Propagating phase boundaries and capillary fluids

Abstract : The aim is to give an overview of recent advancements in the theory of Euler-Korteweg model for liquid-vapour mixtures. This model takes into account the surface tension of interfaces by means of a capillarity coefficient. The interfaces are not sharp fronts. Their width, even though extremely small for values of the capillarity compatible with the measured, physical surface tension, is nonzero. We are especially interested in nondissipative isothermal models, in which the viscosity of the fluid is neglected and therefore the (extended) free energy, depending on the density and its gradient, is a conserved quantity. From the mathematical point of view, the resulting conservation law for the momentum of the fluid involves a third order, dispersive termbut no parabolic smoothing effect. We present recent results about well-posedness and propagation of solitary waves.
Type de document :
3rd cycle. Levico, 2010, pp.57
Liste complète des métadonnées

Littérature citée [70 références]  Voir  Masquer  Télécharger
Contributeur : Sylvie Benzoni-Gavage <>
Soumis le : vendredi 1 avril 2011 - 09:34:54
Dernière modification le : mercredi 12 décembre 2018 - 15:19:18
Document(s) archivé(s) le : jeudi 8 novembre 2012 - 13:01:58



  • HAL Id : cel-00582329, version 1


Sylvie Benzoni-Gavage. Propagating phase boundaries and capillary fluids. 3rd cycle. Levico, 2010, pp.57. 〈cel-00582329〉



Consultations de la notice


Téléchargements de fichiers