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Highly Deformed Nuclei at High Spin

Z. Szymanski
Institute of Theoretical Physics,
Warsaw University, Warsaw, Poland

1 Elements of Physics

Rotational bands can occur in principle on top of an arbitrary quantal state of a
nucleus as long, as its intrinsic structure is deformed i.e. corresponds to a nonspherical
distribution of nuclear matter. In the variety of all possible nuclear shapes the axially
symmetric ones are most common and best known. The energies of the rotational
states in one band obey the “J(7 + 1) rule” i.e. the relation

ﬁZ
Er=—1I+1 1
r=5710+1) (1)
with angular momentuin I changing in the range fo, fo + 1, fp + 2, ... or else fp, Iy +

2,Ip+4,...and Ig+ 1, [ +3,... if the two parts of the band are treated separately
as two distinct bands. Here, I is determined by the intrinsic state on top of which
the band is built (often called a bandhead). The proportionality coefficient in eq.
(1) defines the nuclear moment of inertia 7 which will be discussed more extensively
later.

We shall not go into the details in the physical description of rotational bands
in nuclei at low angular momenta. Instead, we shall show an example of the bands
in one nucleus at low energy and low angular momenta. Fig. 1.1 illustrates the low
lying spectrum in the nucleus ***Th. Three well developed rotational bands are built
on the ground-state, the axially symmetric vibrational state 0+ (beta vibration) , and
the 27 bandhead assigned as a nonaxial vibration (gamma vibration). The 4% and
6% bandheads may correspond to the higher vibrational excitations (ref. {1]).

A most commonly known quantal picture of the rotational states has been sug-
gested by A.Bohr and B.R.Mottelson [2-4] in terms of a particle-rotor model. The
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corresponding approximate wave function has the structure of a product

\I’(J:) = D&K(aiﬂsqf))(x(x’) (2)

where 2(= z;, x2,¥3) refers to all coordinates fixed in space, z'(= z!, z}, z4) are
cordinates related to the nuclear principal axes and (e, 3,7) denote the Euler angles
between the two reference systems. Quantity Di ;- (a, 3,~) denotes a Wigner function
for finite rotations characterised by the total spin (i.e. the total angular momentum)
I with M and K denoting its projections on the quantisation axes z; and x4 of
the laboratory and body-fixed frames, respectively. Wave function (2) leads to the
I(I + 1) rule described by eq. (1). There appears, however, one important exception
in odd-A nuclei for X' = 1/2 where formula (1) has to be modified. Thus a more
general formula reads (cf. e.g. ref. [4]):

Er= % {HT+ 1)+ (1™ (1 + 1/2)05K1/2} (3)

The appearance of the second term is connected first of all with the freedom in the
choice of the positive direction along the z}-axis and , second, with the coupling
beween the I{ = 1/2 and K = —1/2 components by the angular momentum operator
J+- This leads to a decoupling of the K = 1/2 orbit from rotation. Parameter a
called the decoupling parameter can be expressed as

a=—(K =1/2]j, [K=1/3) (@)
the bar over the state | K = 1/2) denoting time reversal.

Let us now come to the discussion of nuclear rotation in terms of the quantal
structure often referred to as the intrinsic structure as contrasted to the external
rotation. This is done by an approximate semiclassical procedure called the cranking
model [5]. The nucleus is rotated externally with constant rotational frequency w (i.e.
angular velocity) about an axis fixed in space (say, the r;-axis). A relation between
the nuclear Hamiltonian H and that in the rotating system of reference H“ (called
the cranking Hamiltonian) is given by classical mechanics (see e.g. ref. [6])

HY = I —whih (5)

where 7y is the component of nuclear angular momentum along the rotation axis.
Eigenvalues £ of H* {called Routhians) and eigenstates | ¥“) describe the nucleus
in a rotaling system. The total angular momentum [ is given in this model as

I= (0% J,|¥) (6)




while the total energy
E=(V"|H{V") = E* + hluw (7)

may be treated as function of I with w determined by the solution of eq.(1.6) with
respect to w. Quantities w and I are canonically cojugate i.e.

dE
8
huw = ¥ia (8)

and JEw
Rl = — T (9)

Let us now observe that the rotation of the system about an z;-axis through an angle
180° leaves the cranking Hamiltonian invariant (if # itself has this property! . Thus
an eigenvalue r = exp(—ira) of the operator :

R = exp(—inJ,) (10)

is a good quantum number. It is called signature. We have the following relations
between r and the allowed angular momentum I in the band

+l (@=0); 1=0,2,4,... :
= -1 (a=1) I=135... (11)
= —i (a=1/2); [=1/2,5/2,9/2,...
= +i (a=-—1/2); [I=3/27/2,11/2,...

e T S T ]

It is just the signature quantum number that suggests to treat the rotational band
fo, I + 1,15+ 2, ... rather as two distinct bands with different signatures.

Let us come now to the moments of inertia. Actually two different moments of
inertia may be useful in the description of bands at high angular momentum [7] . We
define the kinematical moment of inertia

dE
JW = Ihfw = (K*/2) ((”2) (12)
and the dynamical moment of inertia
2p\
T® = h(dI/dw) = B? (d—[";) (13)




Obviocusly, for a rigid-body rotation defined by

R
E= EI (14)
both moments of inertia coincide
TN = 7@ 2 To (15)

The behaviour of the two moments of inertia J® and J® along the rotational
band provides a very instructive insight into the properties of nuclei rotating with
high angular momentum. Below, only two examples are given. Fig. 1.2a)} illustrates
the behaviour in the curve of J() versus w for the band in *Dy. The multivalued
dependence in the region around w = 0.3 MeV /A corresponds to the crossing between
the two orbitals (i.e. two Routhian curves cross at certain weros,) lying on the yrast
line. Since w is determined as a slope in the curve of energy E as function of I (cf. eq.
(8)) the kinematical moment of inertia J!} undergoes a sharp change (with Aw < 0
locally) bending back in the plane of 7V versus w. This behaviour is often referred to
as backbending [9]. The dynamical moment of inertia 7(® exhibits even more rapid
changes at the crossing point. If the crossing were ideally sharp the derivative df/dw
would become sigular with a jump from +oco down to —co. This is illustrated in Fig.
1.2b). Generally speaking all the configurations allowing for a rapid alignment in
angular momentum give a large, positive contribution to J©} according to eq. (13).
On the other hand, if at certain region the nuclear configurations have a structure
of closed shells, or subsheils (or, in other words, there are no more orbits around the
Fermi surface carrying large changes in < J; >) then the angular momentum does
not, incease fast enough with w and, consequently, the quantity 7(?) decreases in this
region. Let us compare for example the superdeformed bands in the two neighbouring
nuclei '*?Dy and '5°Gd (see Fig. 1.3). The J® moment of inertia in ***Dy is roughly
constant while in '*°Gd a rapid decrease in J® versus w can be seen. Fig. 1.3b)
illustrates the orbit occupation of Routhians by protons. One can see that in *°Gd
where the 64 protons are occupied a rather wide gap appears so that no more aligned
orbits can be found below the Fermi surface. This situation is contrasted with *2Dy
where the occupation of the 651 3/2 orbit leads to a rapid increase in the aligned
angular momentum thus restoring the constant value of J®.

We shall only briefly mention two other phenomena that can occur in the domain
of fast rotation: the band termination and the noncollective rotation. If the prolate
nucleus which is originally axially symmetric (say, with respect to the z5-axis) rotates
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faster an faster about an axis perpendicular to the zj-axis (say, the z; = z}-axis) it
may exhibit a tendency of adjusting its shape by attempting to locate more and more
of its mass in the z;z5-plane. The resulting limiting value (band termination) occurs
when the shape of the nucleus becomes axially symmetric (and generally oblate)
with respect to the rj-axis (i.e. the rotation axis). Further collective rotation is
no more possible. Further increase in the angular momentum above the point of
band termination is only possible when the nucleonic configuration change. This
single-particle mechanism of gaining angular momentum has, therefore, a less regular
character corresponding to its single-particle structure. In particular, some isomeric
states ("yrast traps”) are possible in this region. We shall not deal with the last two
phenomena as they seem to be irrelevant in the region of very much deformed nuclei
that rotate fast (i.e. in the region of superdeformation).

2 Shell Structure

In order to discuss the possible onset of the very large deformations in nuclei induced
by a fast rotation it is instructive to consider first the behaviour of an average nuclear
system (i.e. independent of the detailed nucleonic configurations and their quantal
_structure). We shall thus consider first a rotation in the framework of classical physics
and introduce a finite portion of nuclear matter which is able to respond to rotation
mostly by changing its shape [11] . The centrifugal forces tend to deform the nucleus
by locating as much mass as possible far from the rotation axis and compete with
surface tension attepting to restore spherical shape. In addition, the tendency of
deforming the nucleus is helped by the Coulomb repulsion between the protons. As
a result of these tendencies the nucleus which is spherical at I = 0 becomes oblate
deformed and increases its deformation in the region of / between [ = 0 and [ = I.,,.
At certain critical value I of angular momentum the system with oblate shape
becomes unstable in favor of triaxial distortions tending finally (with further increase
of I) to the very elongated (prolate) shapes. This point can be considered as a
transition to the superdeformed shape of an average nucleus described in terms of a
rotating liquid drop. Some details of the above approach have been described in a
lecture presented couple of years ago at this School [12]. The transition described
above is well known in hydrodynamics as the Jacobi instability and was commonly
applied in the investigations of the shapes in the rotating astronomical objects such as
stars, planets, asteroids etc. {for some comparisons with nuclei see e.g. the reviews
[12] and (13]). The astronomical objects are known to be oblate deformed in the
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domain of a slow rotation. The existence of double stars may be considered as a
result of fission following the formation of large elongated shapes due to the Jacobi
instabality. Some examples of comparison between the astronomical objects and
nuclei are illustrated in Table 2.1 (taken from ref. [13]).

This beautiful analogy between stars, planets etc. from one side and atomic nuclei
from the other should not perhaps be pushed too far. The main difference between
the two physical systems lies in the obviously quantal structure of the physical laws
governing atomic nuclei while astronomical objects remain classical.

It appears that the bunching in the quantal energy levels into shells has an impor-
tant effect on nuclear structure and can modify essentially the response of the nuclear
system to a fast rotation. Indeed it is the density of quantal levels near the Fermi
surface , or — more generally — near the yrast line that is crucial for the argument.
If the number of nucleons in a given nucleus corresponds at certain deformation to
the very low local density of levels the system is relatively more stable and the for-
mation of the exotic state (like the superdeformed one) becomes possible. In the
situation of the extreme bunching of levels the corresponding numbers of nucleons
may be considered as magic ones which are especially favourable for the formation
of stable (or relatively more stable as compared to its neighbourhood) exotic states.
Let us study this effect in a simplest system of independent nucleons in a potential of
a nonrotating three dimensional anisotropic h.o. (=harmonic oscillator). It appears
that even at the highest angular momenta seen in experiments so far the resulting
rotational frequency w is in most cases appreciably lower than the frequencies wy, w;
and iy characterising the h.o. potential. Thus in the first rough approximation we
can disregard entirely the effect of rotation on the shell structure. The single-particle
energies of a nucleon

€ringng — ﬁwl(nl + 1/2) + ﬁb)g(ng + 1/2) + hw;](n_?, + 1/2) (16)

are characterised by the three frequencies w; and three quantum numbers n;, (¢ =
1,2,3). One may employ the Nilsson deformation parameters ¢ and + and express
the three h.o. frequencies as

w = wg(e,'y){l + (1/3)ecosy + (e/V3) sin’y}
wy = LUQ(E,’}'){l+(1/3)66037—(6/\/§)Si[17} (17)
ws = wole,7) {1 = (2/3)ecos)

where the dependence of wg on € and « follows from the volume conservation condition

03
gy =Wy (18)
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with &g being a constant independent of € and ~.

The Bohr and Mottelson condition (ref. [4]) for the existence of the shell structure
leads in this case to the requirement thet the three h.o. frequencies w; are proportional
to the three (generally not very large) integer numbers

Wiwgiwy=a:b:c (19)

It is very easy to see that the single-particle states with the same value of the
quantum number N, defined as (ref. [4])

Napett = any + bny + cng (20)

have the same energy. Thus the quantum number N,;_; determines a set of degenerate
states i.e.a shell for the deformation specified by eq. (19). Obviously further symme-
tries of the system are able to increase the degeneracy in in the shell and,therefore,
to make the bunching of levels even more pronounced. Thus in the case of spherical
symmetry, « = b= ¢ = 1 the harmonic oscillator becomes isotropic and the quantum
number N,y overlaps with the main h.o. quantum number N:

Nepett =N =n; +ny + ng (21)

The corresponding magic numbers define the closed shells with number of nucleons
2,8,20,40,....

The case of axial symmetry leads also to some simplifications although the corre-
sponding shell structure exhibits less degeneracies than in the isotropic case. Here,
we can distinguish two possible chains of shapes with different shell structures, the
prolate ones with

(a,b,¢) = (2,2,1) {(superdeformed)
(3,3,1) (hyperdeformed)
(etc.)

and the oblate ones

(a,b,¢) = (1,1,2) (we may call it superoblate)
= (1,1,3) {we may call it hyperoblate)
(etc.)
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The series of magic numbers corresponding to the closed (deformed) shells determined
by the sets of numbers (a, b, ¢) are:

2,4,10,16,... (superdeformed)
2,4,6,12,... (hiperdeformed)

and

2,6,14,26,... (superoblate)
2,6,12,22,... (hiperoblate)
......... (etc.)

Fig. 2.1 illustrates the h.o. levels plotted versus ¢ for the axially symmetric shapes

(v = 0° or 60°). The spherical, superdeformed and superoblate shells can be easily
identified.

Let us now investigate some of the possible triaxial cases leading also to some
shell structure. In these cases, however, the shell effects become relatively weaker
as there is less symmetry in the configurations leading to the less degenerate shells.
Some configurations that seem to be simplest in this case may be called supertriaxial
(wi :wp :ws =4:3.:2), hipertriaxial (3: 2: 1)etc. They define magic numbers as

2,2,4,6,10,...  (supertraxial)
2,4,8,14,20, ... (hipertriaxial)
......... (etc.)

Table 2.2 summarises all the deformed shells in the anisotropic harmonic oscillator
which were discussed above.

All the possibilities for the formation of the exotic states presented so far corre-
spond to the ideal case of the nuclear potential of a harmonic oscillator. In order to
search for the more realistic description more refined potentials such as those of the
modified h.o. (Nilsson) , Woods-Saxon, folded Yukawa etc. (if not even more basic
potentials generated by the Hartree-Fock procedure) should be employed. Some cal-
culations in this direction have already been started (cf. refs. [14],[15]). We shall not
go into detailed descriptions of these investigations. Instead, we would like to consider
briefly a possibility of a simplified treatment that follows from the introduction of a
specific symmetry in the nuclear systems, namely the pseudospin and pseudo-SU(3)
symmetries. The natural symmetry related to the pure harmonic oscillator is as well




Shell Structurs in The Anisctropic Harmonic Gscillator.
atbic S b’b Magic numbers

soherical ERERE e & | 2,8,20,40,70,11%,15&, ...
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Fig. 2.2
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known, the special unitary symmetry in three dimensions i.e. the SU(3) symmetry
[16]. However, the main failure of the pure h.o. nuclear potential consists on the
lack of p0551b111ty of including the strong [s coupling in the nuclear Hamiltonian,
Tndeed, the [- 5 term in the nucleus is strong enough to be able to shift from an every
N- shell one subshell of highest orbital angular momentum ! = N and total angular
momentum j = { + 1/2 down to the lower shell. Thus for example the jis/2, #13/2,
P11z, etc. orbitals are shifted down from ¥ = Tto N =6, from N =6 to N = 5,
from N =5 to N = 4 etc., respectively. These are the well-known intruder states.

If for the moment we take apart the intruder states from each shell the remaining
states in each major h.o. shell V {the so called normal parity states) may be cast
artificially into a new major h.o. shell N with & = N — 1. All the states | Nljm)
except the intruder states can thus be renamed as the states of | NTJTm) with the
following rule :
| Nljm) =>| Nijm)

with
N = N-1
I = I+1(forj=141/2) (22)
j =]
m = m

This artificial procedure proves to be fruitful in that sense that all the normal parity
states can then be described by the SU(3) (pseudo- SU(3)) which is nothing else as
the usual SU(3) symmetry related to the renamed N shell (cf. refs. [17],[18]). On
the other hand, the intruder states have to be added finally as other states that do
not belong to the SU(3 scheme. Following the above procedure one can thus plot
the nuclear energy levels as functions of deformation ¢ by employing the harmonic
oscillator scheme for all the N-shells and finally add all the intruder states that
have been originally removed from the picture [19]. Fig.2.2 has been constructed
by following the above recipe. The levels shown correspond to one type of nucleons
(neutrons or protons, scparately). Resulting "magic” numbers of nucleons i.e. the
regions of low densily of levels can be read off from this picture. [t can be seen that the
magic numbers corresponding to the deformation range € ~ 0.4 to 0.7 occur around
nucleon numbers in the regions 28-32, 38-46, 5866, 72-86 and finally 100-114. This
explains very well the existence fo the superdeformed shape in *2Dy with € = 0.6,
Z = 66 and N = 86. Similar features show up for Z = 80 aud N = 112 i.e. around
the nucleus *?Hg.




3 Symmetries

In this section we shall discuss some properties of the superdeformed rotational bands
in nuclei having in mind mostly the A = 150 region (i.e. roughly around Z ~ 66 and
N ~ 86). The region around A = 190 (with Z ~ 80 and N ~ 110) exhibits similar
features.

One of the most striking phenomenon is the appearance of the identical bands
in the superdeformed region in some neighbouring pairs of nuclei.The identity means
that the gamma-ray energies E,; in one nucleus are equal to a very good approxi-
mation to the gamma-ray energies El; in the other nucleus. Two examples of such
pairs of bands are shown in Table 3.1. The pairs of identical bands are also called
twin bands. The almost exact (sometimes up to a fraction of 1 keV!) overlap of the
gamma-ray energies coming from neighbouring nuclei is intriguing since in general
the properties of neighbouring nuclei are never similar within a precision of lkeV.

Apart from the indentical bands some other relations between the gamma-Tay
energies ., in neighbouring nuclei have been observed. In some pairs for instance
the quantities E,; appear to be equal to a good approximation to the arithmetic
averages of the energies in the neighbouring nucleus: 1/ 2E .+ E,5). This relation
is sometimes referred to as the indirect twin bands. Finally, some different type of
(weighted) averages hold in corresponding pairs F£.; = 3/AE L, + 1/4E!, , (called
coupled pairs). The analysis of the above relations will be the topic of our main
interest in this section.

Since the phenomena mentioned above seem to be related with the pseudo-SU (3)
and pseudospin symmetries let us first recall the most essential features of these
symmetries (cf refs. [17] and [18]}). Without following the historical path in the de-
velopment of the concepts of those symmetries let us start by considering the recipies
for changing the labels of the usual shell-model independent-particle states into the
notation of the pseudo-SU(3) (i.e. 5{7(3)) scheme. The relabelling of the states
| Nljm} in a spherical potential has been already specified before (cf.eq. (22)).

. . Now, the degeneracy of all the states | N7/} witli respect to the quantum numbers
l,7 and 7 (but not N) is just equivalent to the assumption of the pseudo-SU(3)
symmetry. Obviously, the pseudo-SU/(3) symmetry is only a crude approximation. A
less restrictive symmetry is provided by the pseudospin symmetry that requires only
the degeneracy between the pairs of states | Nijm) with respect to j = 51(1/2) (apart,
of course, from the standard degeneracy with respect to rn). Thus for example within
the pseudospin symmetry the pairs of states (g772,ds/2) in other notation (f:};,f;g)
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Table 3.1

-+ -8 1§ 1 } ;4

Examples of Identical Bands.

lexperimental gamma-ray energies in keV)

150 151 151 152
Gd'(T11) TE (D) Th(II} Dy
| 1432.5 1449.0 144%.4
1378.0 1380.7 1461, 2 1401.7
1227.0 1230.¢C 1354. ¢ 1353.0
1277.6 1278.5 1305.0 1304.7
1222.0 122e.% 1255, 0 1256.0
1179 .¢ 1:72.9 1207, 0 12327
1124.0 1:20,2 £149.2 1180.8
1084 0 s022.5 1111,¢ 1112.7
1037.0 1034.5 1044.0 1064.5
$94. 0 933.9 1C1E.C 1017.0
$44. 0 937, g 242, 4 $7C.0
901.0 898.0 $23. ¢ 923,41
837.0 854.0 27s.é 874,14
813.0 814,73 829, 3 526, 2
771.0 749.2 783.0 783.5
732.¢ 738, 8 7z7.S
£95.9 692.2
£44.9 647.2
£02.3 602. 3
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are degenerate. The same holds for a pair (da/2, $1/2) = (Pajz,Pijz) ete. In the
more restrictive case of an 5U(3) symmetry all the above four states (belonging to
N=4ie N= 3) are degenerate. Of course the last symmetry is valid only very
approximately in nuclei.

Now, it turns out that the SU(3) symmetry can be approximately extended into
the deformed potentials. Namely the standard Nilsson asympthotic representation
| NnsAl) transforms as

| NnaAQ) =| N7zAQ)

with
N = N-1
ﬁa = n3 (23)
A = A+1(for D =A%1/2)
0 =0

Thus for example some of the N = 5 (N = 4) states transform as

5411/2 — 440 1/2

530 1/2 —4311/2 (24)
5323/2 — 431 3/2

5213/2 —4223/2 et

On the other hand, the intruder N = 5 states: 550 1/2, 541 3/2, 532 5/2, 523 7/2,
514 9/2 and 505 11/2 have no corresponding partners in the pseudospin scheme.

Let us now see what are the quantal orbits filling in one degenerate shell in the
case of a superdeformed potential (¢ = 0.6; = 0°) in a pseudo-SU(3) representation.
Let us choose for example all the states that fill in the degenerate shell jusi above
66 nucleons in Fig. 2.2. It is easy to see that all these states form a 2:2:1 shell
characterised by the quantum number

Nopett =20 + 13 =5 (25)

(the tildas over all the symbols in the above equation are to remind us that

——

we are dealing with the SU(3) scheme instead of S{/(3)). It is also easy to see
that these states comne from three pseudo-h.o. major shells with ¥ = 3,4 and 5.
Labelling those states with quantum numbers (f3,7,,A) which are defined as a




product of states | fi3) of a one-dimensional h.o. along the third axis with states
| n,A) of a two-dimesional h.o. in the {(ziz,) plane we obtain the following set
of states in the superdeformed shell characterised by Ny = 5 (cf. eq. (25)):
(5,0,0)
(3,1,~1) (3,1,1)
(1,2, -2) (1,2,0) (1,2,1)
Including in addition the spin degeneracy (+1/2) we obtain alltogether 12 states in
this shell which are strictly degenerate for the pure pseudo-SU(3) scheme and should
lie close to each other if the pseudo-S17(3) symmetry is agood approximation.

Let us now see how the existence of the identical bands can be described in terms
of the particle-rotor model [21] when the odd-A nucleus exhibitts a K = 1/2 band.
Thus modified expression (3) rather than (1) should be applied. It appears that the
decoupling parameter a can be calculated in a closed form in the case of a pure h.o.
potential. The result is

o= (=1 (26)

where ¥V is the major h.o. quantum number. In the case of a pseudo-5U(3) symmetry
the argument goes in analogous way except that N should be replaced by N = N —1.
Thus in the case of a pseudo-5U(3) symmetry the decoupling parameter a is equal to

a=(-1)¥ = —(-1)¥ (27)

Now it follows from eq. (1} that the gamma-ray energies are

2

h
Er=FEn,—Er= —27(4:[ + 6) (28)

On the other hand, the gamma-ray energies in the neighbouring odd nucleus with
K = 1/2 have to be calculated from eq. (3)

1 hz !
da It = 537{4.{"‘}-6-{*2({(—1)’ -H/?} (29)
Let us now assume that
J =7
¢ = +1 (30)

' = I+1/2




In this case we obtain the relation
E.),I = E,:,Ii (31)

which is just the relation characterising the twin bands. On the other hand, ifa = —1
the bands are not identical but instead

v = 1/2Eqr + Eyrya) (32)

as can be easily seen from eq. (29). The two bands are then the indirect twin bands.
Finally, if the odd-A band is characterised by K # 1/2 we have ¢ = 0 and one has to
apply formula (1} for both the bands in the even and odd- A nuclei. In this case it is
easy to deduce (all the time we assume 7’ = 7 and I’ = { + 1/2) that

This is just the case of coupled bands. One has to emphasize that relations (31),
(32) and (33) are only special cases and in general no definite relations between the
neighbouring bands can be observed. All the above considerations have been deduced
in the framework of the particle-rotor model.

Another description of the relations between the superdeformed rotational bands
discussed above can be provided in terms of the angular momentum alignment ([22],[23])
of one rotational band (say, in the odd-A nucleus) relative to the neighbouring band
(say, in the even nucleus). Suppose that the dynamical moment of inertia J® in a
band is constant. Then the plot of angular momentum versus the gamma-ray energies
E.,; is a straight line

I = mEr+ b (34—)
where parameter m is proportional to the moment of inertia J® and parameter b

is related to the alignment. It is generally agreed by the experimentalists that the

consecutive gamma-ray energies E.; correspond to I changing in intervals of 2, i.e.
form a series

-
E‘yh E“yf+21 b"‘)‘H-'h e

Then taking two values differing by A/ = 2 we obtain

2
m=_—_0——— 35
E’YH-? - E’H ( )
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In the neighbouring (say, odd-A) nucleus we may expect a relation similar to that
given by eq. (34) (say, valid for an even nucleus)

P=mE, +V (36)

where we have assummed the same moment of inertia in both the bands (m = m').
Substraction (36) minus (34) gives

AT = {m(E}y, - E,1) + Ab} mod 2 (37)

The term mod 2 in this formula comes from the fact that I — I' is known only up to
an integer multiple of 2. Here:

Al=1I-171
and
Ab=¥b—-b

Eq. (37) may now be applied to the three possible cases: the twin bands, indirect
twin bands and coupled bands (cf. egs. (31), (32) and (33), respectively). The results
are

AT = Abmod 2 (38)

for the twin bands,
Al = (1 + Ab) mod 2 (39)

for the indirect twin bands and finally
Al = (1/2 + Ab) mod 2 (40)

for the coupled bands. Last equation implies that Ab = 0 if AJ were known to be
Al = 1/2. The above three possibilities are illustrated in Fig. 3.la,b,c). Let us
observe that the above considerations lead to the conclusion that in all the three
above cases the alignment is quantised which seems to be an intriguing result since
angular momentum projection on the z!-axis is defined as an expectation value only
and thus should not be quantised in principle.

Finally, let us observe that the relative alignment between the two bands (36) and
(34) can be also estimated from the theory employing the single-particle Routhians e
as known functions of rotational frequency w. Indeed according to eq. (9) the slope
in the Routhian curve (taken with minus sign) denotes its individual contribution




to the alignment. Thus the valence orbit in the odd-nucleus should have individual

J v —

Let us observe that some definite relations for the alignment follow from the SU(3)
symmetry in the superdeformed bands (cf. refs. [22] and [23]). Indeed, considering
an example of the Ny = 5 shell (cf.eq. (25) and the following text) we can conclude
that the orbital part of angular momentum I, cannot couple the states within one
Nypeu. In fact, [, can only couple states with Anz = +1 while the states forming one
shell contain only those values of ny that differ by two units: Ana =0,2,4,... Thus
in the cranking Hamiltonian

HY = H — hwyy = H - fiwl, — hwd, (42)

only the spin part 3; can be active within a shell and, consequently, the resulting
alignment can be only +1/2. Thus in principle all the Routhian plots within the
normal parity states in a superdeformed region should have the slopes (%) equai
-1/2 or +1/2. This justifies the argument for the existence of the twin-, or indirect
twin-bands . The above arguments are, however, only approximate since first of all
the SU(3) symmetry does not hold exactly and second, there exists always a certain
interaction with the intruder states which do not obey the above restrictions.

As a last topic in this section let us describe attempts to understand the phe-
nomenon of twin bands, indirect twin bands etc. in terms of nuclear structure. The
considerations discussed above give only the description of the phenoména either in
terms of the decoupling parameter or else the relative alignment without really ex-
plaining why the moments of inertia in the two neighbouring bands are almost equal.
Before presenting an attempt to answer this question let us see once again why this
phenomenon seems to be so strange. In fact, when we add one nucleon to the rotating
core several effects are expected. First of all the change in nuclear radius is expected
and this should increase the moment of inertia. Simple estimates indicate that this
fact should cause a change in the gamma-ray energies by an amount of the order of 10
keV i.e. one order of maguitude more than the observed differences in the twin bands.
Similar effects are expected due to the polarisation of the nuclear core induced by the
presence of one additional nucleon. Finally, nuclear rotation causes the alignment in
nucleonic orbits which can also a priori cause differences between the even and odd- 4
systems. '

Let us now see how one can attempt to estimate some of the ellects mentioned
above [24},[25]. If the pseudo-ST/(3) is a good symmetry in the nucleus at high angular




momentum then the normal parity states in the nucleus should resemble roughly
those in the harmonic oscillator. Let us first neglect the nuclear rotation. This
approximation should be not sobad since even at the states with angular momentum
considered as very high the corresponding angular velocity is still appreciably small
as compared to the h.o. frequencies. Thus let us employ [25] an expression for
the nuclear moment of inertia J calculated in the nonrotating h.o. potential. The
corresponding formula was obtained long ago by A. Bohr and B. R. Mottelson [26]

h { (w2 + ws3)?

gy

7= (5 - )4 L2zl 22)} (43)

W — Wy [T} +QJ3

Here the anisotropic h.o. is characterised by the three frequencies w,w; and ws along

axes 1,2 and 3 respectively, while the occupation factors £,,E; and ¥ describe the
sums

Te= 3 (ne+1/2), x=1,2,3 (44)

r=—ncc,

extending over all the occupied orbits. Equation (43) for the nuclear moment of
inertia should be completed by the selfconsistency condition

wlﬁl = w222 = ngg (45)

and the volume conservation condition

Wy wews =-’.:Jz~ 1/4 (46)

In this way the resulting moment of inertia J from eq.(43) becomes effectively a
function of several parameters

T = F{A;wi,wy,ws; By, 8y, Xa) (47)
Now going over to the nearest odd-A nucleus the parameters change

A — A+1
Wy  —wy + S, (48)
Y, — B+ 65, =5, + (n. + 1/2)

where the last term comes from the orbit occupicd by the valence particle . Now,

employing the perturbation theory and eliminating the quantities §w, by means of
the selfconsistency condition (45) and employing the volume conservation condition
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Fig. 3.2
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(cf. eq. (46)) one can arrive at the expression for §7 in the moment of inertia. Using
the notation

W = W= ow3= 1 (49)
El = Eg = 23/01 =% (50)

which is appropriate for the axially symmetric system we can express our formula as

g__l- l n1+1/2_n2+1/202—5 n3+l/2 50.'2—]. (51)
J 3|4 > S a?+41 T ala®+1)

Parameter o is related to deformetion and takes the value @ = 1 for the spherical
system, e = 2 for the superdefrmed configuration and « = 3 for the hiperdeformed
configuration.

There are two immediate conclusions that can be drawn from simple formula (51).
First of all, the quantity 6.7/J depends essentially on the quantum numbers n,,n;
and na characterising the valence orbit. It can be seen that §.7 /T is lowest for ny = 0.
Secondly, quantity 6.7 /7 decreases with deformation increasing.

A more realistic description of the effect has been attempted approximately in
terms of the Woods-Saxon potential [25] by employing formula (51) averaged by the
expansion coefficients of the eigenstates in the Woods-Saxon potential in terms of
the eigenstates in the h.o. potential. The results provide a remarkable observation
that quantity 6.7 /7 is lowest for ny = 0 (next lowest value occurs for ny = 1) and
drops down just for the superdeformed shape. This could perhaps explain why twin
bands etc. that are observed at very large deformation do not show up at the usual
deformations (say, at ¢ =0.2-0.3 for heavy nuclei). The plots of 6.7/ versus o for
ng = 0,1,2,... are shown in Fig. 3.2. The appreciable decrease in §.7 described in
this model can be understood as a cancellation between the volume effect and core-
polarisation induced by the valence nucleon. Preliminary calculations [25] including
also the effect of rotation do not seem to change the main conclusion of the above
argument.

Summing up the above considerations we can conclude that the strange relations
(31), (32) and (33) occur in the case when the valence orbit is characterised by the
h.o. quantum number ny = 0 (or, at most ny = 1} i.e. when it corresponds to the
nuclear density concentrated mostly near the equatorial plane (axes 1 and 2 in the
nucleus).

As the results obtained above are only approximate further investigations in this
domain are necessary.
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Fig. 3.3a
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Figs. 3.3a) and 3.3b) illustrate two cases; first with rny = 1 where §.7/J should
be small and second with n; = 6 where no definite relation between the bands are
expected.
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