L. Enoncé-de, L. Arkeryd, S. Caprino, N. Ianiro-de, D. W. Robinson et al., Toutefois le cadre de l'article [39] est un peu différent de celui développé dans ce chapitre et la preuve repose sur un résultat (de représentation ?) de G1 présentée ici repose d'une part sur des arguments classiques de sous additivité de l'entropie comme ils preuvent appara??treappara??tre dans Cette preuve est peut-? etre originale, elle permet en tout cas de se passer de l'argument de G. Choquet et P.A. Meyer. La section 4.2 reprend l'´ etude d'unprobì eme introduit dans un article de Messer, Spohn [32] puis de Caglioti, sous une forme légèrement différente) du théorème 4.1.1 appara??tappara??t dans l'article Les preuves présentées en sont largement inspirées. Les résultats liant chaos au sens de Kac et chaos " au sens entropique, 1991.

L. Ambrosio, N. Gigliand, and G. Savare, Gradient ows in metric spaces and in the space of Probability measures, 2005.

L. Arkeryd, S. Caprino, and N. Ianiro, The homogeneous Boltzmann hierarchy and statistical solutions to the homogeneous Boltzmann equation, Journal of Statistical Physics, vol.10, issue.1-2, pp.1-2, 1991.
DOI : 10.1007/BF01026609

P. Billingsley, Convergence of probability measures, second ed. Wiley Series in Probability and Statistics : Probability and Statistics, 1999.

F. Bolley, Separability and completeness for the Wasserstein distance, Séminaire de probabilités XLI, pp.371-377, 1934.
DOI : 10.1007/978-3-540-77913-1_17

URL : https://hal.archives-ouvertes.fr/hal-00453887

W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Communications in Mathematical Physics, vol.35, issue.2, pp.101-113, 1977.
DOI : 10.1007/BF01611497

E. Caglioti, P. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations : a statistical mechanics description, Comm. Math. Phys, vol.143, pp.3-501, 1992.

E. Caglioti, P. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional euler equations: A statistical mechanics description. Part II, Communications in Mathematical Physics, vol.9, issue.4, pp.229-260, 1995.
DOI : 10.1007/BF02099602

E. A. Carlen, M. C. Carvalho, J. Le-roux, M. Loss, and C. Villani, Entropy and chaos in the Kac model, Kinetic and Related Models, vol.3, issue.1, pp.85-122, 2010.
DOI : 10.3934/krm.2010.3.85

E. A. Carlen, E. Gabetta, and G. Toscani, Propagation of Smoothness and the Rate of Exponential Convergence to Equilibrium for a Spatially Homogeneous Maxwellian Gas, Communications in Mathematical Physics, vol.199, issue.3, pp.3-521, 1999.
DOI : 10.1007/s002200050511

J. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Rivista Matemtica di Parma, vol.6, pp.75-198, 2007.

G. Choquet, M. , and P. , Existence et unicit?? des repr??sentations int??grales dans les convexes compacts quelconques, Annales de l???institut Fourier, vol.13, issue.1, pp.139-154, 1963.
DOI : 10.5802/aif.135

V. Dobri´cdobri´c, Y. , and J. , Asymptotics for transportation cost in high dimensions, Journal of Theoretical Probability, vol.7, issue.1, pp.97-118, 1995.
DOI : 10.1007/BF02213456

R. L. Dobru?in, Vlasov equations. Funktsional. Anal. i Prilozhen, pp.48-58, 1979.

R. M. Dudley, Real analysis and probability of Cambridge Studies in Advanced Mathematics, 2002.

R. S. Ellis, Entropy, large deviations, and statistical mechanics, Classics in Mathematics, 2006.

S. N. Ethier and T. G. Kurtz, Markov processes. Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics, 1986.

F. A. Grünbaum, Propagation of chaos for the Boltzmann equation, Arch. Rational Mech. Anal, vol.42, pp.323-345, 1971.

M. Hauray and P. Jabin, N-particles Approximation of the Vlasov Equations with Singular Potential, Archive for Rational Mechanics and Analysis, vol.176, issue.3, pp.489-524, 2007.
DOI : 10.1007/s00205-006-0021-9

URL : https://hal.archives-ouvertes.fr/hal-00000670

E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Transactions of the American Mathematical Society, vol.80, issue.2, pp.470-501, 1955.
DOI : 10.1090/S0002-9947-1955-0076206-8

F. Hirsch and G. Lacombe, ´ Eléments d'analyse fonctionnelle, 1997.

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, pp.171-197, 1954.

X. Lu and B. Wennberg, Solutions with increasing energy for the spatially homogeneous Boltzmann equation, Nonlinear Analysis: Real World Applications, vol.3, issue.2, pp.243-258, 2002.
DOI : 10.1016/S1468-1218(01)00026-8

P. Malliavin, Intégration et probabilités

J. Mckean and H. P. , A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS, Proc. Nat. Acad. Sci. U.S.A. 56, pp.1907-1911, 1966.
DOI : 10.1073/pnas.56.6.1907

J. Mckean and H. P. , An exponential formula for solving Boltzmann's equation for a Maxwellian gas, Journal of Combinatorial Theory, vol.2, issue.3, pp.358-382, 1967.
DOI : 10.1016/S0021-9800(67)80035-8

J. Mckean and H. P. , Propagation of chaos for a class of non-linear parabolic equations, Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, pp.41-57, 1967.

F. G. Mehler, Ueber die entwicklung einer function von beliebig vielen variablen nach laplaschen functionen höherer ordnungn, Crelle's Journal, vol.66, pp.161-176, 1866.

S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, Probabilistic models for nonlinear partial differential equations (Montecatini Terme, pp.42-95, 1995.
DOI : 10.1007/BF01055714

J. Messer and H. Spohn, Statistical mechanics of the isothermal lane-emden equation, Journal of Statistical Physics, vol.10, issue.3, pp.561-578, 1982.
DOI : 10.1007/BF01342187

S. Mischler, C. Mouhot, and M. Wennberg, Quantitative chaos propagation for N -particle systems, Work in progress

C. Mouhot, Rate of Convergence to Equilibrium for the Spatially Homogeneous Boltzmann Equation with Hard Potentials, Communications in Mathematical Physics, vol.261, issue.3, pp.629-672, 2006.
DOI : 10.1007/s00220-005-1455-x

URL : https://hal.archives-ouvertes.fr/hal-00076709

H. Neunzert and J. Wick, Theoretische und numerische Ergebnisse zur nichtlinearen Vlasov-Gleichung, Numerische Lösung nichtlinearer partieller Differentialund Integrodifferentialgleichungen, pp.159-185, 1971.
DOI : 10.1007/BFb0061619

F. Otto and C. Villani, Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality, Journal of Functional Analysis, vol.173, issue.2, pp.361-400, 2000.
DOI : 10.1006/jfan.1999.3557

R. Peyre, Some Ideas About Quantitative Convergence of??Collision??Models to Their Mean Field Limit, Journal of Statistical Physics, vol.66, issue.3???4, pp.1105-1130, 2009.
DOI : 10.1007/s10955-009-9820-3

URL : https://hal.archives-ouvertes.fr/hal-01282584

S. T. Rachev, R. , and L. , Mass transportation problems, II. Probability and its Applications, pp.Ap- plications, 1998.

D. W. Robinson, R. , and D. , Mean entropy of states in classical statistical mechanics, Communications in Mathematical Physics, vol.87, issue.4, pp.288-300, 1967.
DOI : 10.1007/BF01646480

D. Ruelle, Statistical mechanics : Rigorous results, 1969.
DOI : 10.1142/4090

H. Spohn, Kinetic equations from Hamiltonian dynamics : Markovian limits. Rev. Modern Phys, pp.569-615, 1980.

H. Spohn, On the Vlasov hierarchy, Mathematical Methods in the Applied Sciences, vol.56, issue.1, pp.445-455, 1981.
DOI : 10.1002/mma.1670030131

H. Spohn, Large scale dynamics of interacting particles. Texts and Monograph in physics, 1991.

A. Sznitman, Propagation of chaos for a system of annihilating brownian spheres, Communications on Pure and Applied Mathematics, vol.66, issue.6, pp.663-690, 1987.
DOI : 10.1002/cpa.3160400602

A. Sznitman, Topics in propagation of chaos, Lecture Notes in Math, vol.22, issue.1, pp.165-251, 1991.
DOI : 10.1070/SM1974v022n01ABEH001689

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. Verw. Gebiete, vol.4679, issue.1, pp.67-105, 1978.

C. Villani, Cercignani's Conjecture is Sometimes True and Always Almost True, Communications in Mathematical Physics, vol.234, issue.3, pp.455-490, 2003.
DOI : 10.1007/s00220-002-0777-1

C. Villani, of Graduate Studies in Mathematics series, Topics in Optimal Transportation, vol.58, 2003.

C. Villani, Optimal transport, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2009.
DOI : 10.1007/978-3-540-71050-9

URL : https://hal.archives-ouvertes.fr/hal-00974787

C. Villani, Optimal transport, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2009.
DOI : 10.1007/978-3-540-71050-9

URL : https://hal.archives-ouvertes.fr/hal-00974787