]. S. Asmussen and P. W. Glynn, ]; for applications, see [EHM08] and [EPQ97]; for numerics, see This list is not exhaustive Stochastic simulation: Algorithms and analysis . Stochastic Modelling and Applied Probability 57, Complementary references: for theoretical aspects, 2007.

O. [. Achdou and . Pironneau, Computational Methods for Option Pricing. SIAM series, Frontiers in Applied Mathematics, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00111740

]. R. Avi09 and . Avikainen, On irregular functionals of SDEs and the Euler scheme, Finance and Stochastics, vol.13, pp.381-401, 2009.

]. L. Bac00 and . Bachelier, Théorie de la spéculation, Ann. Sci. École Norm. Sup, 1900.

R. [. Bender and . Denk, A forward scheme for backward SDEs, Stochastic Processes and their Applications, pp.1793-1823, 2007.
DOI : 10.1016/j.spa.2007.03.005

E. [. Bossy, D. Gobet, and . Talay, Symmetrized Euler scheme for an efficient approximation of reflected diffusions, Journal of Applied Probability, vol.41, issue.3, pp.877-889, 2004.

G. [. Bally and . Pagès, Error analysis of the optimal quantization algorithm for obstacle problems, Stochastic Processes and their Applications, vol.106, issue.1, pp.1-40, 2003.
DOI : 10.1016/S0304-4149(03)00026-7

URL : https://hal.archives-ouvertes.fr/hal-00103987

J. [. Bender and . Steiner, Least-squares monte carlo for BSDEs, Numerical Methods in Finance. Series: Springer Proceedings in Mathematics, 2012.

D. [. Bally and . Talay, The law of the Euler scheme for stochastic differential equations, Probability Theory and Related Fields, vol.8, issue.1, pp.104-143, 1996.
DOI : 10.1007/BF01303802

URL : https://hal.archives-ouvertes.fr/inria-00074427

N. [. Bouchard and . Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Processes and their Applications, pp.175-206, 2004.
DOI : 10.1016/j.spa.2004.01.001

URL : https://hal.archives-ouvertes.fr/hal-00103046

K. [. Crisan and . Manolarakis, Solving Backward Stochastic Differential Equations using the Cubature method, 2010.

]. R. Dur84 and . Durrett, Brownian motion and martingales in analysis, Wadsworth Mathematics Series. Wadsworth International Group, 1984.

N. Karoui, S. Hamadène, and A. Matoussi, Backward stochastic differential equations and applications, Indifference pricing: theory and applications, pp.267-320, 2008.

. Ekp-+-97-]-n, C. Karoui, E. Kapoudjian, S. Pardoux, M. C. Peng et al., Reflected solutions of backward SDE's and related obstacle problems for PDE's

S. [. Karoui, M. C. Peng, and . Quenez, Backward Stochastic Differential Equations in Finance, Mathematical Finance, vol.7, issue.1, pp.1-71, 1997.
DOI : 10.1111/1467-9965.00022

]. H. Föl81 and . Föllmer, Calcul d'Itô sans probabilités, Seminar on Probability, pp.143-150, 1979.

]. M. Fre85 and . Freidlin, Functional integration and partial differential equations, Annals of Mathematics Studies, 1985.

]. A. Fri64 and . Friedman, Partial differential equations of parabolic type, 1964.

]. A. Fri75 and . Friedman, Stochastic differential equations and applications, 1975.

E. Gobet-[-fri76 and ]. A. Friedman, Stochastic differential equations and applications, 1976.

S. [. Geiss, E. Geiss, and . Gobet, Generalized fractional smoothness and L p variation of BSDEs with non-Lipschitz terminal condition, Stochastic Processes and their Applications, pp.2078-2116, 2012.

M. [. Gyorfi, A. Kohler, H. Krzyzak, and . Walk, A distribution-free theory of nonparametric regression, 2002.
DOI : 10.1007/b97848

C. [. Golub and . Van-loan, Matrix computations, 1996.

J. [. Gobet and . Lemor, Numerical simulation of BSDEs using empirical regression methods: theory and practice, Proceedings of the Fifth Colloquium on BSDEs, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00291199

C. [. Gobet and . Labart, Error expansion for the discretization of backward stochastic differential equations, Stochastic Processes and their Applications, pp.803-829, 2007.
DOI : 10.1016/j.spa.2006.10.007

URL : https://hal.archives-ouvertes.fr/hal-00019463

C. [. Gobet and . Labart, Solving BSDE with Adaptive Control Variate, SIAM Journal on Numerical Analysis, vol.48, issue.1, pp.257-277, 2010.
DOI : 10.1137/090755060

URL : https://hal.archives-ouvertes.fr/hal-00373350

]. P. Gla03 and . Glasserman, Monte Carlo methods in Financial Engineering, 2003.

J. [. Gobet, X. Lemor, and . Warin, A regression-based Monte Carlo method to solve backward stochastic differential equations, The Annals of Applied Probability, vol.15, issue.3, pp.2172-2202, 2005.
DOI : 10.1214/105051605000000412

]. E. Gm05a, S. Gobet, and . Maire, Sequential control variates for functionals of Markov processes, SIAM Journal on Numerical Analysis, vol.43, issue.3, pp.1256-1275, 2005.

]. E. Gm05b, S. Gobet, and . Maire, Sequential Monte Carlo domain decomposition for the Poisson equation, Proceedings of the 17th IMACS World Congress, pp.11-15, 2005.

]. E. Gm05c, R. Gobet, and . Munos, Sensitivity analysis using Itô-Malliavin calculus and martingales. Application to stochastic control problem, SIAM Journal of Control and Optimization, vol.43, issue.5, pp.1676-1713, 2005.

]. E. Gm10a, A. Gobet, and . Makhlouf, L 2 -time regularity of BSDEs with irregular terminal functions, Stochastic Processes and their Applications, pp.1105-1132, 2010.

]. E. Gm10b, S. Gobet, and . Menozzi, Stopped diffusion processes: boundary corrections and overshoot, Stochastic Processes and Their Applications, pp.130-162, 2010.

]. E. Gob00 and . Gobet, Euler schemes for the weak approximation of killed diffusion, Stochastic Processes and their Applications, pp.167-197, 2000.

]. E. Gob01 and . Gobet, Euler schemes and half-space approximation for the simulation of diffusions in a domain Special Volume: Mathematical Modeling and Numerical Methods in Finance, chapter Advanced Monte Carlo methods for barrier and related exotic options, ESAIM: Probability and Statistics, pp.261-297, 2001.

P. [. Gobet and . Turkejiev, Multi-step forward dynamic programming equation and empirical regression scheme for the (Y -Z) components of a BSDE, 2012.

]. K. Ito51 and . Ito, On stochastic differential equations, Mem. Amer. Math. Soc, issue.4, 1951.

J. [. Jourdain and . Lelong, Robust adaptive importance sampling for normal random vectors, The Annals of Applied Probability, vol.19, issue.5, pp.1687-1718, 2009.
DOI : 10.1214/09-AAP595

URL : https://hal.archives-ouvertes.fr/hal-00334697

P. [. Jacod and . Protter, Probability essentials, 2003.

]. M. Kob00 and . Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth. The Annals of Probability, pp.558-602, 2000.

E. [. Kloeden and . Platen, Numerical solution of stochastic differential equations, 1995.

S. [. Karatzas and . Shreve, Brownian motion and stochastic calculus, 1991.

]. H. Kun84 and . Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms . Ecole d'Eté de Probabilités de St-Flour XII, 1982 -Lecture Notes in Math, pp.144-305, 1984.

]. P. Lév39 and . Lévy, Sur certains processus stochastiques homogènes, Compositio Math, vol.7, pp.283-339, 1939.

J. P. Lemor, E. Gobet, and X. Warin, Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations, Bernoulli, vol.12, issue.5, pp.889-916, 2006.
DOI : 10.3150/bj/1161614951

URL : https://hal.archives-ouvertes.fr/hal-00394976

E. [. Gobet, E. Lapeyre, R. Pardoux, and . Sentis, Methodes de Monte Carlo pour les processus de transport et de diffusion, Collection Mathématiques et Applications, vol.29, 1998.

J. [. Ma and . Yong, Forward-Backward Stochastic Differential Equations, Lecture Notes in Mathematics, vol.1702, 1999.

]. E. Nel67 and . Nelson, Dynamical theories of Brownian motion, N.J, 1967.

]. N. New94 and . Newton, Variance reduction for simulated diffusions, SIAM Journal on Applied Mathematics, vol.54, issue.6, pp.1780-1805, 1994.

]. E. Par98 and . Pardoux, Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, Stochastic analysis and related topics, pp.79-127, 1996.

S. [. Pardoux and . Peng, Adapted solution of a backward stochastic differential equation, Systems & Control Letters, vol.14, issue.1, pp.55-61, 1990.
DOI : 10.1016/0167-6911(90)90082-6

S. [. Pardoux and . Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, Stochastic partial differential equations and their applications, Proc. IFIP Int. Conf Domain decomposition methods in science and engineering, pp.200-217, 1991.
DOI : 10.1007/BFb0007334

M. [. Revuz and . Yor, Continuous martingales and Brownian motion. Grundlehren der Mathematischen Wissenschaften, 2005.

]. K. Sab91 and . Sabelfeld, Monte Carlo methods in boundary value problems, Series in Computational Physics, 1991.

]. P. Sam65 and . Samuelson, Proof that properly anticipated prices fluctuate randomly, Industrial Management Review, vol.6, pp.42-49, 1965.

L. [. Talay and . Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Analysis and Applications, pp.8-494, 1990.
URL : https://hal.archives-ouvertes.fr/inria-00075490

]. J. Zha04 and . Zhang, A numerical scheme for BSDEs, Ann. Appl. Probab, vol.14, issue.1, pp.459-488, 2004.