P. Alliez, A. Fabri, and E. Fogel, Computational geometry algorithm library, 2008.
DOI : 10.1145/1665817.1665821

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel et al., Lapack user's guide, SIAM, 1999.

O. Axelsson and V. A. Barker, Solution of boundary value problems. Theory and computation, SIAM, 2001.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato et al., Templates for the solution of linear systems, SIAM, 1994.

F. , D. Benedetto, G. Fiorentino, and S. Serra, CG preconditioning for Toeplitz matrices, Computers & Mathematics with Applications, vol.25, issue.6, pp.35-45, 1993.

M. Benzi, Preconditioning Techniques for Large Linear Systems: A Survey, Journal of Computational Physics, vol.182, issue.2, pp.418-477, 2002.
DOI : 10.1006/jcph.2002.7176

C. Blaess, Shells linux et unix par la pratique, 2008.

R. Boisvert, R. Pozo, and K. Remington, The matrix market exchange formats : initial design, 1996.

B. J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik et al., PETSc : portable, extensible toolkit for scientific computation Argone national laboratory, 2011.

E. Chu, A. George, J. Liu, and E. Ng, SPARSEPAK : Waterloo sparse matrix package. users' guide for SPARSEPAK-A

P. Ciarlet, The finite element method for elliptic problems, SIAM, 2002.

P. G. Ciarlet, Basic error estimates for elliptic problems Handbook of numerical analysis Finite element methods, pp.18-351, 1991.

P. D. Alberto and A. Nicolau, Adaptive Strassen's matrix multiplication, Proceedings of the 21st annual international conference on supercomputing, pp.284-292, 2007.

T. A. Davis and I. S. Duff, An unsymmetgric-pattern multifrontal method for sparse LU factorization, 1994.

J. Dongarra, A. Lumsdaine, R. Pozo, and K. Remington, A sparse matrix library in C++ for high performance architectures, Proceedings of the second object oriented numerics conference, pp.214-218, 1992.

D. Dougherty and A. Robbins, Sed & awk, 1997.

J. W. Eaton, D. Bateman, and S. Hauberg, Octave : A high-level interactive language for numerical computations. Free software fundation, 2011.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale sparse matrix package I: The symmetric codes, International Journal for Numerical Methods in Engineering, vol.2, issue.8, 1977.
DOI : 10.1002/nme.1620180804

M. Frigo and S. G. Johnson, The Design and Implementation of FFTW3, Proceedings of the IEEE, vol.93, issue.2, pp.216-231, 2005.
DOI : 10.1109/JPROC.2004.840301

A. George and J. W. Liu, Computer solution of large sparse positive systems, 1981.

P. L. George and H. Borouchaki, Triangulation de Delaunay et maillage. Applications aux éléments finis, 1997.

G. H. Golub and C. F. Van-loan, Matrix computations, 1996.

G. H. Golub and G. A. Meurant, Résolution numérique des grands systèmes linéaires, 1983.

T. Granlund, GMP : the GNU multiple precision arithmetic library. Free software foundation, 2012.

G. Guennebaud and B. Jacob, Eigen documentation, 2008.

F. Hecht, BAMG : bidimensional anisotropic mesh generator, 2006.

M. Heideman, D. Johnson, and C. Burrus, Gauss and the history of the fast fourier transform, IEEE ASSP Magazine, vol.1, issue.4, pp.14-21, 1985.
DOI : 10.1109/MASSP.1984.1162257

Y. Hida, X. S. Li, and D. H. Bailey, Library for double-double and quaddouble arithmetic, 2008.

D. E. Knuth, The art of computer programming. Volume 1. Fundamental algorithms, 1969.

D. E. Knuth, The art of computer programming Seminumerical algorithms, 1981.

P. Lascaux and R. Théodor, Analyse numérique matricielle appliquée à l'art de l'ingénieur, 1986.

M. Lehn, Everything you always wanted to know about FLENS, but you were efraid to ask, 2008.

X. S. Li, J. W. Demmel, J. R. Gilbert, and M. Shao, SuperLU user's guide. Univ. of California, 2010.

G. Meurant, Computer solution of large linear systems, 1999.

D. R. Musser, G. J. Derge, and A. Saini, STL tutorial and reference guide. C++ programming with the standard template library, 2001.

R. Pozo, Template numerical toolkit : an interface for scientific computing in c++, 2004.

W. H. Press, S. A. Teulkolsky, W. T. Vetterling, and B. P. Flannery, Numerical recepies in C. The art of scientific computing, 1994.

P. A. Raviart and J. M. Thomas, Introduction à l'analyse numerique des équations aux dérivées partielles, 1983.

J. Remacle and C. Geuzaine, Gmsh : a three-dimensional finite element mesh generator with built-in pre-and post-processing facilites, 2007.

S. Robinson, Toward an optimal algorithm for matrix multiplication, SIAM news, vol.38, issue.9, pp.1-5, 2005.

Y. Saad, Sparskit : a basic tool-kit for sparse matrix computation, 1994.

Y. Saad, Iterative methods for sparse linear systems, SIAM, 2000.
DOI : 10.1137/1.9780898718003

M. Sala and M. Heroux, Robust algebraic preconditioners with IFPACK 3.0, 2005.
DOI : 10.2172/1127118

C. Sanderson, Armadillo : an open source C++ linear algebra library for fast prototyping and computationally intensive experiments, 2010.

P. Saramito, Efficient C++ finite element computing with Rheolef. CNRS and LJK, 2011.
URL : https://hal.archives-ouvertes.fr/cel-00573970

W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, 2002.
DOI : 10.1016/B978-012387582-2/50032-0

K. Shoemake, Animating rotation with quaternion curves, ACM SIGGRAPH Computer Graphics, vol.19, issue.3, pp.245-254, 1985.
DOI : 10.1145/325165.325242

A. H. Squillacote, Paraview user's guide, 2011.

G. W. Stewart, Building an old-fashioned sparse solver, 2003.

V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik, vol.13, issue.4, pp.354-356, 1969.
DOI : 10.1007/BF02165411

B. Stroustrup, Le language C++, 2001.

P. N. Swarztrauber, Vectorizing the FFTs, pp.51-83, 1982.

P. N. Swarztrauber, R. A. Sweet, and J. C. Adams, fishpack : efficient fortran subprograms for the solution of elliptic partial differential equations, Univ. Corp. for Athmospheric research, 1999.

W. F. Tinney and J. W. Walker, Direct solutions of sparse network equations by optimally ordered triangular factorization, Proceedings of the IEEE, vol.55, issue.11, p.1801, 1967.
DOI : 10.1109/PROC.1967.6011

T. Veldhuisen, Blitz++ : a C++ class library for scientific computing, 2006.

T. Veldhuizen, Techniques for scientific C++, 2000.

J. Walter and M. Koch, Boost/ublas : basic linear algebra library, 2012.

A. F. Ware, Fast Approximate Fourier Transforms for Irregularly Spaced Data, SIAM Review, vol.40, issue.4, pp.838-856, 1998.
DOI : 10.1137/S003614459731533X

T. Williams and C. Keley, gnuplot : an interactive program, 2010.

O. C. Zienkiewicz and R. L. Taylor, The finite element method pass1.h, 99 pass2.h, 100 point.h, 81, 82, 87, 88 pow_linear.cc, 14 pow_recursive.cc, 14 promote.cc, 120 promote, 2000.

.. Condition-de-type-neumann, 106 29 Coefficients non-constants, p.106