SVM and Kernel machine

Stéphane Canu
stephane.canu@litislab.eu

Escuela de Ciencias Informáticas 2011

July 31, 2011
Road map

1. Linear SVM
 - Linear classification
 - The margin
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - Solving the dual
 - The non separable case
Linear classification

Find a line to separate (classify) blue from red

\[D(x) = \text{sign}(v^\top x + a) \]
Linear classification

Find a line to separate (classify) blue from red

\[D(x) = \text{sign}(\mathbf{v}^\top \mathbf{x} + a) \]

the decision border:

\[\mathbf{v}^\top \mathbf{x} + a = 0 \]
Linear classification

Find a line to separate (classify) blue from red

\[D(x) = \text{sign}(v^T x + a) \]

the decision border:

\[v^T x + a = 0 \]

there are many solutions...

The problem is ill posed

How to choose a solution?
This is not the problem we want to solve

\{(x_i, y_i); \ i = 1 : n\} a training sample, i.i.d. drawn according to \(\mathbb{P}(x, y)\)
unknown

we want to be able to classify new observations: minimize \(\mathbb{P}(\text{error})\)
This is not the problem we want to solve

\(\{(x_i, y_i); \; i = 1 : n\} \) a training sample, i.i.d. drawn according to \(\mathbb{P}(x, y) \) unknown

we want to be able to classify new observations: minimize \(\mathbb{P}(\text{error}) \)

Looking for a universal approach

- use training data: (a few errors)
- prove \(\mathbb{P}(\text{error}) \) remains small
- non linear
- scalable - algorithmic complexity
This is not the problem we want to solve

\[\{(x_i, y_i); \ i = 1 : n\} \text{ a training sample, i.i.d. drawn according to } \mathbb{P}(x, y) \text{ unknown} \]

we want to be able to classify new observations: minimize \(\mathbb{P}(\text{error}) \)

Looking for a universal approach

- use training data: (a few errors)
- prove \(\mathbb{P}(\text{error}) \) remains small
- non linear
- scalable - algorithmic complexity

with large probability:

\[\mathbb{P}(\text{error}) < \hat{\mathbb{P}}(\text{error}) + \varphi(\frac{\|v\|}{\text{margin}}) \]

\(= 0 \) here
Statistical machine learning – Computation learning theory (COLT)

\[\{ x_i, y_i \}_{i = 1}^n \]

\[f = \mathbf{v}^\top \mathbf{x} + a \]

\[y_p = f(x) \]

\[\hat{P}(\text{error}) = \frac{1}{n} L(f(x_i), y_i) \]
\[\forall \mathcal{P} \in \mathcal{P} \quad \text{Prob} \left(\frac{\mathcal{IP}(\text{error})}{\mathcal{IE}(L)} \leq \frac{\hat{\mathcal{IP}}(\text{error})}{1/n L(f(x_i), y_i)} + \varphi(\|v\|) \right) \geq \delta \]
linear discrimination

Find a line to classify blue and red

\[D(x) = \text{sign}(v^\top x + a) \]

the decision border:

\[v^\top x + a = 0 \]

there are many solutions...

The problem is ill posed

How to choose a solution ?

⇒ choose the one with larger margin
Road map

1. Linear SVM
 - Linear classification
 - The margin
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - Solving the dual
 - The non separable case
Maximize our confidence = maximize the margin

the decision border: $\Delta(v, a) = \{x \in \mathbb{R}^d \mid v^T x + a = 0\}$

maximize the margin

$$\max_{v,a} \min_{i \in [1,n]} \text{dist}(x_i, \Delta(v,a))$$

margin: m

the problem is still ill posed

if (v, a) is a solution, $\forall 0 < k$ (kv, ka) is also a solution...
Margin and distance: details

\[\text{dist}(x_i, \Delta(v, a)) = \arg\min_{s \in \Delta} \|x_i - s\| \]

\[
\left\{
\begin{align*}
\min_{s \in \mathbb{R}^d} & \quad \frac{1}{2} \|x_i - s\|^2 \\
\text{with} & \quad v^T s + a = 0
\end{align*}
\right.
\]

\[L(s, \lambda) = \frac{1}{2} \|x_i - s\|^2 + \lambda(v^T s + a) \]

\[\nabla_s L(s, \lambda) = -x_i + s + \lambda v \]

\[\nabla_s L(s, \lambda) = 0 \iff s = x_i - \lambda v \]

\[
\left\{
\begin{align*}
v^T s + a = 0 \\
s = x_i - \lambda v
\end{align*}
\right. \implies v^T (x_i - \lambda v) + a = 0 \implies \lambda = \frac{v^T x_i + a}{v^T v}
\]

\[s = x_i - \frac{v^T x_i + a}{v^T v} v \implies \|x_i - s\|^2 = \left(\frac{v^T x_i + a}{v^T v} \right)^2 v^T v \]

\[\arg\min_{s \in \Delta} \|x_i - s\| = \frac{|v^T x_i + a|}{\|v\|} \]
Margin, norm and regularity

Maximize the margin

\[
\begin{align*}
\max_{v,a} & \quad m \\
\text{with} & \quad \min_{i=1,n} |v^\top x_i + a| \geq m \\
& \quad \|v\|^2 = 1
\end{align*}
\]

if the min is greater, everybody is greater \((y_i \in \{-1, 1\}) \)

\[
\begin{align*}
\max_{v,a} & \quad m \\
\text{with} & \quad y_i(v^\top x_i + a) \geq m, \quad i = 1, n \\
& \quad \|v\|^2 = 1
\end{align*}
\]

change variable: \(w = \frac{v}{m} \) and \(b = \frac{a}{m} \) \(\implies \|w\| = \frac{\|v\|}{m} \)

\[
\begin{align*}
\max_{w,b} & \quad m \\
\text{with} & \quad y_i(w^\top x_i + b) \geq 1 \quad ; \quad i = 1, n \\
\text{and} & \quad m = \frac{1}{\|w\|}
\end{align*}
\]

\[
\begin{align*}
\min_{w,b} & \quad \|w\|^2 \\
\text{with} & \quad y_i(w^\top x_i + b) \geq 1 \quad i = 1, n
\end{align*}
\]
Road map

Linear SVM

- Linear classification
- The margin
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- Solving the dual
- The non separable case
Linear SVM: the problem

Linear SVM are the solution of the following problem (called primal)

Let \(\{(x_i, y_i); \ i = 1 : n\} \) be a set of labelled data with \(x_i \in \mathbb{R}^d, y_i \in \{1, -1\} \).

A support vector machine (SVM) is a linear classifier associated with the following decision function: \(D(x) = \text{sign}(w^\top x + b) \) where \(w \in \mathbb{R}^d \) and \(b \in \mathbb{R} \) a given thought the solution of the following problem:

\[
\begin{align*}
\min_{w, b} & \quad \frac{1}{2} \|w\|^2 = \frac{1}{2} w^\top w \\
\text{with} & \quad y_i(w^\top x_i + b) \geq 1, \\
i & = 1, n
\end{align*}
\]

This is a quadratic program (QP):

\[
\begin{align*}
\min_z & \quad \frac{1}{2} z^\top A z - d^\top z \\
\text{with} & \quad B z \leq e
\end{align*}
\]

\(z = (w, b)^\top, \ d = (0, \ldots, 0)^\top, \ A = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \ B = -[yX, y] \) et \(e = -(1, \ldots, 1)^\top \)
The linear discrimination problem

...the story of the sheep dog who was herding his sheep, and serendipitously invented the large margin classification and Sheep Vectors ...

(drawing by Ana Martin Larranaga)

from Learning with Kernels, B. Schölkopf and A. Smolla, MIT Press, 2002.
Road map

1. Linear SVM
 - Linear classification
 - The margin
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - Solving the dual
 - The non separable case
First order optimality condition (1)

problem \(\mathcal{P} = \begin{cases} \min_{x \in \mathbb{R}^n} J(x) \\ \text{with} \quad h_j(x) = 0 \quad j = 1, \ldots, p \\ \text{and} \quad g_i(x) \leq 0 \quad i = 1, \ldots, q \end{cases} \)

Definition: Karush, Kuhn and Tucker (KKT) conditions

- **Stationarity**: \(\nabla J(x^*) + \sum_{j=1}^{p} \lambda_j \nabla h_j(x^*) + \sum_{i=1}^{q} \mu_i \nabla g_i(x^*) = 0 \)

- **Primal admissibility**: \(h_j(x^*) = 0 \quad j = 1, \ldots, p \)
 \(g_i(x^*) \leq 0 \quad i = 1, \ldots, q \)

- **Dual admissibility**: \(\mu_i \geq 0 \quad i = 1, \ldots, q \)

- **Complementarity**: \(\mu_i g_i(x^*) = 0 \quad i = 1, \ldots, q \)

\(\lambda_j \) and \(\mu_i \) are called the Lagrange multipliers of problem \(\mathcal{P} \)
First order optimality condition (2)

Theorem (12.1 Nocedal & Wright pp 321)

If a vector \(x^\star \) is a stationary point of problem \(\mathcal{P} \)
Then there exists \(^a\) Lagrange multipliers such that \((x^\star, \{\lambda_j\}_{j=1:p}, \{\mu_i\}_{i=1:q}) \)
fulfill KKT conditions

\(^a\)under some conditions e.g. linear independence constraint qualification

If the problem is convex, then a stationary point is the solution of the problem

A quadratic program (QP) is convex when...

\[
(QP) \quad \begin{cases}
\min_z & \frac{1}{2}z^\top Az - d^\top z \\
\text{with} & Bz \leq e
\end{cases}
\]

...when matrix \(A \) is positive definite
KKT condition - Lagrangian (3)

Problem \(\mathcal{P} = \begin{cases} \min_\mathbf{x} \in \mathbb{R}^n & J(\mathbf{x}) \\ \text{with} & h_j(\mathbf{x}) = 0 & j = 1, \ldots, p \\ \text{and} & g_i(\mathbf{x}) \leq 0 & i = 1, \ldots, q \end{cases} \)

Definition: Lagrangian

The lagrangian of problem \(\mathcal{P} \) is the following function:

\[
\mathcal{L}(\mathbf{x}, \lambda, \mu) = J(\mathbf{x}) + \sum_{j=1}^{p} \lambda_j h_j(\mathbf{x}) + \sum_{i=1}^{q} \mu_i g_i(\mathbf{x})
\]

The importance of being a lagrangian

- the stationarity condition can be written: \(\nabla \mathcal{L}(\mathbf{x}^*, \lambda, \mu) = 0 \)
- the lagrangian saddle point \(\max_\lambda \min_\mu \min_\mathbf{x} \mathcal{L}(\mathbf{x}, \lambda, \mu) \)

Primal variables: \(\mathbf{x} \) and dual variables \(\lambda, \mu \) (the Lagrange multipliers)
Duality – definitions (1)

Primal and (Lagrange) dual problems

\[\mathcal{P} = \left\{ \min_{x \in \mathbb{R}^n} J(x) \right\} \]

\[\text{with } h_j(x) = 0 \quad j = 1, p \]

\[\text{and } g_i(x) \leq 0 \quad i = 1, q \]

\[\mathcal{D} = \left\{ \max_{\lambda \in \mathbb{R}^p, \mu \in \mathbb{R}^q} Q(\lambda, \mu) \right\} \]

\[\text{with } \mu_j \geq 0 \quad j = 1, q \]

Dual objective function:

\[Q(\lambda, \mu) = \inf_x L(x, \lambda, \mu) \]

\[= \inf_x J(x) + \sum_{j=1}^{p} \lambda_j h_j(x) + \sum_{i=1}^{q} \mu_i g_i(x) \]

Wolf dual problem

\[\mathcal{W} = \left\{ \max_{x, \lambda \in \mathbb{R}^p, \mu \in \mathbb{R}^q} L(x, \lambda, \mu) \right\} \]

\[\text{with } \mu_j \geq 0 \quad j = 1, q \]

\[\text{and } \nabla J(x^*) + \sum_{j=1}^{p} \lambda_j \nabla h_j(x^*) + \sum_{i=1}^{q} \mu_i \nabla g_i(x^*) = 0 \]
Duality – theorems (2)

Theorem (12.12, 12.13 and 12.14 Nocedal & Wright pp 346)

If f, g and h are convex and continuously differentiable\(^a\)
Then the solution of the dual problem is the same as the solution of the primal

\[
(\lambda^*, \mu^*) = \text{solution of problem } D \\
\mathbf{x}^* = \arg \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda^*, \mu^*)
\]

\(^a\)under some conditions e.g. linear independence constraint qualification
Road map

1. Linear SVM
 - Linear classification
 - The margin
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - Solving the dual
 - The non separable case
Linear SVM dual formulation - The lagrangian

\[
\begin{align*}
\min_{w, b} & \quad \frac{1}{2} \|w\|^2 \\
\text{with} & \quad y_i(w^\top x_i + b) \geq 1 \quad i = 1, n
\end{align*}
\]

Looking for the lagrangian saddle point \(\max_{\alpha} \min_{w, b} L(w, b, \alpha) \) with so called lagrange multipliers \(\alpha_i \geq 0 \)

\[
L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i (y_i(w^\top x_i + b) - 1)
\]

\(\alpha_i \) represents the influence of constraint thus the influence of the training example \((x_i, y_i)\)
Optimality conditions

\[\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i (y_i (w^\top x_i + b) - 1) \]

Computing the gradients:

\[
\begin{align*}
\nabla_w \mathcal{L}(w, b, \alpha) &= w - \sum_{i=1}^{n} \alpha_i y_i x_i \\
\frac{\partial \mathcal{L}(w, b, \alpha)}{\partial b} &= \sum_{i=1}^{n} \alpha_i y_i
\end{align*}
\]

we have the following optimality conditions

\[
\begin{align*}
\nabla_w \mathcal{L}(w, b, \alpha) &= 0 \quad \Rightarrow \quad w = \sum_{i=1}^{n} \alpha_i y_i x_i \\
\frac{\partial \mathcal{L}(w, b, \alpha)}{\partial b} &= 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_i y_i = 0
\end{align*}
\]
Linear SVM dual formulation

\[\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \alpha_i (y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1) \]

Optimality: \(\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i \) \quad \sum_{i=1}^{n} \alpha_i y_i = 0

\[\mathcal{L}(\alpha) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_j \alpha_i y_i y_j \mathbf{x}_j^\top \mathbf{x}_i - \sum_{i=1}^{n} \alpha_i y_i \sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j^\top \mathbf{x}_i - b \sum_{i=1}^{n} \alpha_i y_i + \sum_{i=1}^{n} \alpha_i \]

\[= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_j \alpha_i y_i y_j \mathbf{x}_j^\top \mathbf{x}_i + \sum_{i=1}^{n} \alpha_i \]

Dual linear SVM is also a quadratic program

Problem \(\mathcal{D} \) \quad \begin{cases} \min_{\alpha \in \mathbb{R}^n} & \frac{1}{2} \alpha^\top G \alpha - \mathbf{e}^\top \alpha \\ \text{with} & y^\top \alpha = 0 \\ \text{and} & 0 \leq \alpha_i \quad i = 1, n \end{cases}

with \(G \) a symmetric matrix \(n \times n \) such that \(G_{ij} = y_i y_j \mathbf{x}_j^\top \mathbf{x}_i \)
SVM primal vs. dual

Primal

\[
\begin{aligned}
\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} & \quad \frac{1}{2} \|w\|_2^2 \\
\text{with} & \quad y_i (w^T x_i + b) \geq 1 \\
& \quad i = 1, n
\end{aligned}
\]

- \(d + 1\) unknown
- \(n\) constraints
- classical QP
- perfect when \(d << n\)

Dual

\[
\begin{aligned}
\min_{\alpha \in \mathbb{R}^n} & \quad \frac{1}{2} \alpha^T G \alpha - e^T \alpha \\
\text{with} & \quad y^T \alpha = 0 \\
& \quad 0 \leq \alpha_i \quad i = 1, n
\end{aligned}
\]

- \(n\) unknown
- \(G\) Gram matrix (pairwise influence matrix)
- \(n\) box constraints
- easy to solve
- to be used when \(d > n\)
SVM primal vs. dual

Primal

\[
\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|^2
\quad \text{with} \quad y_i (w^\top x_i + b) \geq 1
\quad i = 1, n
\]

- \(d + 1\) unknown
- \(n\) constraints
- classical QP
- perfect when \(d << n\)

Dual

\[
\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \alpha^\top G \alpha - e^\top \alpha
\quad \text{with} \quad y^\top \alpha = 0
\quad \text{and} \quad 0 \leq \alpha_i \quad i = 1, n
\]

- \(n\) unknown
- \(G\) Gram matrix (pairwise influence matrix)
- \(n\) box constraints
- easy to solve
- to be used when \(d > n\)

\[
f(x) = \sum_{j=1}^{d} w_j x_j + b = \sum_{i=1}^{n} \alpha_i y_i (x^\top x_i) + b
\]
Cold case: the least square problem

Linear model

\[y_i = \sum_{j=1}^{d} w_j x_{ij} + \varepsilon_i \quad , \quad i = 1, n \]

\(n \) data and \(d \) variables; \(d < n \)

\[
\min_{\mathbf{w}} = \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} w_j - y_i \right)^2 = \| \mathbf{Xw} - \mathbf{y} \|^2
\]

Solution: \(\tilde{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y} \)

\[
f(\mathbf{x}) = \mathbf{x}^\top \underbrace{(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top}_{\tilde{\mathbf{w}}} \mathbf{y}
\]

What is the influence of each data point (matrix \(\mathbf{X} \) lines)?
data point influence (contribution)

for any new data point x

$$f(x) = x^\top (X^\top X)(X^\top X)^{-1}(X^\top X)^{-1}X^\top y$$

$$= x^\top X^\top X(X^\top X)^{-1}(X^\top X)^{-1}X^\top y$$

$$f(x) = \sum_{j=1}^{d} \tilde{w}_j x_j$$

$$\tilde{w} = x^\top X^\top X(\hat{X}^\top X)^{-1}(\hat{X}^\top X)^{-1}X^\top y$$
data point influence (contribution)

for any new data point \(x \)

\[
f(x) = x^\top (X^\top X)(X^\top X)^{-1}(X^\top X)^{-1}x^\top y
\]

\[
= x^\top X^\top X(X^\top X)^{-1}(X^\top X)^{-1}x^\top y
\]

\[
f(x) = \sum_{j=1}^{d} \tilde{w}_j x_j = \sum_{i=1}^{n} \hat{\alpha}_i (x^\top x_i)
\]

from variables to examples

\[
\hat{\alpha} = X(X^\top X)^{-1}\tilde{w}
\]

et \(\tilde{w} = X^\top \hat{\alpha} \)

what if \(d \geq n \)!
SVM primal vs. dual

Primal

\[
\begin{align*}
\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} & \quad \frac{1}{2} \|w\|^2 \\
\text{with} & \quad y_i (w^T x_i + b) \geq 1 \\
& \quad i = 1, n
\end{align*}
\]

- \(d + 1\) unknown
- \(n\) constraints
- classical QP
- perfect when \(d \ll n\)

Dual

\[
\begin{align*}
\min_{\alpha \in \mathbb{R}^n} & \quad \frac{1}{2} \alpha^T G \alpha - e^T \alpha \\
\text{with} & \quad y^T \alpha = 0 \\
& \quad 0 \leq \alpha_i \quad i = 1, n
\end{align*}
\]

- \(n\) unknown
- \(G\) Gram matrix (pairwise influence matrix)
- \(n\) box constraints
- easy to solve
- to be used when \(d > n\)

\[
f(x) = \sum_{j=1}^{d} w_j x_j + b = \sum_{i=1}^{n} \alpha_i y_i (x^T x_i) + b
\]
Road map

1. Linear SVM
 - Linear classification
 - The margin
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - Solving the dual
 - The non separable case
Solving the dual (1)

Data point influence
- $\alpha_i = 0$ this point is useless
- $\alpha_i \neq 0$ this point is said to be support

$$f(x) = \sum_{j=1}^{d} w_j x_j + b = \sum_{i=1}^{n} \alpha_i y_i (x^\top x_i) + b$$
Solving the dual (1)

\[f(x) = \sum_{j=1}^{d} w_j x_j + b = \sum_{i=1}^{3} \alpha_i y_i (x^\top x_i) + b \]

Data point influence
- \(\alpha_i = 0\) this point is useless
- \(\alpha_i \neq 0\) this point is said to be support

Decision border only depends on 3 points \((d + 1)\)
Solving the dual (2)

Assume we know these 3 data points

\[
\begin{align*}
\min_{\alpha \in \mathbb{R}^n} & \quad \frac{1}{2} \alpha^\top G \alpha - e^\top \alpha \\
\text{with} & \quad y^\top \alpha = 0 \\
\text{and} & \quad 0 \leq \alpha_i \quad i = 1, n
\end{align*}
\]

\[L(\alpha, b) = \frac{1}{2} \alpha^\top G \alpha - e^\top \alpha + b y^\top \alpha\]

solve the following linear system

\[
\begin{align*}
G \alpha + b y & = e \\
y^\top \alpha & = 0
\end{align*}
\]

\[
U = \text{chol}(G); \quad \% \text{ upper} \\
a = U \setminus (U' \setminus e); \\
c = U \setminus (U' \setminus y); \\
b = (y' * a) \setminus (y' * c); \\
alpha = U \setminus (U' \setminus (e - b * y));
\]
Road map

1. Linear SVM
 - Linear classification
 - The margin
 - Linear SVM: the problem
 - Optimization in 5 slides
 - Dual formulation of the linear SVM
 - Solving the dual
 - The non separable case
The non separable case: a bi criteria optimization problem

Modeling potential errors: introducing slack variables ξ_i

\[(x_i, y_i) \begin{cases}
\text{no error: } y_i(w^T x_i + b) \geq 1 \Rightarrow \xi_i = 0 \\
\text{error: } \xi_i = 1 - y_i(w^T x_i + b) > 0
\end{cases}\]

\[
\begin{aligned}
\min_{w,b,\xi} & \quad \frac{1}{2} \|w\|^2 \\
\text{with } & \quad y_i(w^T x_i + b) \geq 1 - \xi_i \\
& \quad \xi_i \geq 0 \quad i = 1, n
\end{aligned}
\]

Our hope: almost all $\xi_i = 0$
The non separable case

Modeling potential errors: introducing slack variables ξ_i

$$(x_i, y_i) \begin{cases} \text{no error:} & y_i(w^T x_i + b) \geq 1 \Rightarrow \xi_i = 0 \\ \text{error:} & \xi_i = 1 - y_i(w^T x_i + b) > 0 \end{cases}$$

Minimizing also the slack (the error), for a given $C > 0$

$$\begin{cases} \min_{w,b,\xi} & \frac{1}{2}\|w\|^2 + \frac{C}{p} \sum_{i=1}^{n} \xi_i^p \\ \text{with} & y_i(w^T x_i + b) \geq 1 - \xi_i \quad i = 1, n \\ & \xi_i \geq 0 \quad i = 1, n \end{cases}$$

Looking for the saddle point of the lagrangian with the Lagrange multipliers $\alpha_i \geq 0$ and $\beta_i \geq 0$

$$\mathcal{L}(w, b, \alpha, \beta) = \frac{1}{2}\|w\|^2 + \frac{C}{p} \sum_{i=1}^{n} \xi_i^p - \sum_{i=1}^{n} \alpha_i(y_i(w^T x_i + b) - 1 + \xi_i) - \sum_{i=1}^{n} \beta_i \xi_i$$
Optimality conditions \((p = 1)\)

\[
L(w, b, \alpha, \beta) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \alpha_i (y_i(w^\top x_i + b) - 1 + \xi_i) - \sum_{i=1}^{n} \beta_i \xi_i
\]

Computing the gradients:

\[
\begin{align*}
\nabla_w L(w, b, \alpha) &= w - \sum_{i=1}^{n} \alpha_i y_i x_i \\
\frac{\partial L(w, b, \alpha)}{\partial b} &= \sum_{i=1}^{n} \alpha_i y_i \\
\nabla_{\xi_i} L(w, b, \alpha) &= C - \alpha_i - \beta_i
\end{align*}
\]

- no change for \(w\) and \(b\)
- \(\beta_i \geq 0\) and \(C - \alpha_i - \beta_i = 0 \Rightarrow \alpha_i \leq C\)

The dual formulation:

\[
\min_{\alpha \in \mathbb{R}^n} \quad \frac{1}{2} \alpha^\top G \alpha - e^\top \alpha \\
\text{with} \quad y^\top \alpha = 0 \\
\text{and} \quad 0 \leq \alpha_i \leq C \quad i = 1, n
\]
SVM primal vs. dual

Primal

\[
\begin{align*}
\text{min}_{w,b,\xi \in \mathbb{R}^n} & \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{with} & \quad y_i (w^\top x_i + b) \geq 1 - \xi_i \\
& \quad \xi_i \geq 0 \quad i = 1, n
\end{align*}
\]

- \(d + n + 1 \) unknown
- \(2n \) constraints
- classical QP
- to be used when \(n \) is too large to build \(G \)

Dual

\[
\begin{align*}
\text{min}_{\alpha \in \mathbb{R}^n} & \quad \frac{1}{2} \alpha^\top G \alpha - \mathbf{e}^\top \alpha \\
\text{with} & \quad y^\top \alpha = 0 \\
& \quad 0 \leq \alpha_i \leq C \quad i = 1, n
\end{align*}
\]

- \(n \) unknown
- \(G \) Gram matrix (pairwise influence matrix)
- \(2n \) box constraints
- easy to solve
- to be used when \(n \) is not too large
Optimality conditions ($p = 2$)

\[L(w, b, \alpha, \beta) = \frac{1}{2} \|w\|^2 + \frac{C}{2} \sum_{i=1}^{n} \xi_i^2 - \sum_{i=1}^{n} \alpha_i (y_i(w^\top x_i + b) - 1 + \xi_i) - \sum_{i=1}^{n} \beta_i \xi_i \]

Computing the gradients:

\[
\begin{align*}
\nabla_w L(w, b, \alpha) &= w - \sum_{i=1}^{n} \alpha_i y_i x_i \\
\frac{\partial L(w, b, \alpha)}{\partial b} &= \sum_{i=1}^{n} \alpha_i y_i \\
\nabla_{\xi_i} L(w, b, \alpha) &= C \xi_i - \alpha_i - \beta_i
\end{align*}
\]

- no change for w and b
- $C \xi_i - \alpha_i - \beta_i = 0 \Rightarrow \frac{C}{2} \sum_{i=1}^{n} \xi_i^2 - \sum_{i=1}^{n} \alpha_i \xi_i - \sum_{i=1}^{n} \beta_i \xi_i = -\frac{1}{2C} \sum_{i=1}^{n} \alpha_i^2$

The dual formulation:

\[
\begin{align*}
\min_{\alpha \in \mathbb{R}^n} & \quad \frac{1}{2} \alpha^\top (G + \frac{1}{C} I) \alpha - e^\top \alpha \\
\text{with} & \quad y^\top \alpha = 0 \\
\text{and} & \quad 0 \leq \alpha_i \quad i = 1, n
\end{align*}
\]
SVM primal vs. dual

Primal

\[
\begin{align*}
\min_{w,b,\xi} & \quad \frac{1}{2} \|w\|_2^2 + \frac{1}{C} \sum_{i=1}^n \xi_i^2 \\
\text{with} & \quad y_i(w^T x_i + b) \geq 1 - \xi_i \\
& \quad \xi_i \geq 0 \quad i = 1, n
\end{align*}
\]

- \(d + n + 1 \) unknown
- 2n constraints
- classical QP
- to be used when \(n \) is too large to build \(G \)

Dual

\[
\begin{align*}
\min_{\alpha} & \quad \frac{1}{2} \alpha^T (G + \frac{1}{C} I) \alpha - e^T \alpha \\
\text{with} & \quad y^T \alpha = 0 \\
& \quad 0 \leq \alpha_i \quad i = 1, n
\end{align*}
\]

- \(n \) unknown
- \(G \) Gram matrix is regularized
- \(n \) box constraints
- easy to solve
- to be used when \(n \) is not too large
Eliminating the slack but not the possible mistakes

\[
\min_{w, b, \xi \in \mathbb{R}^n} \left\{ \frac{1}{2} \|w\|^2 + \frac{C}{2} \sum_{i=1}^{n} \xi_i^2 \right\}
\quad \text{with} \quad
\begin{align*}
\quad y_i (w^\top x_i + b) &\geq 1 - \xi_i \\
\quad \xi_i &\geq 0 \quad i = 1, n
\end{align*}
\]

Introducing the hinge loss

\[
\xi_i = \max (1 - y_i (w^\top x_i + b) \geq 1, 0)
\]

\[
\min_{w, b} \frac{1}{2} \|w\|^2 + \frac{C}{2} \sum_{i=1}^{n} \max (1 - y_i (w^\top x_i + b) \geq 1, 0)^2
\]

Back to \(d + 1\) variables, but this is no longer an explicit QP
SVM (minimizing the hinge loss) with variable selection

LP SVM

$$\min_{w, b} \|w\|_1 + C \sum_{i=1}^{n} \max(1 - y_i(w^\top x_i + b) \geq 1, 0)$$

Lasso SVM

$$\min_{w, b} \|w\|_1 + \frac{C}{2} \sum_{i=1}^{n} \max(1 - y_i(w^\top x_i + b) \geq 1, 0)^2$$

Elastic net SVM (doubly regularized with p=1 or p=2)

$$\min_{w, b} \|w\|_1 + \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \max(1 - y_i(w^\top x_i + b) \geq 1, 0)^p$$

Danzig selector for SVM, Generalized Garrote
Conclusion: variables or data point?

- seeking for a universal learning algorithm
 - no model for $P(x, y)$

- the linear case: data is separable
 - the non separable case

- double objective: minimizing the error together with the regularity of the solution
 - multi objective optimisation

- duality: variable – example
 - use the primal when $d < n$ (in the liner case) or when matrix G is hard to compute
 - otherwise use the dual

- universality = nonlinearity
 - kernels