |0 >. It follows that the there is no chiral partner multiplet :
UslaIM > = Us ¢arn|0 > = Us ¢arn Us Us|0 >
= S e Us|0> < oIl M'|U|aIM >
# ZaplalM' > < ol M'|UjalM > .

The multiplet structure is not generated since the ground state is non invariant under the axial transfor-
mation.

Summary of global symmetries in the light quark sector. The original global symmetry at
the classical level is actually U(2)r ® U(2)r and is broken to SU(2)r ® SU(2)r ® U(1)y due to the
U(1) 4 anomaly and U(1)y is associated with baryon number conservation. The SU(2), ® SU(2)g chiral
symmetry is spontaneously broken down to SU(2)y according to the above discussion.

Goldstone boson. It remains nevertheless true that (in the chiral limit) the axial charge commutes
with the hamiltonian. Its action on the vacuum should consequently give a state with the same energy.
Let us introduce such a state :

|7;) = Q3 10).

Setting the ground state energy equal to zero for convenience, one has :
H |m;) = HQ710) = QF H |0) = 0. (40)

This implies the existence of soft (massless) modes which can be identified with the pions. Of course
since there is an explicit breaking of chiral symmetry the physical pion is not exactly massless as we will
see below.

Basis of chiral perturbation theory. Let us consider a state made of n such Goldstone modes with

zero momenta. We have :
H [(m)") = H(Q")"|0) = (Q°)" H [0) = 0. (41)

Hence the multipion state also has a zero energy. This implies that zero momentum massless pions do
not interact. More generally low momentum physical pions only weakly interact. This is the basis of
chiral perturbation theory.

Order parameters. We have already seen observational evidences in favor of spontaneous chiral sym-
metry breaking : the fact that there is no degenerate chiral partners and the existence of goldstone bosons,
the pions. It is however also interesting to identify quantities, called order parameters, which characterize
quantitatively the amount of chiral symmetry breaking. It turns out that the Noether currents associ-
ated with chiral symmetry are directly involved in the electroweak interaction. The W boson which is
the agent of charged current weak interaction is coupled to the axial and vector hadronic currents. For
instance the hadronic piece of the amplitude governing charged pion decay 7+ — p* v, is the matrix
element of the axial current between the QCD ground state and the pion. The three pion states 7+, 7%
constitute an isotriplet (I = 1) and behave like an isovector. These eigenstates (spherical basis vectors)
can be expressed in terms of cartesian states to make the writing more compact :

1
7t >=F—— (|m > i |m >), |79 >=|m3 > .

V2

12



From translational invariance and covariance the matrix element of the axial current between a pion state
and the vacuum is of the form

< O[AL (2)|mj (p) >= —idjn, fp'"e™ ™" (42)

where the constant f, = 94 MeV, which is called the pion decay constant, can be extracted from charged
pion lifetime. The important point is that fr is not zero. This is possible only if chiral symmetry is
spontaneously broken as demonstrated below :

<MQam@«n>=/ﬁr<MA%an«n>=—§ﬁe”mJ<w%mh%@>. (43)

If we take the particular case of zero momentum we see that fr # 0 < Q3 |0) # 0. Hence the pion decay
constant, fr = 94MeV, plays the role of an order parameter associated with the spontaneous breaking
of axial symmetry.

It is possible to identify another order parameter by considering the operator identity :

MJ;MF%/mmwm. (44)

We take the vacuum expectation values of both sides of the identity and insert a complete state of
eigenstates of H, |n), with eigenvalues E,, :

Z 2E, | <n|Q3|0 > |? :—/erm < qq>. (45)

The above equation has the familiar form of an energy weighted sum rule in nuclear physics. If we
saturate the sum rule with single pion states we obtain the celebrated Gell-Mann-Oakes-Renner (GOR)
relation [8] :

m2 f2 = —2m < gq > (46)

which is valid to lowest order in explicit breaking parameters m and m, . In the rhs of the GOR relation
it appears another order parameter which is the quark condensate :

1 - — 1 _ _
<qg>=5 < 0|ty + Yapq|0 >= 5 < 0|YrYr +YrRYL|0 > . (47)

Its non vanishing value explicitly demonstrates the existence of a mixing between left and right-handed
quarks in the QCD vacuum. We note that the quantity < gg > is conventionally taken as being relative
to one quark flavor. The rhs of the GOR relation involves parameters at the microscopic quark level
associated with explicit (m) and spontaneous (< gg >) symmetry breaking. The interest of this relation is
that these microscopic parameters are related to those appearing in the lhs which involves the macroscopic
hadronic quantities associated with explicit (m ) and spontaneous ( f;) symmetry breaking. If we take for
the quark mass m = 6 MeV, one obtains < gg >~ —(240 MeV)3, which corresponds to a very large scalar
density of quarks, —1.76 fm™3 ~ —10 po, in the QCD vacuum. This is the so called strong condensate
scenario which seems to be confirmed by recent analysis. The gluon condensate discussed in the previous

section and this quark condensate can be considered as the two very important numbers characterizing
the QCD vacuum.

The quark condensate. The quark condensate is an example of order parameter. Such a quantity is
not invariant under the symmetry group. Consequently it should vanish in the symmetric phase where
the symmetry is restored in the Wigner mode. To elucidate this question we start with a familiar example
from condensed matter physics.

Let us consider a spin system in the Heisenberg model for ferromagnet which is placed in an external
magnetic field B. The hamiltonian is :

H:—ngi'gj_ﬂzgi'g~ (48)
1,j i
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In the absence of the external field this hamiltonian is obviously rotationally invariant. However un-
der certain circumstances (temperature below the Curie point), the system may acquire a spontaneous
magnetization :

L1 R
M:N;sﬁéo. (49)

The existence of such a definite direction breaks rotational symmetry. It is said that the symmetry is
spontaneously broken. Of course rotating the magnetization would produce a state with the same energy
and the ground state of the system is infinitely degenerate. The origin of the direction chosen by the
system may come from random fluctuations. In presence of the external (even very small) magnetic field
the direction of the magnetization is the one of the external magnetic field since the energy of the system
will be lowered. The magnetization plays the role of an order parameter and vanishes beyond the Curie
temperature where rotational symmetry is restored.

In the QCD case the Hamiltonian is :

H = Hy + /d?’?“m (Yrvr + ¥rYL) (x). (50)

‘What plays the role of the magnetization vector is the chiral condensate written in a matrix form in
flavor space

MY = (0] 47,975 [0) (51)
where |0) is the ground state with zero isospin and definite positive parity. If chiral symmetry is realized
in the Wigner mode, left and right quarks live in two independent worlds and thus cannot mix in the QCD
ground state. In that case the quark condensate vanishes identically. If chiral symmetry is spontaneously
broken this is no longer the case. This quark condensate must have the following structure :

(0] 75 10) = (0] v 10) = 5 267 0. (52)

The first equality comes from the parity invariance of the ground state and the second one from flavor
invariance. The quantity X is the already introduced quark condensate also called chiral condensate.
Indeed, the above formula can be reversed by taking the flavor trace :

1 - - 1 - _ ~
2= 5 0YLdr +Yr¥r|0) = 5 (0] Puthe +Yavha |0) = (a9) - (53)
Let us now make a chiral transformation U (a)Ug(fB) of the system. The ground state transforms as :

0) = |a, B) = Ur(a)Ur(B)0) . (54)
‘We make use of the transformation law for the quark field :
Ul (@)0pUL(a) = Vi@, UBWRUR(B) = Vi (B)¥k. (55)
It follows immediately that the condensate matrix transform as :

D)

a,8) = (VIB) MV(a),; = (VI(BVI(a)

The pure vector (isospin) transformation is obtained with o = . In such a case the ground state (of zero
isospin) is invariant and the condensate is also invariant. The pure axial transformation is obtained for

« = —f. In this case one has
by b o A
M = 375 (cosa + 4T - asina)
where the angle « is the norm of the vector @ = (a1, az, ag). We see that the condensate has rotated in
a four dimensional space as the magnetization did in ordinary space. The corresponding chirally rotated
state is degenerate with the original state (taken conventionally with zero isospin and positive parity) but

the condensate points in a direction characterized by the vector & which is the analog of the direction of

14



the magnetization in the ferromagnetic case. In the presence of explicit symmetry breaking, the quark
mass appearing in the QCD hamiltonian plays the role of the external magnetic field. In such a case
the orientation of the condensate is fixed by the way that chiral symmetry is explicitly broken: this
corresponds to a = 0 which gives the lowest possible energy since X is negative.

All what was said concern the vacuum structure. However in presence of baryons (non vanishing density)
or in presence of thermal excitations (non vanishing temperature) the situation will change. Indeed it is
expected that at a certain temperature chiral symmetry will be restored. This subject is at the origin
of an intense theoretical and experimental activities devoted to the phase structure of QCD, the major
experimental tool being relativistic heavy ion collision. We will address these questions in the subsection
4.4 and in the last section.

Correlators and spectral functions. Details on the structure of a system can be systematically
studied by looking at correlators. More precisely we will study correlations functions between currents
or fields carrying the quantum numbers characteristic of a given hadron, taken at two different space-
time point. Usually one studies these correlation functions in energy momentum space. One defines a
current-current correlation function between two currents or fields having the quantum number of a given
hadron :

nmmznm%@=—gﬂmwwem»mwuxﬂwm» (57)

The analytical structure of the correlator allows to express it in a dispersive form

r(90,q) = /+°° Stw CD

go — w + 1in

and all the properties of the hadron are encoded in the spectral function :

S(w,q) = —% Imllg(w,d) = Y [(f 17(0)| 0)[* (2m)*6') (7~ 5y) d(w + Eo — Ey)- (58)

This can be generalized at finite temperature T = 1/ for a systems described by a canonical ensemble :

eﬁ1

S, ) =~ Imlln(e,7) = 22 — Y [(FLIO)] )2 2m)*6D) (74 5 — ) Sw + By — Ey).

(59)
In the vacuum we get the well-known spectra with peaks for stable particles and bump for resonances.
The chiral asymmetry of the vacuum is directly visible since there is no degeneracy between possible
chiral partners transforming into each other under a chiral transformation. This translates into possibly
very different spectral functions for chiral partners. A particularly spectacular example is provided by
the vector and axial currents which encode the properties of the rho and a; mesons. As shown on the
left panel of fig. 2 the low parts of the spectra are very different but at higher energy where perturbative
QCD (or more precisely quark-hadron duality) works they become identical. Hence spontaneous chiral
symmetry breaking can be viewed as a low energy non perturbative phenomenon. One reason is that
high momentum quarks involved in the high energy configurations decouple from the quark condensate.
This point will be rediscussed later.

3.3 Explicit realization : the Nambu-Jona-Lasinio model

Although chiral symmetry breaking and restoration can be studied on the lattice the physical mechanisms
at the QCD level and the relation to confinement is not yet really understood. It is one reason which
makes useful to complement this approach by studying this problem with models. Among them a very
popular one is the Nambu-Jona-Lasinio (NJL) model (see [10] or [11] for reviews) whose lagrangian in
its simplest form is :

Lrvsr = i — mib + S [B0)” + (ir°70)). (60)
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Figure 2: Left panel: vector and azial vector spectral functions as measured in hadronic 7 decays [9].
Middle and right panels: scenarios for the effect of chiral restoration on the in-medium vector- and
axtal-vector spectral functions.

There is a free piece with a current quark mass of a few MeV and a quartic chiral invariant contact
interaction which is supposed to represent all the complicated interacting multi-gluons exchange. There
are three parameters : the current quark mass m but essentially fixed to reproduce the pion mass, the
strength GG of the attractive interaction and a cutoff A in momentum space of the order of 1 GeV. This
cutoff will regularize divergent integrals but has a physical meaning. Only low momentum quarks below
the cutoff strongly interact, the high momentum quarks, leaving in the world with asymptotic freedom,
just decouple. If the coupling constant is sufficiently large the quark gets a finite constituent quark
mass M which is the solution of the gap equation and this is associated with the building-up of a quark
condensate. In the mean field approximation one makes the replacement

()2 = 2 (Prp) << Y >>=4 () << Ggq >> .

and the gap equation reads :

M = m—2G) << qq>>
dp M
= 4N, G — 61
m + 4N, 1/]J<A(27T)3Ep (61)

where E,, = \/p? + M? is the energy of the quasi-particle constituent quark.

It is an easy task to construct from the really empty bare vacuum |¢g > the physical vacuum ground
state, |¢(M) >, which is of BCS type showing that the large scalar quark density corresponds to a vacuum
made of interacting quark-antiquark pairs :

G(M) > = Ceap|— > ypsbhod .| 0 >
s, p<A
= + 88, bl _dl b0 > 62
Qp T SPp Ups _p_s ¢0 ( )
s, p<A

with )
a 1 p2+Mm 2
()= emg)] s e

The operators bLs and dLs are creation operators for a quark or antiquark with momentum p and spin
state s.

Mesons, Goldstone theorem. The mesons can be generated as collective ¢g states in a formalism
which is equivalent to the RPA in the many-body problem. One way is to build the unitarized qq
interaction in the various channels and from its pole structure one can extract the mass and the coupling
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constant of the mesons. The quark-meson coupling constant, g, emerging in the calculation is such that :

1 A dBE o1
. — ith I (M :/ S
Y TONN L) 2(M) = | G 1E}

The pion decay constant is found to be fr = M/g, which is nothing but the celebrated Goldberger-
Treiman relation formulated at the quark level. The pion mass is :

mgq m M
J J—

T Gifr Gif2

In the chiral limit it exactly vanishes in agreement with Goldstone theorem. The second form, once
combined with the gap equation allows to recover the GOR relation. Finally a scalar mode (sigma
meson) shows up with mass m2 = 4M?2 + m2. Hence one recovers the pion as a quasi Goldstone boson
and the pion decay constant can be also obtained. The sigma mass is essentially twice the constituent
mass. Using the above relations one can adjust the set of parameters to three quantities, the pion mass,
the pion decay constant and the quark condensate. The value of the constituent quark mass is typically
M =~ 350 MeV in agreement with lattice estimate.

3N

m (63)

Effective potential. It is also very useful to formulate directly the model in terms of the physical
hadrons. This can be done using path integral techniques starting from a kind of partition function,
the so-called vacuum persistence amplitude. The idea is to insert in the functional integral a change
of variables introducing scalar and pseudo-scalar boson fields and integrate over the fluctuating quark
quantum field, in other words to integrate out quarks in the Dirac sea and project them on the mesonic
degrees of freedom

VA

[ dvdbdendss (vo—0) 8 (7~ B°70) eap [ [t @]

[ dsait [ avas dgadz eap [z [t (Exn+ 00— d0) 411 (5 - zz?v‘ﬁfz/)))]

2 72
i / &'z (&sz - %)

/ d¥di exp [z / d4a:/:eff(2,ﬁ)] (64)

/ dxdIl / dipdi) exp

Q

where the Dirac operator is D(3, IT) = iy"o, —m—X —iT- Ivs. The explicit integration over the quark
field yields a highly non local lagrangian (the fermion determinant) which can be calculated as a loop or
derivative expansion. To one loop one finds

. 1 . .
Lopp(E M) = (aﬂzauz 4ol - aun) —w(s,0)
- %2 4 Ii2 A @Bk P
S0 = S NN [ 2 (s 2
wi(s, ) = ' G VK (e m) (65)

where W(Z,ﬁ) is the chiral effective potential. After introduction of canonical fields defined by o =
(m+X)/g and ¥ =11/g, it can be well approximated by a linear sigma model potential :

2 2 2 2\ 2

ms —m ms —3m

Wlom _ o s 0.2 + 7—1:2 _ s o m2 o. 66

e ( mene) — fmd (66)
This effective potential has a Mexican hat shape, as depicted on fig. 3, typical of a spontaneous breaking
of the chiral symmetry. It contains the energy of the Dirac sea of constituent quarks with mass M =
g (o) = gfx. In the chiral limit (m = m, = 0) the degenerate vacua correspond to the chiral circle (shown

on the right panel of fig. 3) at the bottom of the effective potential. Its equation is o2 + 72 = f2 and
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U(o,n)

Figure 3: The “Mexican hat” chiral effective potential (left) and the chiral circle (right) .

the pseudo-scalar field (pion) lives on this circle and represents the phase fluctuation of the condensate.
This pionic mode is massless since it does not cost energy to move on the chiral circle. The massive
scalar mode represents the amplitude fluctuation of the condensate. These mesons can be also coupled
to classical quark fields which can be identified with valence quarks for building models of the nucleon.
It is also possible to generalize the model to incorporate vector mesons (p,w) and axial-vector mesons

(a1).

3.4 Chiral symmetry restoration

Lattice results. When hadronic matter is heated or compressed initially confined quarks and gluon
start to percolate to be finally liberated. This picture is supported by lattice simulation at finite tem-
perature showing that strongly interacting matter exhibits a sudden change in thermodynamic quan-
tities, (possibly constituting a true phase transition) within a narrow temperature window around
T. = 180 — 190 MeV [12]. On fig. 4 we see near the critical temperature a very rapid growing of
the energy density (and other thermodynamical quantities such as pressure or entropy), signalizing the
transition from a hadronic resonance gas to the matter of deconfined quarks and gluons. This rapid
rise of the energy density is usually interpreted to be due to the deconfinement, i.e., associated with the
liberation of many new degrees of freedom. This transition is accompanied by a dropping of the chiral
condensate (see right panel of fig. 4) indicating chiral symmetry restoration. The critical temperature
for chiral restoration is usually defined as the maximum of the chiral susceptibility x,, = 9{(gq) /Om.
However why these two transitions seem to occur simultaneously is still an open question. There is also
the domain of finite density and low temperature where lattice simulations are not easily feasible; here
we have to rely on models and effective theories.

Partial restoration of chiral symmetry. We first recall the well known Feynman-Hellmann theorem.
We consider a hamiltonian of the form H = Hy + H' where H’ linearly depends on a parameter A
according to H' = Al/. Let us call |®(\) > an exact normalized eigenstate of H with eigen-energy E()\).
The theorem states that

OE(N)

<P [H'[B() >= A = (67)
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Figure 4: Lattice results [12] for energy density and pressure (left panel) and chiral condensate normalized
to the zero temperature result (right panel).

‘We apply the theorem to the QCD case
H=Hy+ Hysp=Ho+m /dl"@/_)’@/) (68)

where Hy is the full QCD hamiltonian in the chiral limit and m plays the role of A.

As discussed just before chiral symmetry restoration is expected to be fully restored at finite temperature
but also at finite density. However far before the full restoration the quark condensate starts to decrease
through the simple presence of hadrons since the hadrons have a positive quark scalar density which
partially compensates the negative scalar density of the vacuum. In a dilute medium each hadron present
with scalar density psp contributes additively to the dropping of the quark condensate

(@9) = (@)oo + Y, Pon Q% (69)
h

where Qg = d®r (gq(7)) 5 is the scalar charge of the hadron h. We can also introduce the hadron sigma
term defined as the expectation value on the hadron state of a double commutator involving the axial
charge which is identically equal to the chiral symmetry breaking piece of the hamiltonian:

oMy,

on =< h[Q2,[Q3, H]||h >conn=< h|Hysp|h >== /drm < hlp(r)|h >=2m Q% =m o

(70)
It is implicit in the previous matrix elements that the vacuum contribution has been subtracted and
one reconstitutes the scalar charge of the hadron. The last equality comes from the Feynman-Hellman
theorem since H,sp is linear in m. The result given in eq. (69) is valid for dilute non interacting matter
but a more general result can be obtained since the quark condensate can be obtained directly from the
equation of state. For this purpose we consider the grand potential in the grand canonical ensemble at
temperature T" and baryonic chemical potential up :

QV,T,ug) = —TInZ = ~Tin (Tr [e—<HQCD‘“BNB)D =Quac — VP(T,pug) =Vw(T,up)  (71)

Thanks to the Feynman-Hellmann theorem the quark condensate can be obtained by taking the derivative
of the grand potential with respect to the quark mass :

o) ) =5 (52) = tahane = 5 (5) - (72)

Hence the evolution of the quark condensate is exactly known once the pressure P(T, up, m) is known.

19



Chiral restoration and hadron structure Using the GOR relation (46) the evolution of the quark
condensate in the dilute approximation (eq. 69) can be rewritten as :

@0 1_ Z Psh Oh (73)
h

(79)ac frms

We see that each hadron present in a medium with a (scalar) density psp contributes to the evolution
of the condensate by an amount governed by its sigma term. Its dropping depends a priori on all the
present species of hadrons. Fortunately only the lightest hadrons contribute since heavy hadrons just
decouple from the condensate. This is simply because in heavy hadrons the mass of the quarks having
large momenta drops according to lattice [13] and instanton model [14] results. In other words the higher
states in the spectrum are not sensitive to the chiral asymmetry of the vacuum and it is plausible that
each baryon recovers a degenerate chiral partner with opposite parities [15]. This feature has to be
connected with the convergence of spectral functions of chiral partners at large energy. To leading order
in density and temperature one gets an approximate but model independent result :

= 2
{9y g5 o T (74)
$99) vac Po Sfz

The first term corresponds to the contribution of the nucleons calculated with a sigma term oy ~ 50 MeV
showing that in ordinary cold nuclear matter one already has more that thirty percent dropping of the
condensate. Notice that we have replaced the scalar density by the ordinary one since at low density
the nucleons are non relativistic and there is no difference between these two densities. The second
term comes from the thermal medium approximated by a non interacting massless pion gas; this result
corresponds to the leading term in chiral perturbation theory. From the above discussion it is clear that
there is an interplay between chiral restoration and hadron structure since the dropping of the condensate
is driven by the values of the sigma terms. These sigma terms which are related to the masses are intrinsic
properties of the hadrons and depend on their structure and in particular on the respective roles of chiral
symmetry breaking and quark confinement mechanism in the generation of the mass [16]. The sigma
term of the nucleon, also called the pion-nucleon sigma term, can be obtained by a non straightforward
analysis of pion-nucleon data. The accepted value is around 50 MeV. It can be also extracted from
lattice data but some extrapolation of the data to the physical quark mass is needed using either chiral
perturbation theory [17] or a chiral model of the nucleon [18]. One advantage of the model analysis is
to demonstrate that the virtual pion cloud surrounding the quark core is responsible from almost half of
the pion-nucleon sigma term.

Fluctuations of the chiral condensate and chiral susceptibilities. When approaching a phase
transition it is always important to study fluctuations, in particular the ones related to order parame-
ters. In magnetism the magnetic susceptibility is x,, = OM/OB. It represents the modification of the
magnetization induced by a small external magnetic field. Having in mind the analogy with the Heisen-
berg ferromagnet seen in subsection 3.2, the exact analog in the QCD case is the scalar susceptibility,
xs = 0{dq)/Om, representing the modification of the quark condensate in presence of the small quark
mass. Using linear response theory it is related to the correlator, Gg(r,t, r',t’), of the scalar quark
density fluctuations taken at zero energy and momentum going to zero :
_8(ch>_2 dt’ dr’ (-t i [0 gq(r’',t]) = =0.q

5= 5y [ at dx'O(~t)(~il624(0)  Sqq(x'.¥))) =2 ReGsw = 0.+ 0).  (75)
In the spirit of what was said previously it is interesting to compare the susceptibility associated with
chiral partners : the scalar one, yg, which encodes the property of the sigma meson and the pseudo-scalar
one, xps, which encodes the properties of the pion. xpg involves the pseudo-scalar pion-like operator
qivs % q which can be generated from the scalar operator, gq, by an axial transformation, hence these
two operators are chiral partners. This pseudo-scalar susceptibility is defined from the pseudo-scalar
correlator and describes the propagation of pion-like excitations :

/oy . Ta _ . Ta
Xps =2 /dt dr’ ©(—t"){—i |:ql’}/5?Q(O), Z’Ys;‘](r/ t’)}) =
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Figure 5: Left panel: square root of the inverse of the scalar (o) and pseudo-scalar (7) thermal sus-
ceptibilities versus lattice units representing temperature from [21]. Right panel: Density evolution of
the pseudoscalar susceptibility (dashed curve) and of the scalar susceptibility (full curve) with its pionic
contribution (dot-dashed curve) and its p-h contribution (dotted curve) [22].

The second equality shows that it related to the quark condensate, using partially conserved axial current
(eq. 33) and soft pions theorems [19]. The scalar susceptibility can be calculated in various ways : from
the equation of state, using a model or using a dispersive approach :

1 (0% . o 2 .
xs==|=—=] =2ReGg(w=0,§—0)= dw | —— ) ImGg(w,7=0). (77)
2 8777% i 0

The last equality involves the integral of the scalar spectral function which is expected to receive an
important contribution of low-lying nuclear excitations at finite density [20].

The thermal scalar susceptibility can be calculated on the lattice [21] as shown on the left panel of fig.
5. It becomes very large near the phase transition as expected for a second order or weak first order
transition. What is actually plotted on fig. 5 is (the square root of) the inverse of the scalar and pionic
susceptibilities versus some lattice units representing temperature. At low temperature they are very
different (they essentially scale like the sigma and pion masses). Near the phase transition the scalar
one becomes very large showing that the sigma becomes a soft mode. At high temperature they become
identical and this is a genuine signature of chiral restoration. Unfortunately the finite density, low T
susceptibilities are not available on the lattice but it is possible to get an estimate using an effective
chiral theory. For example in the linear sigma model-based approach one makes the replacement :

q—q RN <qq>'UCLC .

fr

In this approach the in-medium scalar quarks density fluctuations are transmitted by the sigma meson
and are relayed by p-h excitations dressing it. We also see a convergence effect accelerated by the pion

cloud contribution which might be attributed to chiral restoration although it is still an open question
[22].

Correlator mixing. Let us come back to the vector and axial-vector currents :

VE=9ri g, A=y, (78)
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The properties of these currents in the medium are encoded in the vector and axial-vector correlators :

() — —i / Ao e << T (Vi(a), VE(0)) >> (79)

() — —i / Bt << T (A (x), AL(0)) >> . (80)
In the vacuum their imaginary part are determined by the vector and axial spectral densities, py (q?)
and pa(q?) which are the quantities containing the physical information. From Lorentz covariance and
current conservation they must have the form :

;

——ImI (¢ T=0) = —(¢°¢" —q"q") pv(d?) (81)
7

——ImI (T =0) = ¢"¢" f78(a* —m7) = (¢ 9" = ¢"a") pald)- (82)

The first term in the axial correlator corresponds to the pion component, f,0"¢, of the axial current and
the spectral densities py and p4 are saturated by p and a; mesons as shown on the left panel of fig. 2.
Experimentally they have been obtained simultaneously by the ALEPH collaboration at LEP from the
hadronic decays of the tau lepton in even or odd number of pions [9, 23].

From chiral symmetry alone it is possible to show that, to order T2 in the chiral limit, the only medium
effect is the mixing of the two correlators without any mass shift [24] :

Y (¢;T) = (1-¢Ilf(¢;T=0) + ell'y(¢;T =0) (83)
(¢ T) = (1—-eoUy(¢;T=0) + ell}Y(¢: T = 0). (84)

At this order there is no dropping rho mass. The mixing parameter € is related to the pion scalar density
<< ®2 >> in a thermal bath with pion occupation number ng = (exp(8k) — 1)~ " :

6_2<<<I>2>>_3/ dk n(wk)_T_2 (85)
32 f2) @en)P w6
It also follows that the pion decay constant drops according to
f2(T) 1 << ®?>> T2
Bk R S O & (%)

to be compared with the quark condensate (eq. 74) which drops faster. A very important point will be
discussed later. This axial-vector mixing driven by in-medium pion loop effects can be generalized for
finite density [25] and is at the heart of the interpretation of the dilepton data from the NA60 collaboration

(fig. 9).

Weinberg sum rules In complement it is possible to establish very useful sum rules, known as the
Weinberg sum rules [26]. The first one is related to the spontaneous chiral symmetry breaking in the
QCD vacuum and the other one is just current conservation :

/Ooo ds <pv(s) - PA(8)> = f2: /OQO dss <pv(s) - pA(s)> =0. (87)

These sum rules can be generalized at finite temperature although one needs in general the introduction
of two distinct (transverse and longitudinal) spectral functions. However at fixed vanishing momentum
transverse and longitudinal spectral functions coincide and the finite temperature Weinberg sum rules

coincide : /OO . K_Imnv(W,q = 0)> - <_ImHA(qu = 0))] =0 (88)
0

T w? T w?
o0 ImIly(w,q=0) ImIls(w,q=0)
2,2 ’ 9 o
/0 dw”w [<_ T w? U T w? =0 (89)
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Notice that the pion pole which appears through f, in the lhs of the first sum rule at zero temperature
cannot be isolated since the pion couples to other medium excitations and broadens. These sum rules
will certainly give some non trivial constraints on the evolution of the shape of the spectral functions.
To illustrate this point, let us play a little game and assume a simple pole Ansatz

ImlIly(w,q=0 my Z,(T N
m ( 2(1 ) ggp P(Q)(s( 2 mpZ(T)) (90)
ImlIls(w,q = 4 ZAT

where the masses m*(T") are not really effective masses but have to be interpreted as the centroids of the
distributions. Using these sum rules, one easily obtains the following results. First in the vacuum

m, _m 2 2 2 my -
92 7 m, =ag, fr wi a m2, (92)
and then at finite temperature
FA(T) o m,
u =aZ,(T — . 93
7 =D @ @ %)

The conclusion is that at full restoration, where the order parameter f7(T") vanishes, the vector and axial
vector centroids are identical. But this does not tell us how the two spectral functions merge and the “big
question” is how is the degeneration realized near the critical temperature 7.. Do we have a dropping
scenario of quasi-particles or do we have a full melting of the resonances? This is illustrated on fig. 2. A
possible mechanism is the axial-vector mixing. The emission and the absorption of thermal pions present
in the hot medium is able to transform a vector current carried for instance by the p meson into an axial
current carried by the a; meson and at full restoration a full mixing is achieved, i.e., the vector and axial
correlators become identical. The same question holds at finite density where, as we will see, we also
have mixing mechanisms, just replacing the thermal pions by virtual pions. Theoretical analysis of the
NAGO data seem to indicate that the melting scenario is the most plausible one.

4 Operational approaches and effective theories for low energy

QCD

4.1 Chiral perturbation theory

The idea and the aim of chiral perturbation theory (xPT) is to construct an “exact” copy of QCD in
the low energy sector for light particles whereas heavy particles are frozen or taken as static sources [27].
This is possible since there is a clear separation (mass gap) A, = 47 f, between light particles (Goldstone
bosons) and heavy particles (p, o, w, ...) which are integrated out.

To construct the effective theory (EFT) we start from two observations. The first one is that “QCD
confines”. Only colorless states (hadrons) are formally introduced as fields. The second one is that
chiral symmetry is spontaneously broken with the appearance of a non vanishing quark condensate which
minimizes the energy of the QCD vacuum. Fluctuations around the QCD ground state are generated
mainly by pions without cost of energy. We parametrize the fields associated with the fluctuations of the
condensate (written in a matrix form) as :

M=c+i7-#=SU  with U(z) = e "9@/1, (94)
The field o and 7, already introduced previously in the context of the effective NJL potential, appear as

the dynamical degrees of freedom and may deviate from the vacuum value, (o) o ¥ = (4q),,., by varying
external conditions (baryonic density or temperature). The potential energy (the so called chiral effective
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potential) when plotted against these variables will exhibit a typical mexican hat shape (remember again
the NJL model and fig. 3). The bottom is a circle (the chiral circle 02 +72 = f? also shown on fig. 3) in a
four dimension space (analogy with the O(4) ferromagnet). The low energy constant f will be identified
later with the pion decay constant fr. It is convenient to go from the “cartesian” representation (o, 7)
to the “polar” representation (S, (5) as indicated in the second equality of eq. (94). The “radial” field
S = v/0? + 72 is a chiral invariant object associated with radial fluctuation of the condensate around its
vacuum value f. The new pion field 5 represents the goldstone modes associated with phase fluctuations.
One moves without cost of energy on the chiral circle through these soft modes. Conversely the excitation
of the radial modes cost much more energy since the associated scalar mass related to the curvature of
the effective potential is a typical QCD mass (twice the constituent quark mass in the NJL model). In
chiral perturbation theory the radial mode S is very naturally frozen to its vacuum expectation value,
fr- Only displacement on the chiral circles are thus allowed. The U matrix, parametrized in terms of
the field associated with the goldstone mode, has a perfectly well defined transformation law under chiral
rotations
U= VLUV

and is the appropriate ingredient appearing in the effective lagrangian whose structure is governed by
chiral symmetry alone with also the addition of the explicit symmetry breaking term.
The resulting low energy effective theory firstly describes weakly interacting pions since the interaction
vanishes for zero momentum pions in the chiral limit. The QCD lagrangian is thus replaced by an
effective one, L.f¢ (U, 0U, 02U, ...), depending on the U matrix representing the pions. This lagrangian
can be organized as an expansion in powers of derivatives of the pion field or in power of pion momentum
(pr/Ay) and in power of the quark mass or the pion mass (m./A,). To the extent that the effective
lagrangian includes all terms dictated by the symmetries, the effective theory is equivalent to QCD. The
leading piece is :
f? f?

L@>:-Zzw[@1ﬁa“U]+»§-BOTrpn(U4—UU]. (95)
The first term is highly constrained by symmetry : the linear sigma model or the NJL model would
give the same low energy effective theory and the f parameter has to be identified with the pion decay
constant at this order. The second term is the symmetry breaking mass term. Since the quark mass is
small it can be handled perturbatively, together with the power series in momentum. It is however not
universal and depends on the (chiral symmetry breaking) QCD dynamics. Identifying its expectation
value with the corresponding one of the true QCD lagrangian one gets (7q) = —f2By in the chiral limit.
The pion mass is identified as m2 = 2mBy which is nothing but the GOR relation.
To fourth order one has to construct terms allowed by symmetries :

LW = %(ﬂﬂ%U@Wﬂf—k%Tr@MWJﬂTTWWﬂWU]
- %Bowqmauwmn2+%Bﬂ%@ﬂ%%&nhﬂU+mﬂ+ ..... (96)

The constants [; must be determined by experiments. Given the effective lagrangian, the framework for
systematic perturbative calculation of the scattering matrix involving Goldstone bosons, named Chiral
Perturbation Theory (ChPT), is then defined by the following rules : Collect All Feynman diagrams
generated by Lers. Classify all terms according to powers of a variable Q which stands generically for
three-momentum or energy of the Goldstone bosons or for the pion mass m,. The small expansion param-
eters is Q/4m fr. Loops are subject to reqularization (most of the time dimensional) and renormalisation.
In the spirit of the EFT the unknown coefficients should be fixed by matching the EFT with QCD by
renormalization group techniques but in practice they are fixed phenomenologically by comparison with
data. ChPT has many successes, in first rank low energy 77 scattering and the confirmation of the strong
condensate scenario which validates the GOR relation. The approach can be extended quite successfully
to the SU(3) sector for K K scattering. Unitarized ChiPT has been also developed (for instance a ChPT
amplitude is unitarized via a Bethe-Salpeter or Lippmann-Schwinger equation). This is necessary when
resonances are involved since this cannot be described in perturbation theory.
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Baryons can be also introduced as heavy sources coupled to pions [28]. Again the lagrangian is organized
as an expansion in powers of derivatives and quark masses. The leading term is dictated by chiral
symmetry alone

LY = P [iv (0" + iv") + gan® — Mo] ¥
with E=VU o= % (coret +etore) ot = % (omet — ¢tore) (97)

where the Dirac spinor ¢ denotes the iso-doublet of nucleons. There are two parameters not determined
by chiral symmetry : the nucleon mass in the chiral limit My and the axial coupling constant g4 = 1.27
known from the analysis of neutron beta decay. At next to leading order besides terms encoding the
influence of the Delta in low energy pion-nucleon scattering, the symmetry breaking quark mass term
appears. Its effect is to shift the nucleon mass to its physical value My = My + on, where oy >~ 50 MeV
is the already encountered nucleon sigma term. An effective 7V lagrangian can be obtained after an
expansion in power of 5/ fr. It reads :

LI = oy (i7.0" — My) — 5}4 DN TN - O
1 - = ind - aON — -
- 4_f7%¢N’7u7'¢N “OMp x 0"p + 2 YNUNPT + . (98)

We recognize the well-known Yukawa pseudo-vector pion-nucleon coupling as the second term. The
calculational framework from that, baryon chiral perturbation theory, has been applied quite successfully
to a variety of low-energy processes such as threshold pion photo- and electroproduction and Compton
scattering on the nucleon or pion-nucleon scattering. This approach has been extended to the chiral SU(3)
dynamics. There are nice examples (K N scattering) where the presence of resonances and in particular
the A(1405) will necessitate a unitarized coupled channel approach at the price of destroying the rigorous
power counting by iterating some selected subclass of diagrams. Of course ChPT has intrinsic limitations
since it is a field theory which does not address the question of the nucleon structure. In other words
the structure of the nucleon is hidden for what concerns for example the specific role of the pion cloud.
The radial scalar field being frozen, ChPT has little to say for the nucleon mass evolution or for the real
chiral origin of attractive scalar fields in nuclear matter.

4.2 In-medium chiral perturbation theory

Three loop approximation. Despite these limitations ChPT constitutes an interesting framework to
address the question of the nuclear many-body problem. This approach of in-medium chiral perturbation
theory involves first pions and nucleons only. The starting point is given by the pion-nucleon interaction
terms given by the above ChPT lagrangian (eq. 98). However in nuclear matter a new scale appears
which is the Fermi momentum kp. Since krp =~ 2m, pions should be included as explicit degrees of
freedom and the external momentum kp has to be taken on the same footing than the pion mass.

As an example, we describe first the original work of the Munich group [29]. They calculate the EOS
(the binding energy per particle) as a systematic loop expansion having a one to one correspondence with
an expansion in pion mass and external momentum which is identified here with the Fermi momentum
but with non trivial coefficients which are function of kr/m,. In practice this approach (which contains
the effect of one-pion exchange and two-pion exchange between nucleons) is a diagrammatic approach
organized according to the number of in-medium insertions at the level of the nucleon propagator :

Sr(p) = (6 + My) (ﬁ 2 (2 — M2) © (5 — M) © (ky - |151)> .

We refer the reader ref. [29] for details. The first contribution in the expression of the energy per nucleon
is the kinetic energy and the second one is simply the Fock term of the pion exchange with two-medium
insertions. The next contribution contains the iterated one pion exchange (strictly speaking the part of the
diagram having two medium insertions because this diagram also has a three medium insertion including
Pauli Blocking) and the last term corresponds to irreducible two-pion exchange. The corresponding
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Figure 6: One-pion exhange (1), iterated one-pion exchange Hartree (2) and Fock (3) and irreducible
two-pion exchange (4,5,6) diagrams [29].

diagrams are depicted on fig. 6. As pointed out by the authors, dimensional regularization cannot be used
here since diagrams having a linear divergence would give a positive energy while standard second order
perturbation theory implies attraction. For this reason they have used a cutoff which is essentially the
only parameter of the calculation. The iterated exchange diagram gives the bulk of attraction through the
linear cutoff dependent contribution which looks like a contact interaction. The saturation mechanism
is rather unusual. It is a balance between a short range attractive interaction (going like p o k%)
and intermediate range repulsion going like k5. This one parameter (cutoff) calculation gives a decent
saturation curve with compressibility modulus around the accepted values. Another very good point is
the fact that it gives the correct asymmetry parameter. In subsequent works the effect of the A(1232)
resonance has been taken into account through the inclusion of one or two deltas in the intermediate
state of the two-pion exchange diagrams [30]. A new scale appears which is wa = Ma — My = 293 MeV
also of the order of 2m,, namely wa ~ krp = 2m, . This kind of diagram sometimes simulated by a
fictitious sigma exchange diagram is known to give a sizable contribution to the isoscalar central part
of the NN interaction. It also gives a van-der-Waal’s type of interaction. Inclusion of the A(1232) in
more sophisticated version of the approach improves the isospin properties and in particular the energy
dependence of the asymmetry energy. The real weak point of the approach at this level is that it does
not reproduce the correct spin-orbit splitting which is, as everybody knows, absolutely needed to get the
correct magic numbers.

Density functional theory. One of the traditional success of relativistic mean field theory (where the
nucleon moves in the self-consistent scalar attractive and vector repulsive background fields) is to provide
the appropriate spin-orbit potential since it is automatically contained in the Dirac equation for a nucleon
moving in mean vector and scalar fields [31]. It is well known that the naive application of the atomic
physics formula, giving a spin-orbit potential proportional to the derivative of the mean field potential,
gives in the nuclear case a nuclear spin-orbit splitting too small by an order of magnitude with in addition
the wrong sign. In relativistic mean field theory the saturation comes from a delicate balance between a
large vector repulsion going like the ordinary density and an even larger scalar attraction depending on
the scalar density which is smaller than the density. In finite nuclei the mean-field behaves roughly like
the density profile and from the Dirac equation it can be shown that the spin-orbit is proportional to the
algebraic difference between the vector and scalar pieces. This translates in adding the strength and this
gives the appropriate enhancement and sign of the spin-orbit potential.

To incorporate this needed feature in a further work, the Munich group [32] has developed an improved
approach where the nuclear ground state is characterized by strong vector and scalar mean fields and the
pion loop expansion is just added on top of that. This is formulated in term of a relativistic version of
the density functional theory (DFT) based on the Hohenberg-Kohn theorem which states that the energy
density can be written as a functional of the density. This functional is usually decomposed first into
a kinetic energy term and a Hartree exchange term associated with vector and scalar exchanges. The
rest which contains the exchange Fock terms and the correlation energy is obtained from the pion loops
in the chiral perturbation framework. One very attractive aspects is linked to the fact that the vector
and scalar self-energies are related to QCD condensates through a (simplified) QCD sum rule analysis.
One finds numerically that they just compensate for the binding energy per nucleon and they give the
appropriate spin-orbit term, the bulk of the attraction coming from pion loops. However it is clear that,
from the scalar self-energy, that the nucleon mass evolves just like the condensate and this cannot be
true since the pion cloud piece which is about the half of the sigma commutator does not contribute to
the evolution of the mass. However the whole approach gives impressively good results for finite nuclei.
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Figure 7: Relative deviations of the calculated binding energies (upper left) and charge radii (lower left)
from the experimental values for a set of spherical nuclei. Relative deviations of the calculated binding
energies from the experimental values (upper right) and calculated charge radii in comparison with data
(lower left) for the set of even-A Sn isotopes. Details can be found in [32].

Finite nuclei calculations are actually done using the Kohn-Sham formulation of the DFT where the
ground state is built with auxiliary single particle wave functions. Minimizing the functional with respect
to this wave functions give self-consistent Dirac equation for quasi-particles moving in local fields. In
practice the Kohn-Sham equations are solved using an equivalent point coupling model reproducing the
ChPT results. Some examples of the excellent results as good as the most sophisticated mean field
relativistic approaches are shown on fig. 7. This concerns first the relative deviations of the calculated
binding energy and charge radii with respect to the experimental value. It is shown that the inclusion of
the A significantly improves the results. The same also holds for spin-orbits splittings in doubly closed-
shell nuclei. Results for an isotopic chain to test the isospin dependence in HFB calculation with a Gogny
pairing force are also very good as shown on the right panel of fig. 7.

4.3 QCD sum rules

Basics. The QCD sum rule approach (QCDSR) [5] is a method which provides a relation between the
fundamental properties of the QCD vacuum, namely the quark and gluon condensates, such as (gq),
((79)%), (G?), and the properties of hadrons through their spectral functions (in short mass and width).
It is a fully operational method in the sense that it is in principle model independent and does not
require to have a real understanding on the non perturbative physics at work. The QCDSR works well
for the masses of stable hadrons and also relatively sharp resonances (p meson, A(1232)). In hadron
spectroscopy, QCDSR plays a complementary role to the lattice QCD since both extract hadron masses
from two-point correlation functions. The basic object is a two-point correlator between two currents
(or interpolating fields) having the quantum numbers of the hadron under consideration. As already
seen, using essentially causality, the correlator in momentum space is expressed as a dispersive integral
involving the spectral function which is the object experimentally observable via appropriate probes like

”y,Wi :

H(qz) _ % /d%eiq“ < o|T (J*(x), J,(0))]0 >=1I1(0) + q2/0 s @—s—ta

* ds (—1) Im1i(s)

(99)

‘We have taken here the specific case of the electromagnetic current which can be decomposed according
to its quark content into p, w and ¢ components :

2 1- 1

Jh = gafy“u - gdfy“d — 357“8 =Jl+ I+ Ty (100)
1 - 1 7 1

o= s @fu-dyd),  Jf=(@futdytd), Ty =—35s. (101)
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The three associate spectral functions (p,w, ®) can be measured by looking at various hadronic channels
in eTe™ annihilation since it is experimentally established that these different channels which interfere
weakly are strongly dominated at low energy by the corresponding resonances :

e Ji: p dominance through eet = p
e J!: w dominance through e“et — w — 37
e J4 : ® dominance through e~et — & — KK.

It follows that this correlator is known for any value of ¢> once we know the spectral function p(s) =
—(1/ms)ImII(s).

For large space like momenta Q? = —¢* = ¢ — g3 — +00, the correlator is dominated by small size con-
figurations for which perturbative QCD is applicable. In practice this is done using the so-called Operator
Product Expansion (OPE) [33] which is a Taylor expansion around = = 0 of the space-time correlator. In
momentum space one obtains a dominant log term plus an expansion in 1/Q? with coefficients involving
quark and gluon condensates, i.e., matrix elements of quark and gluon operators on the non perturbative
QCD vacuum :

I(¢? = —Q?) /°° ds (—=1) ImIL(s)
0

Q2 s s + Q2
o dy | ! (Q*\ | a c2 3 1 102
= W \‘—CQ n Kﬁ) + @ + ayl + @ —+ ... J . ( )

The momentum g is an arbitrary scale usually chosen around 1 GeV. In the isovector channel (p meson
channel, dy = d, = 3/2) one finds

2
a
ch=1+ —S(WQ ), ) = —=3(m2 +m?),
2
b= % <G-G> +47T2(mu<12u>+md<dd>)
4 ~ “Four-quark condensates” ~< (gq)* > (103)

where ag(Q?) ~ 47/[91n(Q*/A%¢p)] is the QCD running coupling. At this point we do not give the
explicit form of ¢ in terms of the four-quark condensates but simply mention that their values are not so
well known. Consequently a factorization, < (gq)? >~< gq >2, is often assumed which constitutes one
of the major uncertainties of the method. In the next subsection we will nevertheless say a little bit more
about this specific point. For the w meson (d,, = 1/6) the only modification concerns the ¢3 parameter.
The equation (102) contains the desired link between QCD condensates (rhs) and hadron properties (lhs)
but there is an important difficulty. The OPE converges only for large Q2 but in that case many resonances
contribute to the dispersive integral and the information on the low lying resonances is partially lost. To
improve the weight of the low mass resonances and the convergence of the OPE one uses a trick which is
a change of variables (Q — Mp) called Borel transform. A new equation is obtained :

1 ds —s/M>, 1 dy c1 Co c3
— [ — —— | ImIl(s) = —= — — + — + ... 104
Mg/se e A el R v vz S N Vi (104)

The improvement lies in the fact that the high part of the spectrum is now exponentially suppressed.
The consistency test of the method is a relatively large optimum domain in the Borel mass in which the
lhs and the rhs of eq. (104) coincide, with Mp not too large to reinforce the low part of the spectrum and
not to small to have the convergence of the OPE. The test of coherence of the method is a sufficiently
large domain in the Borel mass, typically 0.8 GeV — 1.5 GeV, in which the rhs and lhs coincide.

In the vacuum the lhs involving the spectral function can be taken either from data or from a model. The
QCDSR analysis allows to extract the value of the condensates. An example has been given above which
concerns the energy density of the QCD vacuum related to the value of the gluon condensate extracted
from charmonium sum rules. It turns out that in general the analysis is not very sensitive to the width

28



of the resonances provided it is not too large. The conventional sum rule analysis assumes a specific form
for the spectral function, usually a pole plus continuum assumption :

R(s) = —127” ImIi(s) = Fy 8(s —m2) + dy (1 + %) O(s — sy) (105)
The simplified spectral function is made of a peak at the vector meson mass and a perturbative QCD
continuum beyond a characteristic scale sy with d, = 3/2, d, = 1/6, do = 1/3. The inverse work can
be done. From the known condensates, optimal values of (syv,my,Fy) can be determined. One finds
Spw = 1.5GeV?, s = 2.2GeV?, which yields almost exactly the experimental values m, , = 0.77 GeV,
mge = 1.02GeV. The fact that the approximate degeneracy of the p and w meson masses emerges
naturally in the OPE is one of the traditional successes of the QCDSR.

In-medium QCD sum rules. The QCDSR approach can be generalized at finite density but Lorentz
invariance is lost and there is a separate dependence of spectral functions on the energy ¢° = w and the
three momentum ¢. At ¢ = 0 the QCDSR equation has nevertheless the same form than in vacuum and
a similar analysis can be made but including the density dependence of the condensates. Again the main
uncertainty is the four-quark condensate for which a not very well controlled factorization approximation
is made. At this level we stress that the naive application of QCDSR at finite density may be dangerous
when strong melting of the meson resonances with other many-body excitations occur. This is the case
for the rho meson where an erroneous dropping mass scenario was proposed in the past on the basis of a
too simplistic QCDSR analysis. We will come to this point in the next subsection.

4.4 In-medium hadrons

Status of the problem. Intense theoretical and experimental activities have been devoted in the recent
years to the question of the in-medium changes of hadrons or more precisely to the evolution with density
and temperature of correlators and spectral functions. It is rather suggestive that the properties of a
composite object such as a hadron are modified once it is placed in a piece of matter (e.g., a nucleus) or
in a heat bath (e.g., a fireball emerging in a relativistic heavy-ion collision). At least if the density of the
system is so high that the size of the composite object is comparable to the average distance between the
constituents of the system, then the intrinsic structure of the composite object starts to play a role. The
strongly interacting medium can be seen as a QCD system which is characterized by modified properties,
i.e. modified condensates. This may be linked to a modified symmetry pattern of QCD associated
with (partial) chiral restoration. This change of the “QCD ground state” is expected to be “visible” in
the modification of its excitation spectrum, namely the hadrons through their mass, width or coupling
constants. However the in-medium changes of hadrons (the associated correlation functions) are usually
calculated within conventional hadronic many-body approaches based on chiral dynamics where hadrons
move in the implicitly unmodified chirally broken vacuum. In short, the central question is thus to make
a connection between the observed or calculated in-medium changes of hadrons and (precursor) effects of
chiral restoration. A priori the QCDSR approach seems to be ideally suited for this job. Indeed the QCD
sum rule, when generalized at finite density, allows to relate the evolution of the hadron spectral functions
to the changes of the QCD condensates. However the less satisfactory point is that this approach only
constrains but does not elucidate the precise nature of physical mechanisms driving chiral restoration.
The QCDSR should be mixed with more detailed approaches (models, effective theories, lattice). In the
next paragraph we will give a brief and non exhaustive review of some prominent medium effects and in
particular those related to the p meson.

Some examples of medium effects. In the nuclear medium the pion propagation is modified mainly
from its p-wave interaction with nucleons (the second term of the first line of the effective lagrangian
given in eq. 98). For sufficiently energetic pions (w ~ 300 MeV ~ Ma — My) the A(1232) can be
also excited and it is the dominant process. These virtual particle-hole and delta-hole excitations are
represented on fig. 8. The problem of pion propagation in nuclear matter possesses a strong analogy with
the propagation of light in matter, the delta excitation playing the role of the dipole excitation of atoms
which modifies the dispersion relation of in-medium photon [34]. Most of the physics can be captured
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Figure 8: Light panel: on the upper part the dispersion curves for the pionic collective modes are shown
for warious values of p/po; the pionic branch corresponds to the lowest mode; on the lower part the
strength of the pionic branch (not discussed in the text) is shown. Upper right panel: virtual p — h and
A — h excitations modifying pion propagation. Lower right panel: comparison of theory to experiment
for A excitation in 2°°Pb by the (*He,t) reaction at 2GeV and zero angle; the dot-dashed curve is the
first order response and the full curve includes collective w/\ effects; the dashed curve corresponds to a
calculation on a proton target [36].

by a simple two-level quantum mechanical model [35] which also incorporates the effect of short-range
correlations (the Ericson-Ericson-Lorentz-Lorenz (EELL) effect). There are two physical collective modes
whose dispersion relations are depicted on fig. 8 at various densities. In particular the lowest one called
the pionic branch is significantly softened with respect to the free pion one. Within a much more detailed
approach adapted for finite nuclei [36] a convincing interpretation of the observed shift of the strength
in the (*He, T) experiment at SATURNE has been given in term of this pionic branch as shown on the
right panel of fig. 8.

Since the pions are softened in nuclear matter it has been proposed that the two-pion states or two-
pion resonances should be also softened in nuclear matter [35, 37]. This concerns in fist rank the sigma
meson. We mean here by sigma meson the fo(600) of the particle booklet which is plausibly a broad 77
resonance which has probably little relation with the chiral partner of the pion discussed above. Such an
object can be generated by unitarized chiral perturbation, i.e., chiral dynamics. Various collaborations
have measured the invariant mass distribution for a produced pion pair in a reaction induced either by
incoming pions or photons on various nuclei. They have all observed a systematic A dependent downwards
shift of the strength when the pion pair is produced in the scalar-isoscalar channel namely in the sigma
meson channel. As a specific example, photo-production data of the TAPS collaboration at MAMI [38]
clearly exhibits a downwards shift of the strength growing up from hydrogen to lead in the momy channel
dominated by the sigma meson channel and this effect is not present in the isospin one channel. The
explanation relies on the medium modification of the two-pion propagator and consequently the unitarized
w7 interaction induced by the softening of the single pion dispersion relation. A full calculation along
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these lines has been performed by the Valencia group in a framework of unitarized chiral perturbation
theory [39] which not badly reproduces the data. The “big question” of the connection with chiral
symmetry restoration has been intensively debated. Quite superficially there is a very general argument
since chiral restoration implies a softening of a collective scalar-isoscalar modes in agreement with the
data. Moreover it turns out that the medium effects governing the reshaping of the strength in the low
invariant mass region in two-pion production experiments are precisely the same as those affecting the
scalar susceptibility and accelerating its convergence with the chiral partner pseudo-scalar susceptibility
as shown on fig. 5 [22].

The in-medium rho meson spectrum and chiral restoration. We have already seen in section
4.3 that the iso-vector vector correlator, i.e., the iso-vector piece of the correlator of the electromagnetic
current is saturated at low energy by the p meson. This so-called vector dominance (VDM) is formally
described in its simplest form by a field current identity which states that the hadronic electromagnetic
current is proportional to the vector meson field : J4 = (m?2/g,) p* with g, ~ 5. The physical meaning
is that the coupling of a photon to hadrons is not direct but proceeds through the transformation of a
(virtual) photon into a rho meson which couples to hadrons. This well established phenomenological ob-
servation opens the possibility of studying the rho meson spectral function in excited strongly interacting
matter (formed for instance in relativistic heavy ion collisions) by measuring electromagnetic radiations,
i.e., dileptons arising from virtual (time-like) photons, v* — p+tu~ orete™.

The VDM phenomenology can be easily implemented in effective chiral Lagrangians. An example used
in ref. [40] is a gauged non linear sigma model lagrangian :

7—_'
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(106)
The vacuum width of the rho meson, I' = 150 M eV, comes from its decay in two pions controlled by the
coupling constant g. In the medium the p will decay into in-medium modified collective quasi-pions. As
in the case of the scalar modes, due to the the softening of the pion dispersion relation, this generates
an accumulation of strength for an invariant mass near 2m,. This is the first diagram depicted on the
upper left panel of fig. 9. The other two diagrams are permitted by the presence of the third term of the
lagrangian (106), the Kroll-Ruderman (KR) term required by gauge invariance. The first KR diagram
is a vertex correction with a polarization A-hole bubble which just kills the structure at 2m, and the
last one generates a structure near 500 MeV through the decay of the rho into a a quasi-pion (the pionic
branch or the lowest mode of fig. 8) and a A-hole state. This constitutes our original prediction of ref.
[40] shown on the lower left panel of fig. 8 where we clearly see a structure growing up below the rho peak
with increasing density. This model has been subsequently improved in collaboration with R. Rapp and
J. Wambach [41, 42] and developped [43, 44] by the adjunction of the direct coupling of the rho meson to
higher baryonic resonances (in particular the N*(1520)) on top of the pion cloud effect and adapted to the
context of relativistic heavy ion collisions and dilepton production. After more than ten years of intensive
theoretical and experimental activities, the NAGO collaboration [45] has been able to really extract the rho
meson spectral function as shown on the lower middle panel of fig. 9. The unmodified rho as well as the
dropping rho scenario are clearly ruled out. The data show a sizable broadening in agreement with the
theoretical framework discussed above, now referred as the Rapp-Wambach (RW) scenario. The original
pion cloud effect is one contributor explaining part of the strength below the rho peak. This broadening
is sometimes put forward as a signature of chiral symmetry restoration but again the “big question”
arises. Is it possible to identify mechanisms directly connected with chiral restoration? The answer is yes
since we have demonstrated in ref. [25] that the pion cloud contribution, which is mainly driven by the
baryonic density, contains an axial-vector mixing effect (see also the discussion at the very end of section
3). The rho meson mixes with the finite density axial correlator which has a pionic contribution and a
baryonic contribution carried by A-hole states. Finally there are pure meson gas contributions, referred
as 47 mixing [46] on the lower right panel of fig. 9 which populate the tail beyond the rho peak. They
also contain an explicit mixing between the p meson and the a; meson.

Lon=—gp" (‘f’ x 3@’) — g Nyup™.

As discussed in the introduction of the sub-section, QCDSR may provide a connection between hadron
spectral functions and fundamental changes in the QCD vacuum. In a recent work [47], an interesting
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Figure 9: Upper panel: medium corrections to the rho propagation as explained in the text (left); the
right part summarizes the self-energy diagrams of the rho meson: pion cloud effect (a) , direct coupling to
baryonic (b) and mesonic (c) resonances. Lower panel: original prediction [40] for the rho meson spectral
function at various values of p/po (left); NAGO dimuon spectrum [45] in semi-central In(158 AGeV)-In
collisions compared to theoretical predictions from the Rapp-Wambach scenario (middle); the theoretical
calculation presented on the right part also incorporates the effect of chiral mizing [46].

QCDSR analysis for the p meson spectral function has been performed. The aim was to study the
compatibility of either a pure dropping rho mass or a pure broadening scenario with the evolution of the
QCD condensates in a pure chiral restoration scenario. Pure chiral restoration means that only the chirally
odd condensates which are not chiral invariant drop to zero at full restoration since they have to be zero
by definition of a chiral order parameter. The other symmetric condensates may also drop but this is not
required by chiral symmetry alone. The pure chiral restoration assumes that these symmetric condensates
which are chirally even remain at their vacuum value. According to the discussion given in subsection 4.3,
the important condensates are the gluon condensate and the four quark condensate. The gluon condensate
entering the co coefficient in eq. (102, 103) is chirally symmetric : it keeps its vacuum value. The four-
quark condensate entering the cs coefficient can be split in a symmetric piece remaining at its vacuum
value and a chirally odd piece. It has been shown that the ALEPH data in vacuum [23] are compatible with
the factorization of this chirally odd chiral condensate according to (O4") ~ (9/7) ((jg)iac. For the pure
chiral restoration scenario one drops it to zero at full restoration. Written schelmatically, the ansatz for
the p meson spectral function is taken as —ImD,(s) [(s - m%)2 + I3 F(s)} , where F(s) is a purely
kinematical function. In the vacuum the QCDSR is compatible with (mg, I'o) = (775 MeV, 149 MeV).
The QCDSR at full restoration is compatible with an increased width parameter I'g provided the rho
meson mass parameter mg is dropped accordingly. This generates a curve, mo(I'o), depicted on the left
panel of fig. 10, compatible with the pure chiral restoration. Two extreme cases are possible. (i) The
width remains a its vacuum value, the mass drops and the spectral function shown on the right panel
is significantly shifted downwards around 600 MeV. (ii) The opposite interpretation is conceivable as
well, namely pure but considerable broadening with keeping the vacuum value of the rho meson peak.
The data seem indeed to favor such a broadening effect. Conversely one can say that the data are not
incompatible, at least at a qualitative level, with a pure chiral restoration scenario.
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Figure 10: Left panel: peak position of the rho meson spectral function as a function of the width param-
eter; the dotted lines mark the erperimental vacuum values. Right panel: the rho meson spectral function
in the vacuum case (dotted curve) and in the pure chiral restoration scenario for the width fixed at its
vacuum value (dashed curve) or the mass fized at its vacuum value (solid curve). All these results are
taken from [47].

5 Thermodynamics of QCD

5.1 QCD phase diagram and chiral symmetry

To describe the thermodynamics and the phase structure of QCD, we prefer to use a representation
where the variables are intensive variables, namely the temperature 7" and various chemical potentials p
associated with conserved quantities, essentially here the baryon number. The pressure P which is also
an intensive quantity is actually a function of T" and p (sometimes referred as pp) and this constitutes the
equation of state (EOS). One reason for this choice is that for any system in thermodynamic (thermal,
mechanical and chemical) equilibrium, 7', P and u have to be uniform within the various subsystems in
particular in case of phase coexistence. Another reason is that lattice calculations are performed using T
and p as independent control parameters (in a grand canonical ensemble). Finally heavy ions data are
often analyzed in terms of these variables. This concerns for instance particle production from a thermal
source and fireball evolution constrained by conservation laws.

From the thermodynamical relations in a uniform system one has dP = odT + pdu from which the density
of extensive quantities, (entropy density o, baryon number density p, energy density €) can be obtained :

S oP N oP E
J_V_<3_T>H’ p_7_<%>T, e—V—TJ—i—up—P. (107)

By contrast those quantities can differ from one phase to another phase. In particular in case of a first
order transition for a given (7', u) two different phases with two different values of mechanical quantities
(p1,€1) and (p2, €2) can exist simultaneously. It is convenient to represent the phase diagram in the (T, )
plane, as shown on the lower panel of fig. 11. The phase coexistence line starting at zero temperature
terminates at a certain critical point (T¢, uc) where there is no longer discontinuity in p,e. At this point
the susceptibilities (second derivatives of the pressure, namely heat capacity and the baryon number

susceptibility), P B
o 4
¢ <6T>u’ v <3u>T’ o

may diverge, e.g., C ~ |T —T¢|™®. The positive number « is the critical exponent associated with
the heat capacity. This is characteristic of a second order transition. The well known example is the
liquid-gas transition of water or nuclear matter.
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Figure 11: Upper panel: phase diagram of QCD with three massless quarks (left) and two massless and
one massive quarks (right). Lower panel: the contemporary view of the QCD phase diagram with physical
quark masses - a semiquantitative sketch. Taken from [48].

In QCD and in other systems like spin systems, there is another aspect which is linked to symmetries. In
the QCD case this concerns the already discussed chiral symmetry in the limit of vanishing quark masses.
It may exist phases which differ by the way the symmetry is realized.

- The symmetry is spontaneously broken: the state of the system cannot be characterized only by (p, €)
since a chiral transformation will map the ensemble (p, €) on itself. It is necessary to specify the state by
a quantity which is not invariant under the symmetry transformation, namely an order parameter. An
example is the chiral or quark condensate.

- The symmetry is trivially realized or restored. The order parameter must vanish.

In the particular case of QCD, due to the specific form of the chiral symmetry breaking piece, the order
parameter can be obtained from the derivative of the pressure with respect to the symmetry breaking

parameter :
_ _ 1 (OP(T, u,m
(Hysp) = /dgr 2m (qq) = (q9)=-35 OPLm)y (109)
2 am T

The transition can be very well a first order one with different (p,e) and the the order parameter is
discontinuous. However it may happen that all the first derivatives of the pressure, which is now a function
of T, u and m, remains continuous but, since the transition connects two states with different symmetry
patterns, the partition function and thermodynamic quantities exhibit a non analytical behaviour. In
this case the susceptibilities (second derivatives of the pressure) can be discontinuous or even diverge.
The susceptibility of the order parameter, is the scalar or chiral susceptibility : xs = (9 (qq) /Om)r -

On the transition line it behaves as xs = [T — Tc|—r/(2+n) whereas the correlation length diverges as
¢ = |T—T. ", v and n being other critical exponents. One of the remarkable consequences of the
renormalization group is the universality class of the critical phenomena. Indeed the critical exponents
such as a, v,n do not depend on the detailed microscopic nature of the underlying theory. They fall into
universality classes which depend only on general properties such as dimensionality or symmetry. For
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those values of u for which the chiral restoration in two-flavor (N; = 2) massless QCD is of second order,
the universality class is the one of the SU(2) ® SU(2) ~ O(4) linear sigma model for which v = 0.75 and
17 = 0.04. The order parameter behaves as [T — Tciﬁ with 8 =v(1 +n)/2 = 0.39.

In the limit of three massless or very light (u,d, s) quarks, universality arguments and lattice results seem
to demonstrate that criticality cannot exist and the SU(3);, ® SU(3)r chiral restoration transition must
be always of first order. One obtains a first order transition line shown on the upper left panel of fig. 11.
In the limit of vanishing v and d quark masses and a heavier strange quark mass the symmetry reduces
to SU(2)r, ® SU(2)r and a first order transition is expected to occur at large u and low T, as shown on
the upper right panel of fig. 11. The first order line (full line) terminates at a point called the tricritical
point (TCP) located at a certain (Trcp, urcp). Beyond this point (1 < urcp, T > Trcp), since one
has non analytical behaviour of thermodynamic quantities, a second order phase transition (dashed line)
described just above is expected. The location of this TCP is a very important theoretical question
motivating lattice studies.

For physical quark masses (lower panel of fig. 11) the chiral symmetry is explicitly broken. There is
still a first order transition line (full line) which terminates at a critical end point (CEP) located at a
certain (Togp, porp). This type of critical point is the most common one and corresponds to the Ising
model or liquid-gas phase transition universality class. Beyond the CEP (u < pucgp) the transition from
low temperature to high temperature phases cannot proceed through a singularity. Lattice simulations
indeed show that this transition is a continuous (although sudden) crossover a little bit like in water
where the singularity occurs only near the CEP. What distinguishes the hadron gas (liquid water) from
the quark gluon plasma (vapor) is only quantitative, one is denser than the other. The similarity with
water also occurs in the low temperature sector when a number of ordered (crystalline) quark phases
must exist which are akin to many confirmed forms of ice. In a three dimensional diagram (u, T, m) one
has a surface of first order transition which terminates on a line of second order CEP which emanates
from the tricritical point (CEP) where (3q) = |Tcrp — T|1/ % in the mean-field Landau-Ginzburg theory.

QCD thermodynamics can be studied by lattice QCD calculations. Since this is a very rapidly evolving
domain we will give some results or numbers only for indication. We thus urge the reader, when reading
the lectures, to look at the most recent publications to have up-to-date results. These numerical simula-
tions reveal that, for physical quark masses, chiral symmetry is restored at vanishing chemical potential
by a smooth crossover transition. The RBC-Bielefield-HotQCD group [12] finds a chiral transformation
around temperature T' ~ 185 —195 MeV. The important point is that it is accompanied by the deconfine-
ment transition as corroborated by many observables. However The Wuppertal-Budapest group [49] finds
a larger deconfinement temperature compared to the chiral one by examining the peaks of the chiral loop
and the Polyakov loop susceptibilities. This question of the deconfinement transition and the associated
notion of Polyakov loop will be discussed in a next subsection. The location of the critical end point is
also the subject of lattice investigations. It is nevertheless still an open question since lattice calculations
at small quark masses and finite chemical potential suffer from important technical difficulties. We quote
here as representative numbers the result of ref. [50] : (T, u)cep = (162 £2 MeV, 360 + 40 MeV)

5.2 Connection with relativistic heavy ion collisions

In a relativistic heavy ion collision the colored quarks and gluons are produced by primary nucleon-
nucleon collisions. These colored objects will immediately re-interact to form hadrons in case of isolated
NN collisions. However in the case of high energy nuclear collisions, before being fully formed hadrons,
the pre-hadronized clusters run into a secondary generation of subsequent collisions within the nuclear
density distribution of the heavy nuclei. The process may continue up to an thermally equilibrated phase
of matter made of colored quarks and gluons : the Quark-Gluon-Plasma (QGP). Indeed results at RHIC
top-energies (y/syy = 200GeV) suggest that such a new form of partonic matter is created and it is
locally equilibrated early-on because of its hydrodynamic expansion pattern. Three major discoveries
can be cited: the large azimuthal anisotropy of particle emission in non central collisions (elliptic flow)
favoring a strongly interacting perfect fluid (sQGP), the scaling of this anisotropy with the number of
constituent quarks (constituent quark scaling) and the suppression of high energetic particles traversing
the medium (jet quenching). The minimal conclusion which can be drawn is that the phase boundary
is traversed in a relativistic nucleus-nucleus collision. Moreover the perfect fluid formation and the jet
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Figure 12: Right panel: the phase diagram of hadronic and quark-gluon matter in the T — u plane. The
experimental values for the chemical freeze-out are shown together with results of lattice QCD calculations,
the predicted critical point is marked by the open triangle [50]. Also included are calculations of freeze-out
curves for a hadron gas at constant energy density (= 500MeV/ fm?3) and at constant total baryon density
(ny = 0.12fm=3). The full triangle indicates the location of ground state nuclear matter (atomic nuclei).
Right panel: schematic view of the phase diagram of nuclear matter. Also shown are the estimated
trajectories of the system at current RHIC experiments, RHIC-energy-scan and future-FAIR experiments
energy domains.

quenching seem to be already confirmed by the very first LHC data from ALICE, CMS and ATLAS
collaborations.

Another crucial feature is provided by the measured particle distributions. Most remarkably the system-
atic study of these measured yield distributions in terms of a statistical hadronization model, has revealed
a universal “hadro-chemical” equilibrium, the yield distributions resembling grand canonical Gibbs en-
sembles of hadrons and resonances [51]. The derived parameters of the population, T and p = upg, vary
monotonously with /s as shown on fig. 12. The circles represent the chemical freeze-out points where
the hadrons cease to interact producing the observed yield. These circles corresponds to various incident
energies from SIS via AGS and SPS to RHIC, i.e., 3 < /s < 200 GeV. The point very near zero chemical
potential corresponds to the RHIC situation. We see that the freeze-out almost exactly coincides with the
crossover transition. The interpretation is that the hadronization itself is statistical. The hadronization
transition creates a hadron gas ensemble maximizing the entropy which exhibits a characteristic ordering
pattern concerning the relative abundance of each hadronic species. In this very high energy situation
the number of produced quark and antiquark partons is huge, much larger that the net quark number,
ng — ng, yielding a very low chemical potential. A very important experimental challenge is the search of
the CEP. This requires a lower collision energy to increase the net baryonic density and chemical poten-
tial. This is one of the central goal of the FAIR-CBM project and of the RHIC-Energy-Scan project. It is
expected that enhanced event by event fluctuations should show up when the freeze out trajectory passes
in the neighboring of the CEP. Examples of such trajectories for various incident energies are shown on
the right panel of fig. 12.

5.3 Center symmetry of QCD

‘We already said that chiral symmetry restoration is accompanied by the liberation of quark and gluon
degrees of freedom associated with the deconfinement. One question is thus to characterize the decon-
finement transition and to identify some indicators for this phenomenon. We will see that under certain
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circumstances it exists a symmetry, called the center symmetry, related to the confinement/deconfinement
transition. To introduce the subject we first limit ourselves to the vanishing baryonic chemical potential
case. The QCD partition function reads

1

Z=TrePH = nle PHn ith = — 110
S e ) w5 (110)
where the trace is evaluated by summing over all quantum states of a certain basis {|n)}. The QCD
hamiltonian H is obtained from the QCD lagrangian (8) by the standard Legendre transform. In one
dimensional quantum mechanics it reads H(z,p) = p& — L(z, &) with the conjugate momentum of the
for each possible color or flavor. It is important to notice that the time component of the glue field has
no conjugate momentum. This is therefore not a dynamical variable. The conjugate momentum of the

variable A? can be identified with the chromoelectric field up to a sign :

H? = aL = —
A%

6; = 05 A0 + 004, — gfave AYAL = —E7. (111)

We introduce the covariant derivative of the electric field defined as D,‘}bEf =0;E! —¢g fadbffd . Eb and
the color density carried by quarks, p, = ¢})‘7“¢f- Since the conjugate momentum, I19, of A% has to be

zero at any time, it has to commute with the hamiltonian H :

o110
ot

=i [H,1] =0 = DPE? — p,. (112)

The last equality comes from the explicit calculation of the commutator using canonical commutation
relations. It just represents Gauss law, the difference with electrodynamics is that the charge density
contains not only a matter piece (p,) but also a gluon piece (¢faapAq - Ep) hidden in the covariant
derivative of the chromoelectric field. If these two conditions (II9 = 0, Gauss law) are satisfied at time ¢,
they are valid at any time. The quantum mechanical consequence is that physical states should fulfill :

o |W) =0,  (D{"E} — pa) [¥) = 0. (113)

In quantum mechanics the usual wave function representation of the state |¥) is ¥(z) = (z|¥) and the
momentum operator is represented by P = —id/0x acting on the wave function ¥(z). In the case of the
gauge field theory the state |¥) is represented by the wave function ¥ (A#(7), (7)) and the conjugate
momenta are represented by II# = —id/0A! acting on the wave function. The two conditions (113)

become :
L o0v
940

The first equation implies that the wave function does not depend on A%. The second one comes from
Gauss law and constitutes the quantum version of gauge invariance.

-0 v (A’(f), ¢(f)) — v (h (A’+ ﬁ) Kt th(F)) (114)

To calculate the trace in the partition function we use a basis {|n> = E(F),¢(F)>}. The partition

function is thus
z2=Tre " =[] [DAG) [ Do) (AG), —u(@] e 6 (DEL = ) [AG), ()

where the projection on physical states is performed through the introduction of a delta function, §(D -
E — p), enforcing Gauss law. It can be shown by pure mathematical manipulations that the partition
function admits a path integral representation

2= 1 [Pawen [ i) [Diwen e (15)

7,0<z4 <

37



where Sg is the Euclidean QCD action :

8
Sp = / dzy /d3r Lp (A4, i ¢) (F,24). (116)
0
The Euclidean QCD lagrangian, L, is formally obtained from the Minkovski lagrangian :
LE (1447 fT, 1/)) (’I?, 1’4) = — EM (A() = —iA4, 1‘T, ’l/}) (’I?, Tro = —il’4). (].].7)

It depends on the spatial point and on a pseudo-time formally obtained from the ordinary time by
x4 = ixo. For this reason it is referred as an imaginary time formalism. The pseudo-time integration is
done on the interval (0, 3). As a reminiscence of the trace operation the field variables should satisfy the
periodic or antiperiodic boundary conditions :

A(F ey + B) = AT za),  O(F s + B) = —o(7, 24). (118)

The minus sign for the fermion field comes from its peculiar mathematical nature : it is an anticommuting
Grassman variable.
The euclidean lagrangian is also gauge invariant :

A, — "A, = hALL —ihd BT, = M = hap. (119)

The gauge invariance of QCD actually requires that the action is gauge invariant. This places constraints
on the allowed gauge transformations :

hAL(F xa+ B) = "ALF xa), MR s+ B) = — "(F, xa). (120)

Obviously this constraint will be automatically fulfilled by periodic gauge transformations, h(7, x4 + 3) =
h(7, x4). However besides these periodic ones, we can also find transformations which are periodic in
time up to global (constant) twist transformation f :

h(F, x4 + B) = f h(7,24) (121)
Under such a transformation one has :
hALF xg 4 B) = FRALF xa) T, M (Fy g + B) = —f M, (F 24). (122)

By definition f is an element of the center of the gauge group, Z(3), if it commutes with all the elements
of the group : [f, A,] = Af. [f,t.] = 0. The elements of Z(3) are multiples of the unit matrix :

feZB) = f==zI z=eX™3 pn=1,23.
If the twist transformation, f, belongs to Z(3), it follows that :
PALF s+ B) = flALF aa) [T =" Au(Foea),  "u(Fma 4 B) = =2 Pu(T ). (123)

The important result is that the boundary conditions for the glue field are maintained after this twisted
gauge transformation. Consequently the pure gauge action remains invariant. The associated symmetry is
called the center symmetry. However this symmetry is broken in presence of light quarks since h'wﬂ(F, rq+
B) = —2"p,(F,24). Nonetheless, the center symmetry is useful as an approximate symmetry of QCD
which becomes exact if the dynamical quarks are neglected. Note, that we stress the word “dynamical”
in the context of quarks. Indeed, the center symmetry is an important aspect of the theory in particular
in the presence of static quarks.
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Order parameter : Polyakov loop. Let us consider the pure gauge theory and put a static (infinitely
heavy) quark at point R. the quark-gluon interacting part of the action is

So = /0  ds / dr (gta8(7 — B)) (—iA3) (7 20) = —ig /0 " iy Ay(R, 4) (124)

which is nothing but the standard potential energy of a charge in an (chromo)-electric potential. This
action has to be added to the pure gauge action, Sg. Hence he partition function of the system of gluons
in presence of a static quark reads

—

Za(6.F) = [ D [Ap.3] e Srlwemman) (i (125)

where L(R) is defined as the Polyakov loop :
1 [ /8 1 3 I .8 1
L(R) = —Tr. exp |ig / drs As(R,x4)| = — Tre exp |ig / dratyAG (R, x4)| . (126)
Ne¢ 0 Ne 0

It is a loop since it is a Wilson line closed on itself due to the periodic boundary condition. It is gauge
invariant since it is invariant under a periodic gauge transformation. The Polyakov loop is thus a color
singlet which is manifest from the presence of the trace which averages over the quark colors. It has
however a Z(3) charge since it is not invariant under a Z(3) transformation :

L(R) —» zL(R). (127)
Obviously the thermal expectation value of the Polyakov loop
= = 1 _ - 7 L
P =(L =——— [ DA —Se(pure gauge) 1, — _2Q _ —BFq(R) 12
(R) = (L(R)) Z(Glue) / (4,9 9] e (F) = 7 Glue) ~ © (128)

is just the ratio of the partition functions of the gluons system with and without the external color
source. Therefore, this expectation value measures the free energy F' of the static test quark. This
aspect connects the center center symmetry to confinement. At low temperature color is confined and
the free energy of a single isolated quarks is therefore infinitely large F = oo. Hence in the confined
phase ® = (L) = 0. On the other hand, at high temperatures asymptotic freedom suggests that quarks
and gluons become deconfined. There F is finite and ® = ®y # 0 in the deconfined phase. From (127)
we know that L transforms non-trivially under center symmetry transformations. Therefore, a non-zero
expectation value, ®¢, implies that the Z(3) symmetry is spontaneously broken at high temperatures in
the deconfined phase. Thus, ® qualifies as an order parameter of deconfinement in the pure gauge theory,
i.e., in absence of dynamical quarks. In fact, it is easy to understand why the center symmetry must
break spontaneously at high temperatures. In the limit § = 1/T — 0, the integral in (126) extends over
shorter and shorter Euclidean time intervals and hence ® — (TrI)/3 = 1.

Indicators for chiral symmetry restoration and deconfinement. We have seen on one hand that
in the chiral limit, the quark condensate plays the role of an order parameter associated with chiral
restoration at high temperature. On the other hand, in absence of dynamical quarks, there is an exact
center symmetry which is spontaneously broken in the high temperature region where quarks and gluons
are deconfined, the associated order parameter being the Polyakov loop. In the real QCD neither the chiral
symmetry nor the center symmetry are exactly realized but we can hope that the quark condensate and
the Polyakov loop remain valid indicators of rapid chiral and deconfinement crossovers. This is confirmed
by lattice calculations which clearly exhibit a sudden change of these two order parameters [52, 53]. An
example of lattice results is shown on fig. 13.

5.4 The PNJL model

I will close this chapter by discussing a subject which has been studied by many group following the work
of Fukushima [54] aiming to have a simultaneous description of chiral restoration and deconfinement a
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Figure 13: Left panel: the light quark condensate in QCD with 2 light up and down and a heavier strange
quark mass [52]. Right panel: the Polyakov loop expectation value in the SU(3) gauge theory and in
two-flavor QCD [53].

finite temperature in the whole (u,T) plan. The required starting point is a model description in which
the vacuum possesses a quark condensate and a condensate of “Wilson line” associated with ® # 0. To
incorporate both aspects simultaneously, extensions of the NJL model have been proposed by coupling the
quarks to the background gauge field associated with the Polyakov loop through a covariant derivative.
There are numerous works devoted to this model and I will follow here the work of ref. [55, 56] and a
recent review [57]. The lagrangian of the model, named Polyakov-NJL (PNJL) model, is

Lngr=Lyyr — iqtAsg —U(®,T), (129)

where —i ¢t A4q comes from the gauge part of the covariant derivative. The potential U(®,T) is the
effective potential of the Polyakov loop with parameters fitted to reproduce the equation of state of pure
gauge lattice QCD which exhibits a a deconfinement transition at Ty = 270 MeV. Solving the model at
the mean field level is a standard thing : one first calculates the grand potential with the result :

(M —m)? / d*p
QT, p; M,®) = U(®,T) + ~——— — 2Ny N, | —=E, + Qop(T,u; M,
(T, pu; M, @) U®,T) + 2G, fiVe (27)3 p T+ QP< o3 M, @)
d3
Qop(T,u; M,®) = —2N; / _(2771)’3 [m (1+ 3P B Er—n) 4 3@6—2/3(E;>—u)+e—313(Ep—u))
i (14 307 Erti) 4 3p¢=2Brbs) | (=97(E+)) ] . (130)

The quantity Qgp represents the quasi-particle contribution for constituent quarks with energy E, =

v/p? + M 2. The minimization of the grand potential gives the value of the constituent quark mass and

of the Polyakov loop :

AL (131)
oM 0P
In the pure gauge case the Polyakov loop is zero below the temperature Ty at which point it jumps to a
finite value signaling a second or very weak first order transition. The result of such a calculation [55]
is shown on the left panel of fig. 14. Also shown on the right panel is the pressure, P(T) = —U(®,T),
from which the energy and entropy density can be deduced using standard thermodynamic relations. The
agreement of the model with pure gauge lattice data is very good.
The next step is to compare the approach in presence of quarks with existing and safe lattice data at
zero chemical potential [55]. We see on fig. 15 that the scaled pressure and the so-called interaction
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Figure 14: Left panel: Polyakov loop as a function of temperature in the pure gauge sector, compared to
corresponding lattice results. Right panel: scaled pressure, entropy density and energy density as functions
of the temperature in the pure gauge sector, compared to the corresponding lattice data. Taken from [55].

measure are in good agreement with lattice data. We observe on the right panel of fig. 15, where
the chiral condensates and Polyakov loop are depicted, that the inclusion of quarks transforms the true
phase transition into a continuous transition. We also note that the continuous crossovers for the quark
condensate and the Polyakov loop almost exactly coincide. Other sensible quantities are the various
susceptibilities. We show on the left panel of fig. 16 the results of a calculation with an improved
Polyakov loop potential [56]. Again the coincidence between chiral restoration and deconfinement is very
visible. Also shown are various susceptibilities related to the second derivatives of the grand potential.

The model results can be also compared with existing data at finite chemical potential. Particularly
interesting quantities are the net quark number density and various susceptibilities for which lattice data
exist. It is clear on fig. 17, showing the net quark number density, that the PNJL model considerably
improves the simple NJL one. The origin of this improvement can be understood easily by considering

W)/ Wd-0
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Figure 15: Left panel: scaled pressure divided by the Stefan-Boltzmann (ideal gas) limit as a function of
temperature at zero chemical potential: comparison between PNJL model prediction and lattice results.
Middle panel: scaled interaction measure compared to lattice results. Right panel: scaled chiral condensate
and Polyakov loop as functions of temperature at zero chemical potential. See [55] for more details.
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Figure 16: Left panel: chiral condensate normalised to its value at temperature T =0 (dash-double-dotted
line) in the NJL model with massless quarks, and Polyakov loop in the pure gauge model (dashed line). The
PNJL model (with non-zero quark masses) shows dynamical entanglement of the chiral (solid line) and
Polyakov loop (dash-dotted line) crossover transitions. For comparison lattice data for the Polyakov loop
in pure gauge and full QCD (including quarks) are also shown. Right panel: the chiral susceptibility ( solid
line), and Polyakov loop susceptibilities (dashed line and dotted line) plotted as functions of temperature
at vanishing quark chemical potential. See [56] for detailed explanations.

the quark and antiquark occupation numbers :

(I)e—B(Ep_N) + 2@@‘2B(Ep_ﬂ) + 6_3,8(Ep_ﬂ)

(6) _—

P T 1530 BB 1 300 28F) 1 o38E R (132)
_ Pe—BEptn) 4 o9Pe—28(Ep+n) —3B(Ep+n)

G TR e L e (133)

1+ 3®€_B(Ep+l") + 3(1)6_25(Ep+l") -+ e_SB(Ep“"l‘) ’

The quark occupation number admits the following limits

1
lowT, ® —0: (@) —

. 1
hlghT,7 d—>1: f(q) p = m

P eBEy—p) 11’ (134)

and similar ones for the antiquark case, just changing p into —u. Hence below T, in the low temperature
domain, one and two quarks configurations decouple from the thermodynamic and only terms with three-
quarks Boltzman-factor clusters survive, considerably decreasing the net quark number in agreement with
lattice data. In that sense this approach generates some kind of three-quark color clustering which can
been seen as precursors of baryons, although this not at all a spatial clustering. This property has been
named statistical confinement.

Finally we show on fig. 18 a recent calculation of the Coimbra-Lyon group [57] for the whole phase diagram
of the model in the various cases discussed above. In the realistic situation (m, = mg =5.5MeV, ms; =
140 MeV), the first order lines terminates at the CEP and is followed by a crossover. The right panel
shows the baryon number susceptibility plotted against the baryon chemical potential for three different
temperatures. In case of the crossover (T' > Togpp) we see a sharp peak (which becomes a kink in case of
m = 0). At the CEP this peak becomes a divergence associated with a second order transition. In case
of a first order transition (T' < Togp) the baryon number susceptibility gets discontinuous.

Acknowledgments: 1 thank Magda Ericson and Hubert Hansen for numerous discussions and carefull
reading of the manuscript.
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Figure 17: Comparison between the results in the PNJL model (solid line) and in the standard NJL model
(dashed line) for the quark number density at p = 0.6 T. . The effect of the missing confinement is evident
in the standard NJL model. See [56].
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Figure 18: Left panel: the phase diagram in the SU(3) PNJL model; the solid lines represent the first
order phase transition, the dotted line the second order phase transition, and the dashed line the crossover

transition. Right panel: baryon number susceptibility as function of up for different temperatures around
the CEP: Tcgpp = 155.80 MeV and T = Tecgp = 10MeV.
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