]. I. Ant and . Antipova, Inversion of many-dimensional Mellin transforms and solutions of algebraic equations, Sb. Math, vol.198, pp.447-463, 2007.

M. Andersson, H. Samuelsson, E. Wulcan, and A. Yger, Non proper intersection theory and positive currents I, 2010.

M. Beck, J. A. De-lorea, M. Develin, J. Pleifle, and R. P. Stanley, Coefficient and roots of Ehrahrt polynomials, Contemporary Mathematics, vol.374, pp.1-15, 2005.

]. D. Bern and . Bernstein, The number of roots of a system of equations, Functional Analysis and its applications 9, pp.183-185, 1975.

. A. Bg-]-c, R. Berenstein, and . Gay, Complex variables, an introduction, 1991.

J. E. Björk, Rings of of differential operators, North-Holland, Amsterdam, 1979. [Boch] S. Bochner, A theorem on analytic continuation of functions in several variables, Ann. Math, vol.39, pp.1-19, 1938.

]. U. Btmc, P. Betke, and . Mcmullen, Lattice points in lattice polytopes, Monatsh. Math, vol.99, issue.4, pp.253-265, 1985.

]. C. Bey, A. Berenstein, and . Yger, Exponential polynomials and D-modules, Compositio Mathematica, vol.95, pp.131-181, 1995.

]. E. Cat and . Cattani, Three lectures on hypergeometric functions, Notes for a course available on line : www.famaf.unc.edu.ar [CLD] A. Chambert-Loir, A. Ducros, Formes différentielles réelles et courants sur les espaces de Berkovich, preprint, 2012, available on line : arXiv:1204, 6277v1 [CLO] D. Cox, J. Little, D. O'Sheah, Ideals, Varieties and Algorithms, 2006.

D. Cox, J. Little, and D. Sheah, Using algebraic geometry, Graduate Texts in Mathematics, vol.185, 1998.
DOI : 10.1007/978-1-4757-6911-1

J. Cassaigne and V. Maillot, Hauteur des hypersurfaces et fonctions Z??ta d'Igusa, Journal of Number Theory, vol.83, issue.2, pp.226-255, 2000.
DOI : 10.1006/jnth.1999.2490

D. A. Cox, Erratum to ???The homogeneous coordinate ring of a toric variety???, Journal of Algebraic Geometry, vol.23, issue.2, pp.17-50, 1995.
DOI : 10.1090/S1056-3911-2013-00651-7

J. P. Demailly, Complex Analytic and Differential Geometry, available on line at http://www-fourier.ujf-grenoble.fr/?demailly/manuscripts/agbook.pdf [De1] J. P. Demailly, Courants positifs et théorie de l'intersection, Gaz. Math, pp.53-131, 1992.

A. Dickenstein, L. F. Matusevich, and T. Sadykov, Bivariate hypergeometric D-modules available on line : arXiv:math/0310003v2, Constant terms in powers of a Laurent polynomial, Indag. Math. 9, pp.78-123, 1998.

F. Ehlers, Eine Klasse komplexer Mannigfaltigkeiten und die Aufl???sung einiger isolierter Singularit???ten, Mathematische Annalen, vol.18, issue.2, pp.127-156, 1975.
DOI : 10.1007/BF01370816

]. F. Ehl and . Ehlers, The Weyl algebra, chapter, Perspectives in Mathematics, 1987.

D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol.150, 1995.

. M. Ekl, M. Einsiedler, D. Krapanov, and . Lind, Non-Archimedean amooebas and tropical varieties, Journal für die reine und angewandte Mathematik 601, pp.139-157, 2006.

M. Forsberg, M. Passare, and A. Tsikh, Laurent determinants and arrangements of hyperplane amoebas, Advances in Math, pp.45-70, 2000.

N. [. Fornaess and . Sibony, Oka's inequality for currents and applications, Mathematische Annalen, vol.102, issue.146, pp.399-419, 1995.
DOI : 10.1007/BF01446636

G. , I. M. Gel-'fand, M. I. Graev, and V. S. Retakh, Tropical methods for ergodic control and zero-sum games General hypergeometric systems of equations and series of hypergeometric type, Russian Math, Lectures in the Weak-KAM Conference Krapanov, A. V. Zelevinsky, Hypergeometric functions and toric varieties, Funct. Anal. Appl, pp.1-88, 1989.

]. P. Gri and . Griffiths, Variations on a Theorem of Abel, Inventiones math, pp.321-390, 1976.

]. A. Henr and . Henriques, An analog of convexity for complements of amoebas of varieties of higher codimension, an answer to a question asked by B. Sturmfels, Adv. Geometry, vol.4, pp.61-73, 2004.

]. G. Henp, M. Henkin, and . Passare, Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths, Inventiones math, Uber die Konvergenz hypergeometrischer Reihen zweier und dreier Veränderlichen, pp.297-328, 1999.

Z. Izhakian, Tropical algebraic sets, ideals, and an algebraic nullstellensatz, IJAC, pp.1067-1098, 2008.

]. C. Kis and . Kiselman, Questions inspired by Mikael Passare's mathematics, http://www2.math.uu.se/?kiselman/passarequestions.pdf [It1] I. Itenberg, Amibes de variétés algébriques et dénombrement de courbes, Séminaire Bourbaki Astérisque, vol.294, pp.335-361, 2002.

]. M. Krap and . Kapranov, Amoebas over non-Archimedian fields, 2000.

M. Krasner, Approximation des corps valués complets de caractéristique p = 0 par ceux de caractéristique 0, pp.129-206, 1957.

A. Lagerberg, Super currents and tropical geometry, Mathematische Zeitschrift, vol.7, issue.1, 2012.
DOI : 10.1007/s00209-010-0837-8

]. P. Lel and . Lelong, Plurisubharmonic functions and positive differential forms, Gordon and Breach, 1968.

P. Lelong, Mesure de Mahler et calcul de constantes universelles pour les polynomes deN variables, Mathematische Annalen, vol.39, issue.1, pp.673-695, 1994.
DOI : 10.1007/BF01459805

B. Martin and D. Pochekutov, Discriminant and singularities of logarithmic Gauß map, examples and application, preprint, 2012, arXiv:1202.4659v1 [Mik0] G. Mikhalkin, Enumerative tropical algebraic geometry in R 2, J. Amer. Math. Soc, vol.18, issue.2, pp.313-377, 2005.

G. Mikhalkin, Amoebas of Algebraic Varieties and Tropical Geometry, Int. Math. Series (N.Y), vol.3, pp.257-300, 2004.
DOI : 10.1007/0-306-48658-X_6

G. Mikhalkin, available on arXiv:math/06011041v2 [Mik3] G. Mikhalkin, Real algebraic curves, moment map and amoebas, Proc. IntEur. Math. Soc., Zürich, pp.827-852, 2000.

R. Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol.5, 1991.
DOI : 10.1090/gsm/005

]. G. Mru, H. Mikhalkin, and . Rullgård, Amoebas of maximal area, Int. Math. Res. Notices, vol.9, pp.441-4510010087, 2001.

M. Nisse, Sparse polynomials have solid amoebas, pp.704-2216

L. Nilsson, M. Passare, M. Transforms-of-multivariate-rational-functions, J. Geom, M. Passare et al., 24?46, see also arXiv:math/1010 Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, preprint available at http://www2.math.su.se/reports Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, Duke Math, Hauteur normalisée des variétés toriques projectives [PST] M. Passare, T. Sadykov, A. Tsikh, Singularities of hypergeometric functions in several variables. Compos. Math. 141, pp.481-507, 2000.

M. Passare, A. Mikael, and . Tsikh, Amoebas: their spines and their contours, Contemp. Math, vol.377, pp.275-288, 2005.
DOI : 10.1090/conm/377/06997

]. K. Purb, . Purbhoo, and . Nullstellensatz, A Nullstellensatz for amoebas, Duke Mathematical Journal, vol.141, issue.3, pp.407-445, 2008.
DOI : 10.1215/00127094-2007-001

]. L. Ronk and . Ronkin, On zeroes of almost periodic functions generated by holomorphic functions in a multicircular domain, Complex Analysis in Modern Mathematics, pp.243-256, 2000.

B. [. Richberg-gebert, T. Sturmfels, and . Theobalt, First steps in Tropical Geometry The Dirichlet problem for the multidimensional Monge-Ampère equation, Contemporary Mathematics 377, Amer. Math. Soc., Providence, RI, pp.289-317, 1977.

H. Rullgård, Hypergeometric functions in several complex variables, Dissertation The tropical Grassmanian, FULLTEXT01 [SpSt] D. Speyer, B. Sturmfels, pp.389-411, 2001.

M. Saito, B. Sturmfels, and N. Takayama, Gröbner deformations of hypergeometric differential equationsps [Vir] O. Ya. Viro, On Basic Concepts of Tropical Geometry, Proceedings of the Steklov Institute of Mathematics, pp.252-282, 2000.

. A. Vy, A. Vidras, and . Yger, On some generalizations of Jacobi's residue formula available at : http://www.math.u-bordeaux1, Analyse Complexe, cours de M1 Géométrie différentielle complexeCours-Niamey.pdf [YW] A. Yger, J.A. Weil, Mathématiques appliquées L3, pp.131-157, 1995.