Efficient C++ finite element computing with Rheolef

Pierre Saramito

To cite this version:

HAL Id: cel-00573970
https://cel.archives-ouvertes.fr/cel-00573970v4

Submitted on 22 May 2012 (v4), last revised 2 Jun 2022 (v16)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Efficient C++ finite element computing with Rheolef

P. Saramito

version 6.1 update 15 May 2012
Introduction

Rheolef is a programming environment that serves as a convenient laboratory for computations involving finite element methods. **Rheolef** is both a C++ library and a set of commands for unix shell programming, providing algorithms and data structures.

- **Algorithms** refer to the most up-to-date ones: preconditioned sparse solvers for linear systems, incompressible elasticity, Stokes and Navier-Stokes flows, characteristic method for convection dominated heat problems, etc. Also nonlinear generic algorithms such as fixed point and damped Newton methods.

- **Data structures** fit the standard variational formulation concept: spaces, discrete fields, bilinear forms are C++ types for variables, that can be combined in any expressions, as you write it on the paper.

```cpp
int main (int argc, char** argv) { 
    environment rheolef (argc, argv);
    geo omega (argv[1]);
    space Xh (omega, argv[2]);
    Xh.block ("boundary");
    form a (Xh, Xh, "grad_grad");
    field lh = riesz(Xh, 1);
    field uh (Xh);
    uh ["boundary"] = 0;
    solver sa (a.uu());
    uh.u = sa.solve (lh.u());
    dout << uh;
}
```

Figure 1: Example of a *Rheolef* code for solving the Poisson problem with homogeneous boundary conditions. The right column shows the one-to-one line correspondence between the code and the variational formulation of the problem.

Combined together, as a Lego game, these bricks allows the user to solve most complex nonlinear problems. This Book details, step by step, how some simple and more complex problems can be solved, most of them in less than 20 lines of code. The concision and readability of codes written with **Rheolef** is certainly a major keypoint of this environment (see Fig. 1).
Classical features

- Poisson problems in 1D, 2D and 3D with P1 or P2 elements
- Stokes problems in 2D and 3D, with Taylor-Hood P2-P1 or stabilized P1 bubble-P1 elements
- Linear elasticity in 2D and 3D, with P1 and P2 elements, including the incompressible and nearly incompressible elasticity
- Characteristic method for convection-diffusion, time-dependent problems and Navier-Stokes equations.
- Input and output in various file format for meshes generators and numerical data visualization systems

Advanced features

- Auto-adaptive mesh based for 2D problems
- Axisymmetric problems
- Multi-regions and non-constant coefficients
- Nonlinear problems with either fixed-point algorithms or a provided generic damped Newton solver
- 3d stereo visualization

Contacts

e-mail Pierre.Saramito@imag.fr

home page http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef

Please send all comments and bug reports by electronic mail to

rheolef@grenet.fr

The Rheolef present contributors
from 2010 Mahamar Dicko: finite element methods for equations on surfaces.

Past contributors
2010 Lara Abouorm: banded level set method for equations on surfaces.
2000 Nicolas Roquet: initial versions of Stokes and Bingham flow solvers.
Contents

I Getting started with simple problems 7
 1 Getting started with Rheolef 11
 1.1 The model problem 11
 1.2 Approximation 12
 1.3 File ‘dirichlet.cc’ 12
 1.4 Comments 12
 1.5 How to compile the code 14
 1.6 How to run the program 15
 1.7 Distributed and parallel runs 15
 1.8 Stereo visualization 16
 1.9 High-order finite element methods 17
 1.10 Tridimensional computations 17
 1.11 Quadrangles, prisms and hexahedra 18

 2 Standard boundary conditions 21
 2.1 Non-homogeneous Dirichlet conditions 21
 2.2 Non-homogeneous Neumann boundary conditions for the Helmholtz operator 29
 2.3 The Robin boundary conditions 31

 3 Non-constant coefficients and multi-regions 33

 4 Neumann boundary conditions for the Laplace operator 39

II Fluids and solids computations 43
 5 The linear elasticity and the Stokes problems 45
 5.1 The linear elasticity problem 45
 5.2 Computing the stress tensor 49
 5.3 Mesh adaptation 53
 5.4 The Stokes problem 56
 5.5 Computing the vorticity 59
 5.6 Computing the stream function 62

 6 Nearly incompressible elasticity and the stabilized Stokes problems 65
 6.1 The incompressible elasticity problem 65
6.2 The $P_1 b - P_1$ element for the Stokes problem ... 67
6.3 The stabilized Stokes problem .. 72
6.4 Axisymmetric geometries .. 72
6.5 The axisymmetric stream function and stress tensor .. 73

7 Time-dependent problems ... 77
7.1 The heat equation ... 77
7.2 The convection-diffusion problem .. 80
7.3 The Navier-Stokes problem .. 86

III Advanced and highly nonlinear problems ... 95

8 The highly nonlinear p-laplacian problem ... 97
8.1 Problem statement ... 97
8.2 The fixed-point algorithm .. 98
8.3 The Newton algorithm .. 102
8.4 The damped Newton algorithm .. 107

9 Equation defined on a surface ... 113
9.1 Approximation on an explicit surface mesh ... 113
9.2 Building a surface mesh from a level set function ... 122
9.3 The banded level set method ... 125
9.4 A direct solver for the banded level set method ... 127

IV Technical appendices .. 133

A How to write a variational formulation ? .. 135
A.1 The Green formula ... 135
A.2 The vectorial Green formula .. 135
A.3 The Green formula on a surface .. 136

B How to prepare a mesh ? ... 137
B.1 Bidimensional mesh with bamg ... 137
B.2 Unidimensional mesh with gmsh ... 138
B.3 Bidimensional mesh with gmsh ... 139
B.4 Tridimensional mesh with gmsh ... 140

C Migrating to Rheolef version 6.0 ... 143
C.1 What is new in Rheolef 6.0 ? ... 143
C.2 What should I have to change in my code ? .. 143

D GNU Free Documentation License ... 145

Index of concepts .. 153

Index of example files .. 157
Index of programs 158
Part I

Getting started with simple problems
The first part of this book starts with the Dirichlet problem with homogeneous boundary condition: this example is declined with details in dimension 1, 2 and 3, as a starting point to Rheolef. Next chapters present various boundary conditions: for completeness, we treat non-homogeneous Dirichlet, Neumann, and Robin boundary conditions for model problems. The last two examples presents some special difficulties that appears in most problems: the first one introduce to problems with non-constant coefficients and the second one, a ill-posed problem where the solution is defined up to a constant.

This first part can be viewed as a pedagogic preparation for more advanced applications, such as Stokes and elasticity, that are treated in the second part of this book. Problem with non-constant coefficients are common as suproblems generated by various algorithms for non-linear problem.
Chapter 1

Getting started with Rheolef

For obtaining and installing Rheolef, see the installation instructions on the Rheolef home page:

http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/

All examples presented along the present book are available in the example/ directory of the Rheolef distribution. This directory is given by the following unix command:

rheolef-config --exampledir

This command returns you a path, something like /usr/share/doc/rheolef-doc/examples/ and you should make a copy of these files:

 cp -a /usr/share/doc/rheolef-doc/examples/ .
 cd examples

Before to run examples, please check your Rheolef installation with:

 rheolef-config --check

1.1 The model problem

Let us consider the classical Poisson problem with homogeneous Dirichlet boundary conditions in a domain bounded $\Omega \subset \mathbb{R}^d$, $d = 1, 2, 3$:

(P): find u, defined in Ω, such that:

\[
- \Delta u = 1 \text{ in } \Omega \\
 u = 0 \text{ on } \partial \Omega
\]

(1.1) (1.2)

where Δ denotes the Laplace operator. The variational formulation of this problem expresses (see appendix A.1 for details):

(VF): find $u \in H^1_0(\Omega)$ such that:

\[
a(u, v) = l(v), \forall v \in H^1_0(\Omega)
\]

(1.3)

where the bilinear form $a(\cdot, \cdot)$ and the linear form $l(\cdot)$ are defined by

\[
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx, \forall u, v \in H^1_0(\Omega)
\]

\[
l(v) = \int_{\Omega} v \, dx, \forall v \in L^2(\Omega)
\]
The bilinear form \(a(.,.) \) defines a scalar product in \(H^1_0(\Omega) \) and is related to the energy form. This form is associated to the \(-\Delta\) operator.

1.2 Approximation

Let us introduce a mesh \(\mathcal{T}_h \) of \(\Omega \) and the finite dimensional space \(X_h \) of continuous piecewise polynomial functions.

\[
X_h = \{ v \in H^1(\Omega) ; \; \frac{v}{\mathcal{K}} \in P_k, \; \forall \mathcal{K} \in \mathcal{T}_h \}
\]

where \(k = 1 \) or \(2 \). Let \(V_h = X_h \cap H^1_0(\Omega) \) be the functions of \(X_h \) that vanishes on the boundary of \(\Omega \). The approximate problem expresses:

\[
(VF)_h : \text{find } u_h \in V_h \text{ such that:}
\]

\[
a(u_h, v_h) = l(v_h), \; \forall v_h \in V_h
\]

By developing \(u_h \) on a basis of \(V_h \), this problem reduces to a linear system. The following C++ code implement this problem in the Rheolef environment.

1.3 File ‘dirichlet.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;

int main(int argc, char** argv) {

environment rheolef (argc, argv);
geo omega (argv[1]);
space Xh (omega, argv[2]);
Xh.block ("boundary");
form a (Xh, Xh, "grad_grad");
field lh = riesz (Xh, 1);
field uh (Xh);
uh ["boundary"] = 0;
solver sa (a uu());
uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
dout << uh;
}
```

1.4 Comments

This code applies for both one, two or three dimensional meshes and for both piecewise linear or quadratic finite element approximations. Four major classes are involved, namely: geo, space, form and field.

Let us now comment the code, line by line.

```
#include "rheolef.h"
```

The first line includes the Rheolef header file ‘rheolef.h’.

```cpp
using namespace rheolef;
using namespace std;
```

By default, in order to avoid possible name conflicts when using another library, all class and function names are prefixed by rheolef::, as in rheolef::space. This feature is called the name space. Here, since there is no possible conflict, and in order to simplify the syntax, we drop all the rheolef:: prefixes, and do the same with the standard c++ library classes and variables, that are also prefixed by std:::

```cpp
int main(int argc, char** argv) {
```
The entry function of the program is always called `main` and accepts arguments from the unix command line: `argc` is the counter of command line arguments and `argv` is the table of values. The character string `argv[0]` is the program name and `argv[i]`, for `i = 1` to `argc-1`, are the additional command line arguments.

```plaintext
environment rheolef (argc, argv);
```

These two command line parameters are immediately furnished to the distributed environment initializer of the `boost::mpi` library, that is a c++ library based on the usual message passing interface (mpi) library. Notice that this initialization is required, even when you run with only one processor.

```plaintext
geo omega (argv[1]);
```

This command get the first unix command-line argument `argv[1]` as a mesh file name and store the corresponding mesh in the variable `omega`.

```plaintext
space Xh (omega, argv[2]);
```

Build the finite element space `Xh` contains all the piecewise polynomial continuous functions. The polynomial type is the second command-line arguments `argv[2]`, and could be either `P1`, `P2` or any `P_k`, where `k ≥ 1`.

```plaintext
Xh.block ("boundary");
```

The homogeneous Dirichlet conditions are declared on the boundary.

```plaintext
form a (Xh, Xh, "grad_grad");
```

The form `a(.,.)` is the energy form.

```plaintext
field lh = riesz (Xh, 1);
```

Here `lh(.)` is the Riesz representer of the constant right-hand side `f = 1` of the problem.

```plaintext
field uh (Xh);
```

The field `uh` contains the the degrees of freedom.

```plaintext
uh ["boundary"] = 0;
```

Some degrees of freedom are prescribed as zero on the boundary.

Let \((\varphi_i)_{0 \leq i < \text{dim}(X_h)} \) be the basis of \(X_h \) associated to the Lagrange nodes, e.g. the vertices of the mesh for the \(P_1 \) approximation and the vertices and the middle of the edges for the \(P_2 \) approximation. The approximate solution \(u_h \) expresses as a linear combination of the continuous piecewise polynomial functions \((\varphi_i) \):

\[
 u_h = \sum_i u_i \varphi_i
\]

Thus, the field \(u_h \) is completely represented by its coefficients \((u_i) \). The coefficients \((u_i) \) of this combination are grouped into to sets: some have zero values, from the boundary condition and are related to blocked coefficients, and some others are unknown. Blocked coefficients are stored into the \(uh.b \) array while unknown one are stored into \(uh.u \). Thus, the restriction of the bilinear form \(a(.,.) \) to \(X_h \times X_h \) can be conveniently represented by a block-matrix structure:

\[
 a(u_h, v_h) = (\begin{pmatrix} uh.u \\ uh.b \end{pmatrix}) (\begin{pmatrix} uu & ub \\ ab & bb \end{pmatrix}) (\begin{pmatrix} vh.u \\ vh.b \end{pmatrix})
\]

This representation also applies for the linear form \(l(.) \):

\[
 l(v_h) = (\begin{pmatrix} lh.u \\ lh.b \end{pmatrix})
\]
Thus, the problem \((VF)_h\) writes now:

\[
\begin{pmatrix}
vh.u & vh.b \\
\end{pmatrix}
\begin{pmatrix}
a.uu & a.u.b \\
a.b.u & a.b.b \\
\end{pmatrix}
\begin{pmatrix}
uh.u \\
uh.b \\
\end{pmatrix}
= \begin{pmatrix}
vh.u & vh.b \\
\end{pmatrix}
\begin{pmatrix}
lh.u \\
lh.b \\
\end{pmatrix}
\]

for any \(vh.u\) and where \(vh.b = 0\). After expansion, the problem reduces to find \(uh.u\) such that:

\[
a.uu * uh.u = l.u - a.u.b * uh.b
\]

The resolution of this linear system for the \(a.uu\) matrix is then performed. A preliminary step build the \(LDLT^T\) factorization:

\[
\text{solver} \ sa \ (a.uu());
\]

Then, the second step solves the unknown part:

\[
\text{uh.set_u()} = sa.solve (lh.u() - a.u.b()*uh.b());
\]

When \(d > 3\), a faster iterative strategy is automatically preferred by the \texttt{solver} class for solving the linear system: in that case, the preliminary step build an incomplete Choleski factorization preconditioner, while the second step runs an iterative method: the preconditioned conjugate gradient algorithm. Finally, the field is printed to standard output:

\[
dout \ll uh;
\]

The \texttt{dout} stream is a specific variable defined in the \texttt{Rheolef} library: it is a distributed and parallel extension of the usual \texttt{cout} stream in \texttt{C++}

1.5 How to compile the code

First, create a \texttt{Makefile} as follow:

```makefile
#include $(shell rheolef-config --libdir)/rheolef/rheolef.mk
CXXFLAGS = $(INCLUDES_RHEOLEF)
DLIBS = $(LIBS_RHEOLEF)
default: dirichlet
```

Then, enter:

```bash
make dirichlet
```

Now, your program, linked with \texttt{Rheolef}, is ready to run on a mesh.
1.6 How to run the program

Figure 1.1: Solution of the model problem for $d = 2$: (left) P_1 element; (right) P_2 element.

Enter the commands:

```
mkgeo_grid -t 10 > square.geo
go square.geo
```

The first command generates a simple 10x10 bidimensional mesh of $\Omega =]0, 1[^2$ and stores it in the file `square.geo`. The second command shows the mesh. It uses `gnuplot` visualization program by default.

The next command performs the computation:

```
./dirichlet square.geo P1 > square.field
field square.field
```

1.7 Distributed and parallel runs

Alternatively, a computation in a distributed and parallel environment writes:

```
mpirun -np 4 ./dirichlet square.geo P1 > square.field
```
Also explore some graphic rendering modes (see Fig. 1.2):

```
field square.field -bw
field square.field -gray
field square.field -mayavi
field square.field -elevation -nofill -stereo
```

The last command shows the solution in elevation and in stereoscopic anaglyph mode (see Fig. 1.4, left). The anaglyph mode requires red-cyan glasses: red for the left eye and cyan for the right one, as shown on Fig. 1.3.

Please, consults the corresponding unix manual page for more on `field`, `geo` and `mkgeo_grid`:

```
man mkgeo_grid
man geo
man field
```

1.9 High-order finite element methods

Turning to the P2 or P3 approximations simply writes:

```
./dirichlet square.geo P2 > square-P2.field
field square-P2.field
```

Fig. 1.1(right) shows the result. You can replace the P2 command-line argument by any Pk, where $k \geq 1$.

Now, let us consider a mono-dimensional problem $\Omega =]0, 1[$:

```
mkgeo_grid -e 10 > line.geo
geo line.geo
./dirichlet line.geo P1 | field -
```

The first command generates a subdivision containing ten edge elements. The last two lines show the mesh and the solution via `gnuplot` visualization, respectively.

Conversely, the P2 case writes:

```
./dirichlet line.geo P2 | field -
```

1.10 Tridimensional computations

Let us consider a three-dimensional problem $\Omega =]0, 1[^3$. First, let us generate a mesh:

```
mkgeo_grid -T 10 > cube.geo
geo cube.geo
geo cube.geo -stereo -full
geo cube.geo -stereo -cut
```

The previous commands draw the mesh with all internal edges (`-full`), stereoscopic anaglyph (`-stereo`)and then with a cut (`-cut`) inside the internal structure: a simple click on the central arrow draws the cut plane normal vector or its origin, while the red square allows a translation.
Figure 1.4: Solution of the model problem for \(d = 3 \) and the \(P_1 \) element: (left) mesh; (right) isovalue, cut planes and stereo anaglyph renderings.

Then, we perform the computation and the visualization:

```bash
./dirichlet cube.geo P1 > cube.field
field cube.field
```

The visualization presents an isosurface. Also here, you can interact with the cutting plane. Click on Isosurface in the left menu and change the value of the isosurface. Finally exit from the visualization and explore the stereoscopic anaglyph mode (see Fig. 1.4, right):

```bash
field cube.field -stereo
```

It is also possible to add a second Isosurface or ScalarCutPlane module to this scene by using the Visualize menu. After this exploration of the 3D visualization capacities of our environment, let us go back to the Dirichlet problem and perform the \(P_2 \) approximation:

```bash
./dirichlet cube.geo P2 | field -
```

1.11 Quadrangles, prisms and hexahedra

Quadrangles and hexahedra are also supported in meshes:

```bash
mkgeo_grid -q 10 > square.geo
go square.geo
mkgeo_grid -H 10 > cube.geo
go cube.geo
```

Notices also that the one-dimensional exact solution writes:

\[
 u(x) = \frac{x(1-x)}{2}
\]
while the two-and three dimensional ones support a Fourier expansion (see e.g. [43], annex).
Chapter 2

Standard boundary conditions

We show how to deal with various non-homogeneous boundary conditions of Dirichlet, Neuman and Robin type.

2.1 Non-homogeneous Dirichlet conditions

Formulation

We turn now to the case of a non-homogeneous Dirichlet boundary conditions. Let $f \in H^{-1}(\Omega)$ and $g \in H^{\frac{1}{2}}(\partial \Omega)$. The problem writes:

\((P_2)\) find u, defined in Ω such that:

$$
-\Delta u = f \text{ in } \Omega \\
u = g \text{ on } \partial \Omega
$$

The variational formulation of this problem expresses:

\((VF_2)\) find $u \in V$ such that:

$$
a(u,v) = l(v), \forall v \in V_0
$$

where

$$
a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx \\
l(v) = \int_{\Omega} f v \, dx \\
V = \{v \in H^1(\Omega); v|_{\partial \Omega} = g\} \\
V_0 = H^1_0(\Omega)
$$

Approximation

As usual, we introduce a mesh T_h of Ω and the finite dimensional space X_h:

$$
X_h = \{v \in H^1(\Omega); v|_K \in P_k, \forall K \in T_h\}
$$

Then, we introduce:

$$
V_h = \{v \in X_h; v|_{\partial \Omega} = \pi_h(g)\} \\
V_{0,h} = \{v \in X_h; v|_{\partial \Omega} = 0\}
$$
where \(\pi_h \) denotes the Lagrange interpolation operator. The approximate problem writes:

\[(VF_2)_{\text{h}}: \text{find } u_h \in V_h \text{ such that:}\]

\[a(u_h, v_h) = l(v_h), \quad \forall v_h \in V_0,h\]

The following C++ code implement this problem in the Rheolef environment.

File ‘dirichlet-nh.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "cosinusprod_laplace.icc"

int main(int argc, char **argv) {
    environment rheolef(argc, argv);
    geo omega(argv[1]);
    size_t d = omega.dimension();
    space Xh(omega, argv[2]);
    Xh.block("boundary");
    form a(Xh, Xh, "grad_grad");
    field lh = riesz(Xh, f(d));
    field uh(Xh);
    space Wh(omega["boundary"], argv[2]);
    uh["boundary"] = interpolate(Wh, g(d));
    solver sa(a.uu());
    uh.set_u() = sa.solve(lh.u() - a.ub()*uh.b());
    dout << uh;
}
```

Let us choose \(\Omega \subset \mathbb{R}^d \), \(d = 1, 2, 3 \) with

\[f(x) = d \pi^2 \prod_{i=0}^{d-1} \cos(\pi x_i) \quad \text{and} \quad g(x) = \prod_{i=0}^{d-1} \cos(\pi x_i)\]

Remarks the notation \(x = (x_0, \ldots, x_{d-1}) \) for the Cartesian coordinates in \(\mathbb{R}^d \): since all arrays start at index zero in C++ codes, and in order to avoid any mistakes between the code and the mathematical formulation, we also adopt this convention here. This choice of \(f \) and \(g \) is convenient, since the exact solution is known:

\[u(x) = \prod_{i=0}^{d-1} \cos(\pi x_i)\]

The following C++ code implement this problem by using the concept of function object, also called class-function (see e.g. [29]). A convenient feature is the ability for function objects to store auxiliary parameters, such as the space dimension \(d \) for \(f \) here, or some constants, as \(\pi \) for \(f \) and \(g \).

File ‘cosinusprod_laplace.icc’

```cpp
struct f : unary_function<point, Float> {
    Float operator()(const point & x) const {
        return d*pi*pi*cos(pi*x[0])*cos(pi*x[1])*cos(pi*x[2]);
    }
    f(size_t d1) : d(d1), pi(acos(Float(-1))) {}
    size_t d; const Float pi;
};
struct g : unary_function<point, Float> {
    Float operator()(const point & x) const {
        return cos(pi*x[0])*cos(pi*x[1])*cos(pi*x[2]);
    }
    g(size_t d1) : pi(acos(Float(-1))) {}
    const Float pi;
};
```
Comments

The class `point` describes the coordinates of a point \((x_0, \ldots, x_{d-1}) \in \mathbb{R}^d\) as a \(d\)-uple of `Float`. The `Float` type is usually a `double`. This type depends upon the Rheolef configuration (see [42], installation instructions), and could also represent some high precision floating point class. The `dirichlet-nh.cc` code looks like the previous one `dirichlet.cc` related to homogeneous boundary conditions. Let us comments the changes. The dimension \(d\) comes from the geometry \(\Omega\):

```cpp
size_t d = omega.dimension();
```

The linear form \(l(\cdot)\), defined as the Riesz representer of \(f\), writes:

```cpp
field lh = riesz(Xh,f(d));
```

Notice that the function object \(f\) is build with the dimension \(d\) as parameter. The space \(W_h\) of piecewise \(P_k\) functions defined on the boundary \(\partial \Omega\) is defined by:

```cpp
space Wh (omega["boundary"], argv[2]);
```

where \(P_k\) is defined via the second command line argument `argv[2]`. This space is suitable for the Lagrange interpolation of \(g\) on the boundary:

```cpp
uh["boundary"] = interpolate(Wh, g(d));
```

The values of the degrees of freedom related to the boundary are stored into the field `uh.b`, where non-homogeneous Dirichlet conditions applies. The rest of the code is similar to the homogeneous Dirichlet case.

2.1.1 How to run the program

First, compile the program:

```bash
make dirichlet-nh
```

Running the program is obtained from the homogeneous Dirichlet case, by replacing `dirichlet` by `dirichlet-nh`:

```bash
mkgeo_grid -e 10 > line.geo
./dirichlet-nh line.geo P1 > line.field
field line.field
```

for the bidimensional case:

```bash
mkgeo_grid -t 10 > square.geo
./dirichlet-nh square.geo P1 > square.field
field square.field
```

and for the tridimensional case:

```bash
mkgeo_grid -T 10 > box.geo
./dirichlet-nh box.geo P1 > box.field
field -mayavi box.field
```

Here, the \(P_1\) approximation can be replaced by \(P_2, P_3,\) etc, by modifying the command-line argument.
2.1.2 Error analysis

Principle

Since the solution u is regular, the following error estimates holds:

$$
\|u - u_h\|_{0,\Omega} \approx O(h^{k+1})
$$

$$
\|u - u_h\|_{0,\infty,\Omega} \approx O(h^{k+1})
$$

$$
\|u - u_h\|_{1,2,\Omega} \approx O(h^k)
$$

providing the approximate solution u_h uses P_k continuous finite element method, $k \geq 1$. Here, $\|\cdot\|_{0,2,\Omega}$, $\|\cdot\|_{0,\infty,\Omega}$ and $\|\cdot\|_{1,2,\Omega}$ denotes as usual the $L^2(\Omega)$, $L^\infty(\Omega)$ and $H^1(\Omega)$ norms.

By denoting π_h the Lagrange interpolation operator, the triangular inequality leads to:

$$
\|u - u_h\|_{0,2,\Omega} \leq \| (I - \pi_h)(u) \|_{0,2,\Omega} + \| u_h - \pi_h u \|_{0,2,\Omega}
$$

From the fundamental properties of the Laplace interpolation π_h, and since u is smooth enough, we have $\| (I - \pi_h)(u) \|_{0,2,\Omega} \approx O(h^{k+1})$. Thus, we have just to check the $\| u_h - \pi_h u \|_{0,2,\Omega}$ term. The following code implement the computation of the error.

File ‘cosinusprod_error.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;

#include "cosinusprod.icc"

int main(int argc, char ** argv) {
    environment rheolef(argc, argv);
    Float error_linf_expected = (argc > 1) ? atof(argv[1]) : 1e+38;
    field uh; din >> uh;
    space Xh = uh.get_space();
    size_t d = Xh.get_geo().dimension();
    field pi_h_u = interpolate(Xh, u(d));
    field eh = uh - pi_h_u;
    form m(Xh, Xh, "mass");
    form a(Xh, Xh, "grad_grad");
    dout << "error_l2 " << sqrt(m(eh, eh)) << endl
        << "error_linf " << eh.max_abs() << endl
        << "error_h1 " << sqrt(a(eh, eh)) << endl;
    return (eh.max_abs() <= error_linf_expected) ? 0 : 1;
}
```

File ‘cosinusprod.icc’

```cpp
struct u : std::unary_function<point, Float> {
    Float operator() (const point& x) const {
        return cos(pi*x[0])*cos(pi*x[1])*cos(pi*x[2]);
    }
    size_t d1; d(d1), pi(sin(Float(-1.0))) {};
};
```

Running the program

```
make dirichlet-nh cosinusprod_error
```

After compilation, run the code by using the command:

```
mkgeo_grid -t 10 > square.geo
./dirichlet-nh square.geo P1 | ./cosinusprod_error
```
Figure 2.1: Strait geometry: error analysis in L^2, L^∞ and H^1 norms.
The three L^2, L^∞ and H^1 errors are printed for a $h = 1/10$ uniform mesh. Note that an unstructured quasi-uniform mesh can be simply generated by using the `mkgeo_ugrid` command:

```
    mkgeo_ugrid -t 10 > square.geo
    geo square.geo
```

Let n_{el} denotes the number of elements in the mesh. Since the mesh is quasi-uniform, we have $h \approx n_{el}^{-1/d}$ where d is the physical space dimension. Here $d = 2$ for our bidimensional mesh. Figure 2.1 plots in logarithmic scale the error versus n_{el} for both P_k approximations, $k = 1, 2, 3$ and the various norms. Observe that the error behaves as predicted by the theory.

Curved domains

The error analysis applies also for curved boundaries and high order approximations.

File ‘cosinusrad_laplace.icc’

```c
struct f : unary_function < point, Float > {
    Float operator() (const point& x) const {
        Float r = sqrt(sqr(x[0])+sqr(x[1])+sqr(x[2]));
        Float sin_over_ar = (r == 0) ? 1 : sin(a*r)/(a*r);
        return sqr(a)*(pow((d-1)*sin_over_ar + cos(a*r)), 2); }
    size_t d1; Float a;
};
```

File ‘cosinusrad.icc’

```c
struct g : std::unary_function < point, Float > {
    Float operator() (const point& x) const {
        return cos(a*sqrt(sqr(x[0])+sqr(x[1])+sqr(x[2]))); }
    size_t d=0; Float a;
};
```

First, generate the test source file and compile it:

```
    sed -e 's/sinusprod/sinusrad/' < dirichlet-nh.cc > dirichlet_nh_ball.cc
    sed -e 's/sinusprod/sinusrad/' < cosinusprod_error.cc > cosinusrad_error.cc
    make dirichlet_nh_ball cosinusrad_error
```

Then, generate the mesh of a circle and run the test case:

```
    mkgeo_ball -order 1 -t 10 > circle-P1.geo
    geo circle-P1
    ./dirichlet_nh_ball circle-P1.geo P1 | ./cosinusrad_error
```

For a high order $k = 3$ isoparametric approximation:

```
    mkgeo_ball -order 3 -t 10 > circle-P3.geo
    geo circle-P3
    ./dirichlet_nh_ball circle-P3.geo P3 | ./cosinusrad_error
```
Figure 2.2: Curved domains (triangles): error analysis in L^2, L^∞ and H^1 norms.
Figure 2.3: Curved domains (quadrangles): error analysis in L^2, L^∞ and H^1 norms.
Observe Fig. 2.2: for meshes based on triangles: the error behave as expected when \(k = 1, 2, 3, 4 \). A similar result occurs for quadrangles, as shown on Fig. 2.3.

```plaintext
mkgeo_ball -order 3 -q 10 > circle-q-P3.geo
geo circle-q-P3
./dirichlet_nh_ball circle-q-P3.geo P3 | ./cosinusrad_error
```

These features are currently in development for arbitrarily \(P_k \) high order approximations and three-dimensional geometries.

2.2 Non-homogeneous Neumann boundary conditions for the Helmholtz operator

Formulation

Let us show how to insert Neumann boundary conditions. Let \(f \in H^{-1}(\Omega) \) and \(g \in H^{-\frac{1}{2}}(\partial\Omega) \). The problem writes:

\[(P_3): \text{find } u, \text{ defined in } \Omega \text{ such that:}\]

\[
\begin{align*}
\frac{\partial u}{\partial n} &= g \text{ on } \partial\Omega \\
u - \Delta u &= f \text{ in } \Omega
\end{align*}
\]

The variational formulation of this problem expresses:

\[(VF_3): \text{find } u \in H^1(\Omega) \text{ such that:}\]

\[
a(u,v) = l(v), \forall v \in H^1(\Omega)
\]

where

\[
a(u,v) = \int_{\Omega} uv \, dx + \int_{\Omega} \nabla u. \nabla v \, dx
\]

\[
l(v) = \int_{\Omega} f v \, dx + \int_{\partial\Omega} g v \, ds
\]

Approximation

As usual, we introduce a mesh \(T_h \) of \(\Omega \) and the finite dimensional space \(X_h \):

\[X_h = \{ v \in H^1(\Omega); \, v|_K \in P_k, \, \forall K \in T_h \}\]

The approximate problem writes:

\[(VF_3)_h: \text{find } u_h \in X_h \text{ such that:}\]

\[
a(u_h,v_h) = l(v_h), \forall v_h \in X_h
\]
File ‘neumann-nh.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "sinusprod_helmholtz.icc"

int main(int argc, char **argv) {
  environment rheolef(argc, argv);
  geo omega (argv[1]);
  size_t d = omega.dimension();
  space Xh (omega, argv[2]);
  form m (Xh, Xh, "mass");
  form a (Xh, Xh, "grad_grad");
  a = m + a;
  field lh = riesz(Xh, f(d)) + riesz(Xh, g(d), "boundary");
  field uh (Xh);
  solver sa (a.uu());
  uh.set_u() = sa.solve(lh.u() - a.ub()*uh.b());
  dout << uh;
}
```

Let us choose Ω ⊂ \(\mathbb{R}^d \), \(d = 1, 2, 3 \) and

\[
 f(x) = (1 + d \pi^2) \prod_{i=0}^{d-1} \sin(\pi x_i)
\]

\[
 g(x) = \begin{cases}
 -\pi & \text{when } d = 1 \\
 -\pi \sum_{i=0}^{d-1} \sin(\pi x_i) & \text{when } d = 2 \\
 -\pi \sum_{i=0}^{d-1} \sin(\pi x_i) \sin(x_{(i+1)\mod d}) & \text{when } d = 3
 \end{cases}
\]

This example is convenient, since the exact solution is known:

\[
 u(x) = \prod_{i=0}^{d-1} \sin(\pi x_i)
\]

File ‘sinusprod_helmholtz.icc’

```cpp
struct f : unary_function<point,Float> { 
  Float operator() (const point& x) const { 
    switch (d) {
      case 1: return (1+d*pi*pi)*sin(pi*x[0]);
      case 2: return (1+d*pi*pi)*sin(pi*x[0])*sin(pi*x[1]);
      default: return (1+d*pi*pi)*sin(pi*x[0])*sin(pi*x[1])*sin(pi*x[2]);
    }
  } 
  f(size_t d1) : d(d1), pi(acos(Float(-1.0))) {}
  size_t d; const Float pi;
};

struct g : unary_function<point,Float> { 
  Float operator() (const point& x) const { 
    switch (d) {
      case 1: return -pi;
      case 2: return -pi*(sin(pi*x[0]) + sin(pi*x[1]));
      default: return -pi*(sin(pi*x[0])*sin(pi*x[1])
          + sin(pi*x[1])*sin(pi*x[2])
          + sin(pi*x[2])*sin(pi*x[0]));
    }
  } 
  g(size_t d1) : d(d1), pi(acos(Float(-1.0))) {}
  size_t d; const Float pi;
};
```
Comments

The `neumann-nh.cc` code looks like the previous one `dirichlet-nh.cc`. Let us comment only the changes.

```c
form m (Xh, Xh, "mass");
form a (Xh, Xh, "grad_grad");
```

The bilinear forms $m(.,.)$ and $a(.,.)$, also called the mass and energy in mechanics, are defined as:

$$
m(u,v) = \int_{\Omega} uv \, dx \quad \text{and} \quad a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx$$

Then, these two forms are added and stored in a:

```c
a = m + a;
```

The right-hand side is computed as:

```c
field lh = riesz(Xh, f(d)) + riesz(Xh, g(d), "boundary");
```

2.2.1 How to run the program

First, compile the program:

```bash
make neumann-nh
```

Running the program is obtained from the homogeneous Dirichlet case, by replacing `dirichlet` by `neumann-nh`.

2.3 The Robin boundary conditions

Formulation

Let $f \in H^{-1}(\Omega)$ and Let $g \in H^{1/2}(\partial\Omega)$. The problem writes:

(P4) find u, defined in Ω such that:

$$
-\Delta u = f \quad \text{in} \ \Omega \\
\frac{\partial u}{\partial n} + u = g \quad \text{on} \ \partial\Omega
$$

The variational formulation of this problem expresses:

(VF4): find $u \in H^1(\Omega)$ such that:

$$
a(u,v) = l(v), \ \forall v \in H^1(\Omega)
$$

where

$$
a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\partial\Omega} uv \, ds
$$

$$
l(v) = \int_{\Omega} uv \, dx + \int_{\partial\Omega} gv \, ds
$$
Approximation

As usual, let

\[X_h = \{ v \in H^1(\Omega); \quad v|_K \in P_k, \quad \forall K \in T_h \} \]

The approximate problem writes:

\((VF_4)_h: \text{find } u_h \in X_h \text{ such that:} \)

\[a(u_h, v_h) = l(v_h), \quad \forall v_h \in X_h \]

File ‘robin.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "cosinusprod_laplace.icc"

int main(int argc, char ** argv) {
    environment rheolef(argc, argv);
    geo omega (argv[1]);
    size_t d = omega.dimension();
    space Xh (omega, argv[2]);
    form a (Xh, Xh, "grad_grad");
    form ab (Xh, Xh, "mass", omega["boundary"]);
    a = a + ab;
    field lh = riesz(Xh, f(d)) + riesz(Xh, g(d), "boundary");
    field uh (Xh);
    solver sa (a.uu());
    uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
    dout << uh;
}
```

Comments

The code robin.cc looks like the previous one neumann-nh.cc. Let us comments the changes.

```cpp
    form a (Xh, Xh, "grad_grad");
    form ab (Xh, Xh, "mass", omega["boundary"]);
    a = a + ab;
```

The bilinear forms \(a(.,.)\) and \(a_b(.,.)\) are defined as:

\[a(u,v) = \int_{\Omega} \nabla u . \nabla v \, dx \quad \text{and} \quad a_b(u,v) = \int_{\partial\Omega} u|_{\partial\Omega} v|_{\partial\Omega} \, ds \]

where \(u|_{\partial\Omega}\) denotes the restriction to the boundary of a function \(u\) defined in \(\Omega\). Then the sum \(a + a_b\) is stored in \(a\). The boundary contribution to the \(a(.,.)\) form on \(X_h \times X_h\) is introduced. Finally, the implementation of the right-hand sides \(f\) and \(g\) in file ‘cosinusprod_laplace.icc’ has already been presented on page 22.

2.3.1 How to run the program

First, compile the program:

```
make robin
```

Running the program is obtained from the homogeneous Dirichlet case, by replacing dirichlet by robin.
Chapter 3

Non-constant coefficients and multi-regions

This chapter is related to the so-called transmission problem. We introduce some new concepts: problems with non-constant coefficients, regions in the mesh, weighted forms and discontinuous approximations.

Formulation

Let us consider a diffusion problem with a non-constant diffusion coefficient \(\eta \) in a domain bounded \(\Omega \subset \mathbb{R}^d, \ d = 1, 2, 3 \):

\(\text{(P): find } u \text{ defined in } \Omega \text{ such that:} \)

\[
- \text{div}(\eta \nabla u) = f \quad \text{in } \Omega \\
u = 0 \quad \text{on } \Gamma_{\text{left}} \cup \Gamma_{\text{right}} \\
\frac{\partial u}{\partial n} = 0 \quad \text{on } \Gamma_{\text{top}} \cup \Gamma_{\text{bottom}} \text{ when } d \geq 2 \\
\frac{\partial u}{\partial n} = 0 \quad \text{on } \Gamma_{\text{front}} \cup \Gamma_{\text{back}} \text{ when } d = 3
\]

where \(f \) is a given source term.
We consider here the important special case when η is piecewise constant:

$$\eta(x) = \begin{cases}
\varepsilon & \text{when } x \in \Omega_{\text{west}} \\
1 & \text{when } x \in \Omega_{\text{east}}
\end{cases}$$

where $(\Omega_{\text{west}}, \Omega_{\text{east}})$ is a partition of Ω in two parts (see Fig. 3.1). This is the so-called transmission problem: the solution and the flux are continuous on the interface $\Gamma_0 = \partial\Omega_{\text{east}} \cap \partial\Omega_{\text{west}}$ between the two domains where the problem reduce to a constant diffusion one:

$$\varepsilon \frac{u_{\Omega_{\text{west}}}}{\partial n} = u_{\Omega_{\text{east}}} \text{ on } \Gamma_0$$

It expresses the transmission of the quantity u and its flux across the interface Γ_0 between two regions that have different diffusion properties: Notice that the more classical problem, with constant diffusion η on Ω is obtained by simply choosing when $\varepsilon = 1$.

The variational formulation of this problem expresses:

$$(VF): \text{find } u \in V \text{ such that:}$$

$$a(u, v) = l(v), \ \forall v \in V$$

where the bilinear forms $a(.,.)$ and the linear one $l(.)$ are defined by

$$a(u, v) = \int_{\Omega} \eta \nabla u \cdot \nabla v \, dx, \ \forall u, v \in H^1(\Omega)$$

$$l(v) = \int_{\Omega} f \ v \, dx, \ \forall v \in L^2(\Omega)$$

$$V = \{ v \in H^1(\Omega); \ v = 0 \text{ on } \Gamma_{\text{left}} \cup \Gamma_{\text{right}} \}$$

The bilinear form $a(.,.)$ defines a scalar product in V and is related to the energy form. This form is associated to the $-\text{div} \eta \nabla$ operator.

The approximation of this problem could performed by a standard Lagrange P_k continuous approximation.
File ‘transmission.cc’

```c
#include "rheolef.h"
#include "rheolef/catchmark.h"
using namespace rheolef;
using namespace std;
int main(int argc, char ** argv) {
    environment rheolef(argc, argv);
    const Float epsilon = 0.01;
    geo omega (argv[1]);
space Xh (omega, argv[2]);
Xh.block("left");
Xh.block("right");
string eta_approx = "P" + itos(Xh.degree()-1) + "d";
space Qh (omega, eta_approx);
field eta (Qh);
eta["east"] = 1;
eta["west"] = epsilon;
field lh = riesz(Xh, 1);
field uh (Xh);
uh["left"] = uh["right"] = 0;
solver sa (a.uu());
uh.set_u() = sa.solve(lh.u() - a.ub()*uh.b());
dout << catchmark("epsilon") << epsilon << endl
    << catchmark("u") << uh;
}
```

Comments

This file is quite similar to those studied in the first chapters of this book. Let us comment only the changes. The Dirichlet boundary condition applies no more on the whole boundary \(\partial \Omega\) but on two parts \(\Gamma_{\text{left}}\) and \(\Gamma_{\text{right}}\). On the other boundary parts, an homogeneous Neumann boundary condition is used: since these conditions does not produce any additional terms in the variational formulation, there are also nothing to write in the C++ code for these boundaries. We choose \(f = 1\): this leads to a convenient test-problem, since the exact solution is known when \(\Omega = [0, 1]^d\):

\[
 u(x) = \begin{cases}
 \frac{x_0}{2 \epsilon} \left(\frac{1 + 3 \epsilon}{2(1 + \epsilon)} - x_0 \right) & \text{when } x_0 < 1/2 \\
 \frac{1 - x_0}{2} \left(x_0 + \frac{1 - \epsilon}{2(1 + \epsilon)} \right) & \text{otherwise}
 \end{cases}
\]

The field \(\eta\) belongs to a discontinuous finite element \(P_{k-1}\) space denoted by \(Q_h\):

```c
string eta_approx = "P" + itos(Xh.degree()-1) + "d";
space Qh (omega, eta_approx);
field eta (Qh);
```

For instance, when \(argv[2]\) contains "P2", i.e. \(k = 2\), then the string \(\text{eta} \text{_approx}\) takes value "P1d". Then \(\eta\) is initialized by:

- \(\eta[\"east\"] = 1;\)
- \(\eta[\"west\"] = \text{epsilon;}\)

The energy form \(a\) is then constructed with \(\eta\) as additional parameter:

```c
form a (Xh, Xh, "grad_grad", eta);
```

Such forms with a additional weight function are called weighted forms in Rheolef.
How to run the program?

Build the program as usual: `make transmission`. Then, creates a one-dimensional geometry with two regions:

```
mkgeo_grid -e 100 -region > line.geo
geo line.geo
```

The trivial mesh generator `mkgeo_grid`, defines two regions `east` and `west` when used with the `-region` option. This correspond to the situation:

$$\Omega = [0,1]^d, \quad \Omega_{\text{west}} = \Omega \cap \{x_0 < 1/2\} \quad \text{and} \quad \Omega_{\text{east}} = \Omega \cap \{x_0 > 1/2\}.$$

In order to avoid mistakes with the C++ style indexes, we denote by (x_0, \ldots, x_{d-1}) the Cartesian coordinate system in \mathbb{R}^d.

Finally, run the program and look at the solution:

```
make transmission
./transmission line.geo P1 > line.field
field line.field
```

Since the exact solution is a piecewise second order polynomial and the change in the diffusion coefficient value fits the element boundaries, we obtain the exact solution for all the degrees of freedom of any P_k approximation, $k \geq 1$, as shown on Fig. 3.2 when $k = 1$. Moreover, when $k \geq 2$ then $u_h = u$ since X_h contains the exact solution u.

![Figure 3.2: Transmission problem: $u_h = \pi_h(u)$ ($\epsilon = 10^{-2}$, $d = 1$, P_1 approximation).](image)

The two dimensional case corresponds to the commands:

```
mkgeo_grid -t 10 -region > square.geo
geo square.geo
./transmission square.geo P1 > square.field
field square.field -elevation
```
while the tridimensional to

```
mkgeo_grid -T 10 -region > cube.geo
./transmission cube.geo P1 > cube.mfield
field cube.field
```

As for all the others examples, you can replace P1 by higher-order approximations, change elements shapes, such as q, H or P, and run distributed computations with `mpirun`.
Chapter 4

Neumann boundary conditions for the Laplace operator

In this chapter we study how to solve a ill-posed problem with a solution defined up to a constant.

Formulation

Let $f \in L^2(\Omega)$ and $g \in H^1(\partial \Omega)$ satisfying the following compatibility condition:

$$\int_{\Omega} f \, dx + \int_{\partial \Omega} g \, ds = 0$$

The problem writes:

$$(P_5)_h: \text{find } u, \text{ defined in } \Omega \text{ such that:}$$

$$- \Delta u = f \text{ in } \Omega$$

$$\frac{\partial u}{\partial n} = g \text{ on } \partial \Omega$$

Since this problem only involves the derivatives of u, it is clear that its solution is never unique [19, p. 11]. A discrete version of this problem could be solved iteratively by the conjugate gradient or the MINRES algorithm [34]. In order to solve it by a direct method, we turn the difficulty by seeking u in the following space

$$V = \{ v \in H^1(\Omega); \ b(v,1) = 0 \}$$

where

$$b(v, \mu) = \int_{\Omega} v \, dx, \ \forall v \in L^2(\Omega), \forall \mu \in \mathbb{R}$$

The variational formulation of this problem writes:

$$(VF_5): \text{find } u \in V \text{ such that:}$$

$$a(u,v) = l(v), \ \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx$$

$$l(v) = m(f,v) + m_b(g,v)$$

$$m(f,v) = \int_{\Omega} fv \, dx$$

$$m_b(g,v) = \int_{\partial \Omega} gv \, ds$$
Since the direct discretization of the space \(V \) is not an obvious task, the constraint \(b(u,1) = 0 \)
is enforced by a Lagrange multiplier \(\lambda \in \mathbb{R} \). Let us introduce the Lagrangian, defined for all \(v \in H^1(\Omega) \) and \(\mu \in \mathbb{R} \) by:

\[
L(v, \mu) = \frac{1}{2} a(v, v) + b(v, \mu) - l(v)
\]

The saddle point \((u, \lambda) \in H^1(\Omega) \times \mathbb{R}\) of this Lagrangian is characterized as the unique solution of:

\[
\begin{align*}
a(u, v) + b(v, \lambda) &= l(v), \quad \forall v \in H^1(\Omega) \\
b(u, \mu) &= 0, \quad \forall \mu \in \mathbb{R}
\end{align*}
\]

It is clear that if \((u, \lambda)\) is solution of this problem, then \(u \in V\) and \(u\) is a solution of \((VF_5)\). Conversely, let \(u \in V\) the solution of \((VF_5)\). Choosing \(v = v_0\) where \(v_0(x) = 1, \forall x \in \Omega\) leads to \(\lambda \text{ meas}(\Omega) = l(v_0)\). From the definition of \(l(.)\) and the compatibility condition between the data \(f\) and \(g\), we get \(\lambda = 0\). Notice that the saddle point problem extends to the case when \(f\) and \(g\) does not satisfies the compatibility condition, and in that case \(\lambda = l(v_0)/\text{meas}(\Omega)\).

Approximation

As usual, we introduce a mesh \(T_h\) of \(\Omega\) and the finite dimensional space \(X_h\):

\[X_h = \{ v \in H^1(\Omega); v/K \in P_k, \forall K \in T_h \}\]

The approximate problem writes:

\((VF_5)_h: \text{find} \ (u_h, \lambda_h) \in X_h \times \mathbb{R} \text{ such that:} \)

\[
\begin{align*}
a(u_h, v) + b(v, \lambda) &= l_h(v), \quad \forall v \in X_h \\
b(u_h, \mu) &= 0, \quad \forall \mu \in \mathbb{R}
\end{align*}
\]

where

\[
l_h(v) = m(\Pi_h f, v_h) + m_b(\pi_h g, v_h)
\]

```c
#include "rheolef.h"
using namespace rheolef;
using namespace std;
size_t d;
Float f(const point & x) { return 1; }
Float g(const point & x) { return -0.5/d; }
int main(int argc, char ** argv) {
  environment rheolef(argc, argv);
  geo omega(argv[1]);
  d = omega.dimension();
  space Xh(omega, argv[2]);
  form m(Xh, Xh, "mass");
  form a(Xh, Xh, "grad_grad");
  field b = m*field(Xh, 1);
  field lh = riesz(Xh, f) + riesz(Xh, g, "boundary");
  csr<Float> A = {{a.uu(), b.u()},
                  {trans(b.u()), 0}};
  vec<Float> B = {lh.u(), 0};
  A.set_symmetry(true);
  solver sa = ldlt(A);
  vec<Float> U = sa.solve(B);
  field uh(Xh);
  uh.set_u() = U[range(0, uh.u().size())];
  Float lambda = (U.size() == uh.u().size()+1) ? U[uh.u().size()] : 0;
  #ifdef _RHEOLEF_HAVE_MPI
  mpi::broadcast(U.comm(), lambda, U.comm().size()-1);
  #endif // _RHEOLEF_HAVE_MPI
  dout << uh << " lambda " << lambda << endl;
}
```
Comments

Let $\Omega \subset \mathbb{R}^d$, $d = 1, 2, 3$. We choose $f(x) = 1$ and $g(x) = -1/(2d)$. This example is convenient, since the exact solution is known:

$$u(x) = -\frac{1}{12} + \frac{1}{2d} \sum_{i=1}^{d} x_i (1 - x_i)$$

The code looks like the previous ones. Let us comment the changes. The discrete bilinear form b is computed as $b_h \in X_h$ that interprets as a linear application from X_h to \mathbb{R}: $b_h(v_h) = m(v_h, 1)$. Thus b_h is computed as

$$\textbf{field} \ b = m*\textbf{field}(X_h, 1.0);$$

where the discrete bilinear form m is identified to its matrix and $\textbf{field}(X_h, 1.0)$ is the constant vector equal to 1. Let

$$A = \begin{pmatrix} a.uu & \text{trans}(b.u) \\ b.u & 0 \end{pmatrix}, \quad U = \begin{pmatrix} u.h.u \\ \text{lambda} \end{pmatrix}, \quad B = \begin{pmatrix} l.h.u \\ 0 \end{pmatrix}$$

The problem admits the following matrix form:

$$A \ U = B$$

The matrix and right-hand side of the system are assembled by concatenation:

```cpp
\texttt{csr<Float>} A = {{ a.uu, b.u},
\{\text{trans}(b.u), 0 \}};
\texttt{vec<Float>} B = { l.h.u, 0 };
```

where \texttt{csr} and \texttt{vec} are respectively the matrix and vector classes. The \texttt{csr} is the abbreviation of \textit{compressed sparse row}, a sparse matrix compression standard format. Notice that the matrix A is symmetric and non-singular, but indefinite: it admits eigenvalues that are either strictly positive or strictly negative. While the Choleski factorization is not possible, its variant the LDL^T one is performed, thanks to the \texttt{ldlt} function:

```cpp
\texttt{solver sa = ldlt(A)};
```

Then, the $uh.u$ vector is extracted from the U one:

$$uh.u = U [\text{range}(0, uh.u.\text{size}())];$$

The extraction of \texttt{lambda} from U is more technical in a distributed environment. In a sequential one, since it is stored after the $uh.u$ values, it could be simply written as:

```cpp
\texttt{Float lambda = U [uh.u.\text{size()}];}
```

In a distributed environment, \texttt{lambda} is stored in U on the last processor, identified by $U.\text{comm}().\text{size}()-1$. Here $U.\text{comm}()$ denotes the $\texttt{communicator}$, from the $\texttt{boost::mpi}$ library and $U.\text{comm}().\text{size}()$ is the number of processors in use, e.g. as specified by the \texttt{mpirun} command. On this last processor, the array U has size equal to $uh.u.\text{size}()+1$ and \texttt{lambda} is stored in $U[uh.u.\text{size()}]$. On the others processors, the array U has size equal to $uh.u.\text{size}()$ and \texttt{lambda} is not available. The following statement extract \texttt{lambda} on the last processor and set it to zero on the others:

```cpp
\texttt{Float lambda = (U.size() == uh.u.size() + 1) ? U[uh.u.size()] : 0;}
```

Then, the value of \texttt{lambda} is broadcasted on the others processors:

```cpp
\texttt{mpi::broadcast (U.comm(), lambda, U.comm().size() - 1);} 
```

The preprocessing guards $\#idef$...$\#endif$ assure that this example compile also when the library is not installed with the MPI support. Finally, the statement
writes the solution \((u_h, \lambda)\). The `catchmark` function writes marks together with the solution in the output stream. These marks are suitable for a future reading with the same format, as:

```cpp
din >> catchmark("u") >> uh >> catchmark("lambda") >> lambda;
```

This is useful for post-treatment, visualization and error analysis.

4.0.2 How to run the program

As usual, enter:

```bash
make neumann-laplace
mkgeo_grid -t 10 > square.geo
./neumann-laplace square P1 | field -
```
Part II

Fluids and solids computations
Chapter 5

The linear elasticity and the Stokes problems

5.1 The linear elasticity problem

Formulation

The total Cauchy stress tensor expresses:

$$\sigma(u) = \lambda \text{div}(u).I + 2\mu D(u)$$

(5.1)

where λ and μ are the Lamé coefficients. Here, $D(u)$ denotes the symmetric part of the gradient operator and div is the divergence operator. Let us consider the elasticity problem for the embankment, in $\Omega = [0,1]^d$, $d = 2, 3$. The problem writes:

$$(P): \text{find } u = (u_0, \ldots, u_{d-1}), \text{ defined in } \Omega, \text{ such that:}$$

$$-\text{div } \sigma(u) = f \text{ in } \Omega,$$

$$\frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_{\text{top}} \cup \Gamma_{\text{right}}$$

$$u = 0 \text{ on } \Gamma_{\text{left}} \cup \Gamma_{\text{bottom}},$$

$$u = 0 \text{ on } \Gamma_{\text{front}} \cup \Gamma_{\text{back}}, \text{ when } d = 3$$

(5.2)

where $f = (0, -1)$ when $d = 2$ and $f = (0, 0, -1)$ when $d = 3$. The Lamé coefficients are assumed to satisfy $\mu > 0$ and $\lambda + \mu > 0$. Since the problem is linear, we can suppose that $\mu = 1$ without any loss of generality.
recall that, in order to avoid mistakes with the C++ style indexes, we denote by \((x_0, \ldots, x_{d-1})\) the Cartesian coordinate system in \(\mathbb{R}^d\).

For \(d = 2\) we define the boundaries:

\[
\Gamma_{\text{left}} = \{0\} \times [0, 1], \quad \Gamma_{\text{right}} = \{1\} \times [0, 1],
\]

\[
\Gamma_{\text{bottom}} = [0, 1] \times \{0\}, \quad \Gamma_{\text{top}} = [0, 1] \times \{1\}
\]

and for \(d = 3\):

\[
\Gamma_{\text{back}} = \{0\} \times [0, 1]^2, \quad \Gamma_{\text{front}} = \{1\} \times [0, 1]^2
\]

\[
\Gamma_{\text{left}} = [0, 1] \times \{0\} \times [0, 1], \quad \Gamma_{\text{right}} = [0, 1] \times \{1\} \times [0, 1],
\]

\[
\Gamma_{\text{bottom}} = [0, 1] \times [0, 1] \times \{0\}, \quad \Gamma_{\text{top}} = [0, 1] \times [0, 1] \times \{1\}
\]

These boundaries are represented on Fig. 5.1.

The variational formulation of this problem expresses:

\((VF): \text{find } u \in V \text{ such that:}\)

\[
a(u, v) = l(v), \quad \forall v \in V,
\]

where

\[
a(u, v) = \lambda \int_\Omega \text{div } u \text{ div } v \, dx + \int_\Omega 2D(u) : D(v) \, dx,
\]

\[
l(v) = \int_\Omega f \cdot v \, dx,
\]

\[
V = \{v \in (H^1(\Omega))^2; \ v = 0 \text{ on } \Gamma_{\text{left}} \cup \Gamma_{\text{bottom}}\}, \text{ when } d = 2
\]

\[
V = \{v \in (H^1(\Omega))^3; \ v = 0 \text{ on } \Gamma_{\text{left}} \cup \Gamma_{\text{bottom}} \cup \Gamma_{\text{right}} \cup \Gamma_{\text{back}}\}, \text{ when } d = 3
\]

Approximation

We introduce a mesh \(T_h\) of \(\Omega\) and for \(k \geq 1\), the following finite dimensional spaces:

\[
X_h = \{v_h \in (H^1(\Omega))^d; \ v_h/K \in (P_k)^d, \forall K \in T_h\},
\]

\[
V_h = X_h \cap V
\]

The approximate problem writes:

\((VF)_h: \text{find } u_h \in V_h \text{ such that:}\)

\[
a(u_h, v_h) = l(v_h), \quad \forall v_h \in V_h
\]
File `embankment.cc`

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "embankment.icc"
int main(int argc, char** argv) {
    environment rheolef(argc, argv);
    geo omega (argv[1]);
    space Xh = embankment_space (omega, argv[2]);
    Float lambda = (argc > 3) ? atof (argv[3]) : 1;
    size_t d = omega.dimension();
    point f(0,0,0);
    f[d-1] = -1;
    field lh = riesz (Xh, f);
    form a1 (Xh, Xh, " div_div ");
    form a2 (Xh, Xh, "2 D_D ");
    form a = lambda *a1 + a2;
    field uh (Xh, 0);
    solver sa (a.uu ());
    uh.set_u() = sa.solve (lh.u() - a.ub ()* uh.b ());
    dout << catchmark(" inv_lambda ") << 1/ lambda << endl
         << catchmark("u") << uh;
}
```

File `embankment.icc`

```cpp
space embankment_space (const geo & omega, string approx) {
    space Xh (omega, approx, " vector ");
    Xh.block(" left ");
    if (omega.dimension() >= 2) {
        Xh.block(" bottom ");
    }
    if (omega.dimension() == 3) {
        Xh.block(" right ");
        Xh.block(" back ");
    }
    return Xh;
}
```

Comments

The space is defined in a separate file `embankment.icc`, since it will be reused in others examples along this chapter:

```cpp
space Vh (omega, "P2", " vector ");
```

Note here the multi-component specification "vector" as a supplementary argument to the space constructor. The boundary condition contain a special cases for bi- and tridimensional cases. The right-hand-side \(f_h \) represents the dimensionless gravity forces, oriented on the vertical axis: the last component of \(f_h \) is set to \(-1\) as:

```cpp
fh [omega.dimension()-1] = -1;
```

Finally, the \(1/\lambda \) parameter and the multi-field result are printed, using mark labels, thanks to the `catchmark` stream manipulator. Labels are convenient for post-processing purpose, as we will see in the next paragraph.
How to run the program

Figure 5.2: The linear elasticity for $\lambda = 1$ and $d = 2$ and $d = 3$: both wireframe and filled surfaces; stereoscopic anaglyph mode for 3D solutions.

We assume that the previous code is contained in the file ‘embankment.cc’. Compile the program as usual (see page 14):

```
make embankment
```

and enter the commands:

```
mkgeo_grid -t 10 > square.geo
geo square.geo
```
The triangular mesh has four boundary domains, named left, right, top and bottom. Then, enter:

./embankment square.geo P1 > square-P1.field

The previous command solves the problem for the corresponding mesh and writes the multi-component solution in the ‘.field’ file format. Run the deformation vector field visualization using the default gnuplot render:

field square-P1.field
field square-P1.field -nofill

Note the graphic options usage; the unix manual for the field command is available as:

man field

The view is shown on Fig. 5.2. A specific field component can be also selected for a scalar visualization:

field -comp 0 square-P1.field
field -comp 1 square-P1.field

Next, perform a P_2 approximation of the solution:

./embankment square.geo P2 > square-P2.field
field square-P2.field -mayavi -nofill

Finally, let us consider the three dimensional case

mkgeo_grid -T 10 > cube.geo
./embankment cube.geo P1 > cube-P1.field
field cube-P1.field -stereo
field cube-P1.field -stereo -fill

The two last commands show the solution in 3D stereoscopic anaglyph mode. The graphic is represented on Fig. 5.2. The P_2 approximation writes:

./embankment cube.geo P2 > cube-P2.field
field cube-P2.field

5.2 Computing the stress tensor

Formulation and approximation

The following code computes the total Cauchy stress tensor, reading the Lamé coefficient λ and the deformation field u_h from a .field file. Let us introduce:

$$T_h = \{ \tau_h \in (L^2(\Omega))^{d \times d}; \; \tau_h = \tau_h^T \and \tau_{h:ij/K} \in P_{k-1}, \; \forall K \in \mathcal{T}_h, \; 1 \leq i, j \leq d \}$$
This computation expresses:

\[\text{find } \sigma_h \text{ such that:} \]

\[m(\sigma_h, \tau) = b(\tau, u_h), \forall \tau \in T_h \]

where

\[m(\sigma, \tau) = \int_{\Omega} \sigma : \tau \, dx, \]
\[b(\tau, u) = \lambda \int_{\Omega} \text{div}(u) \text{tr}(\tau) \, dx + \int_{\Omega} 2D(u) : \tau \, dx, \]

where \(\text{tr}(\tau) = \sum_{i=1}^{d} \tau_{ii} \) is the trace of the tensor \(\tau \).

File ‘stress.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;

int main(int argc, char ** argv) {
    environment rheolef(argc, argv);
    Float inv_lambda;
    field uh;
    din >> catchmark("inv_lambda") >> inv_lambda >> catchmark("u") >> uh;
    const geo & omega = uh.get_geo();
    const space & Xh = uh.get_space();
    string grad_approx = "P" + itos(Xh.degree()-1) + "d";
    space Th (omega, grad_approx, "tensor");
    space T0h (omega, grad_approx);
    form two_D (Th, Th, "2D");
    form div (Xh, T0h, "div");
    form inv_mt (Th, Th, "inv_mass");
    form inv_m (T0h, T0h, "inv_mass");
    field trace_h = inv_m*(div*uh);
    field sigma_h = inv_mt*(two_D*uh);
    if (inv_lambda != 0)
        for (size_t i_comp = 0; i_comp < uh.size(); i_comp++)
            sigma_h(i_comp, i_comp) += (1/inv_lambda)*trace_h;
    dout << catchmark("s") << sigma_h;
}
```

Comments

First notice that this code applies for any deformation field, and is not restricted to our embankment problem.

The \(\text{P0} \) and \(\text{P1d} \) stands for the piecewise constant and piecewise linear discontinuous approximations, respectively. Since elements of \(T_h \) are discontinuous across inter-element boundaries, the mass operator is block-diagonal and can be inverted one time for all: this operation results in the \text{inv_mass} operator.
How to run the program

Figure 5.3: The stress tensor visualization (linear elasticity $\lambda = 1$).

First, compile the program:

```
make stress
```

The visualization for the stress tensor as ellipses writes:

```
./stress < square-P1.field > square-stress-P1.field
field square-stress-P1.field -proj -mayavi
```

Recall that the stress, as a derivative of the deformation, is P0 (resp. P1d) and discontinuous when the deformation is P1 (resp. P2) and continuous. The approximate stress tensor field is projected on a continuous piecewise linear space, using the `-proj` option. Conversely, the 3D visualization bases on ellipsoids:

```
./stress < cube-P1.field > cube-stress-P1.field
field cube-stress-P1.field -proj -mayavi -stereo
```
Figure 5.4: The σ_{01} stress component (linear elasticity $\lambda = 1$): $d = 2$ (top) and $d = 3$ (bottom); P_0 (left) and P_1 discontinuous approximation (right).

You can observe a discontinuous constant or piecewise linear representation of the approximate stress component σ_{01} (see Fig. 5.4):

```plaintext
field square-stress-P1.field -comp 01
field square-stress-P2.field -comp 01 -elevation
field square-stress-P2.field -comp 01 -elevation -stereo
```

Notice that the `--stereo` implies the `--mayavi` one, as this feature is not available with others visualization systems. The approximate stress field can be also projected on a continuous piecewise space:

```plaintext
field square-stress-P2.field -comp 01 -elevation -proj
```

The tridimensional case writes simply (see Fig. 5.4):

```plaintext
./stress < cube-P1.field > cube-stress-P1.field
```
and also the P1-projected versions write:

```plaintext
field cube-stress-P1.field -comp 01 -stereo -proj -iso
field cube-stress-P2.field -comp 01 -stereo -proj -iso
```

These operations can be repeated for each σ_{ij} components and for both P_1 and P_2 approximation of the deformation field.

5.3 Mesh adaptation

The main principle of the auto-adaptive mesh writes [6,10,21,38,39,46]:

```plaintext
cin >> omega;
uh = solve(omega);
for (unsigned int i = 0; i < n; i++) {
    ch = criterion(uh);
    omega = adapt(ch);
    uh = solve(omega);
}
```

The initial mesh is used to compute a first solution. The adaptive loop compute an *adaptive criterion*, denoted by ch, that depends upon the problem under consideration and the polynomial approximation used. Then, a new mesh is generated, based on this criterion. A second solution on an adapted mesh can be constructed. The adaptation loop converges generally in roughly 5 to 20 iterations.

Let us apply this principle to the elasticity problem.
File ‘embankment_adapt.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "elasticity_solve.icc"
#include "elasticity_criterion.icc"
#include "embankment.icc"
int main(int argc, char** argv) {
  environment rheolef (argc, argv);
  geo omega (argv[1]);
  adapt_option_type options;
  string approx = (argc > 2) ? argv[2] : "P1";
  options.err = (argc > 3) ? atof(argv[3]) : 5e-3;
  size_t n_adapt = (argc > 4) ? atoi(argv[4]) : 5;
  options.hmin = 0.004;
  for (size_t i = 0; true; i++) {
    space Xh = embankment_space(omega, approx);
    field uh = elasticity_solve(Xh, lambda);
    odiststream of (omega.name(), "field");
    of << catchmark(" lambda") << lambda << endl
    << catchmark("u") << uh;
    if (i == n_adapt) break;
    field ch = elasticity_criterion(lambda, uh);
    omega = adapt(ch, options);
    odiststream og (omega.name(), "geo");
    og << omega;
  }
}
```

File ‘elasticity_solve.icc’

```cpp
field elasticity_solve(const space& Xh, Float lambda) {
  size_t d = Xh.get_geo().dimension();
  point f (0,0,0);
  f[d-1] = -1;
  field lh = riesz(Xh, f);
  form m (Xh, Xh, "mass");
  form a1 (Xh, Xh, "div_div");
  form a2 (Xh, Xh, "2D_D");
  form a = lambda *a1 + a2;
  solver sa (a.uu());
  field uh (Xh, 0);
  uh.set_u() = sa.solve(lh.u() - a.ub()*uh.b());
  return uh;
}
```

File ‘elasticity_criterion.icc’

```cpp
field elasticity_criterion(Float lambda, const field& uh) {
  string grad_approx = (uh.get_approx() == "P2") ? "P1d" : "P0";
  if (grad_approx == "P0") return norm(uh);
  space Th (uh.get_geo(), grad_approx, "tensor");
  space Xh (uh.get_geo(), grad_approx);
  form two_D (uh.get_space(), Th, "2D");
  form div (uh.get_space(), Xh, "div");
  form m (Xh, Xh, "mass");
  form inv_m (Th, Th, "inv_mass");
  form inv_m (Th, Th, "inv_mass");
  field qh = inv_m*(div*uh);
  field two_Duh = inv_m*(two_D*uh);
  return sqrt(lambda*sqr(qh) + norm2(two_Duh));
}
```
Comments

The criterion is here:

\[c_h = \begin{cases}
|u_h| & \text{when using } P_1 \\
(\sigma(u_h) : D(u_h))^{1/2} & \text{when using } P_2
\end{cases} \]

The `adapt-option_type` declaration is used by *Rheolef* to send options to the mesh generator. The `err` parameter controls the error via the edge length of the mesh: the smaller it is, the smaller the edges of the mesh are. In our example, is set by default to one. Conversely, the `hmin` parameter controls minimal edge length.

How to run the program

![P1: 6661 elements, 3620 vertices](image1)

![P2: 1734 elements, 969 vertices](image2)

Figure 5.5: Adapted meshes: the deformation visualization for \(P_1 \) and \(P_2 \) approximations.

The compilation command writes:

```
make embankment_adapt
```

The mesh loop adaptation is initiated from a *bamg* mesh (see also appendix B.1).

```
bamg -g square.bamgcad -o square.bamg
bamg2geo square.bamg square.dmn > square.geo
./embankment_adapt square P1
```

The code performs a loop of five mesh adaptations: the corresponding meshes are stored in files, from `square-1.geo.gz` to `square-5.geo.gz`, and the associated solutions in files, from `square-1.field.gz` to `square-5.field.gz`. The additional `.gz` suffix expresses that the files are compressed using *gzip*.

```
geo square-5.geo
field square-5.field -mayavi -nofill
```

Note that the `.gz` suffix is automatically assumed by the *geo* and the *field* commands.

For a piecewise quadratic approximation:
Then, the visualization writes:

```
geo square-5.geo
field square-5.field -mayavi -nofill
```

A one-dimensional mesh adaptive procedure is also possible:

```
gmsh -1 line.mshcad -o line.msh
msh2geo line.msh > line.geo
geo line.geo
./embankment_adapt line P2
geo line-5.geo
field line-5.field -comp 0 -elevation
```

The three-dimensional extension this mesh adaptive procedure is in development.

5.4 The Stokes problem

Formulation

Let us consider the Stokes problem for the driven cavity in $\Omega = [0,1]^d$, $d = 2, 3$. The problem writes:

\[(S) \text{ find } u = (u_0, \ldots, u_{d-1}) \text{ and } p \text{ defined in } \Omega \text{ such that:}\]

\[- \text{div}(2D(u)) + \nabla p = 0 \text{ in } \Omega, \]
\[- \text{div} u = 0 \text{ in } \Omega, \]
\[u = (1,0) \text{ on } \Gamma_{\text{top}}, \]
\[u = 0 \text{ on } \Gamma_{\text{left}} \cup \Gamma_{\text{right}} \cup \Gamma_{\text{bottom}}, \]
\[
\frac{\partial u_0}{\partial n} = \frac{\partial u_1}{\partial n} = u_2 = 0 \text{ on } \Gamma_{\text{back}} \cup \Gamma_{\text{front}} \text{ when } d = 3, \]

where $D(u) = (\nabla u + \nabla u^T)/2$. The boundaries are represented on Fig. 5.1, page 46.

The variational formulation of this problem expresses:

\[(VFS) \text{ find } u \in V(1) \text{ and } p \in L_0^2(\Omega) \text{ such that:}\]

\[a(u,v) + b(v,p) = 0, \quad \forall v \in V(0), \]
\[b(u,q) = 0, \quad \forall q \in L_0^2(\Omega), \]

where

\[a(u,v) = \int_{\Omega} 2D(u) : D(v) \, dx, \]
\[b(v,q) = -\int_{\Omega} \text{div}(v) \, q \, dx. \]

\[V(\alpha) = \{ v \in (H^1(\Omega))^2; \ v = 0 \text{ on } \Gamma_{\text{left}} \cup \Gamma_{\text{right}} \cup \Gamma_{\text{bottom}} \text{ and } v = (\alpha,0) \text{ on } \Gamma_{\text{top}} \}, \text{ when } d = 2, \]
\[V(\alpha) = \{ v \in (H^1(\Omega))^3; \ v = 0 \text{ on } \Gamma_{\text{left}} \cup \Gamma_{\text{right}} \cup \Gamma_{\text{bottom}}, \ v = (\alpha,0,0) \text{ on } \Gamma_{\text{top}} \text{ and } v_2 = 0 \text{ on } \Gamma_{\text{back}} \cup \Gamma_{\text{front}} \}, \text{ when } d = 3, \]
\[L_0^2(\Omega) = \{ q \in L^2(\Omega); \int_{\Omega} q \, dx = 0 \}. \]
Approximation

The Taylor-Hood \[22\] finite element approximation of the Stokes problem is considered. We introduce a mesh \(T_h\) of \(\Omega\) and the following finite dimensional spaces:

\[
X_h = \{ v \in (H^1(\Omega))^d; \ v_K \in (P_2)^d, \ \forall K \in T_h \},
\]

\[
V_h(\alpha) = X_h \cap V(\alpha),
\]

\[
Q_h = \{ q \in L^2(\Omega) \cap C^0(\Omega); \ q_K \in P_1, \ \forall K \in T_h \}.
\]

The approximate problem writes:

\[(VFS)_h \text{ find } u_h \in V_h(1) \text{ and } p \in Q_h \text{ such that:}\]

\[
a(u_h, v) + b(v, p_h) = 0, \ \forall v \in V_h(0),
\]

\[
b(u_h, q) = 0, \ \forall q \in Q_h.
\]

File ‘cavity.icc’

```cpp
space cavity_space (const geo & omega_h, std::string approx) {
    space Xh (omega_h, approx, "vector");
    Xh.block("top"); Xh.block("bottom");
    if (omega_h.dimension() == 3) {
        Xh.block("front");
        Xh[1].block("left");
        Xh[1].block("right");
    } else {
        Xh.block("left");
        Xh.block("right");
    }
    return Xh;
}
field cavity_field (const space & Xh, Float alpha) {
    field uh (Xh, 0.);
    uh[0]["top"] = alpha;
    return uh;
}
```

File ‘stokes_cavity.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "cavity.icc"
int main(int argc, char** argv) {
    environment rheolef (argc, argv);
    geo omega (argv[1]);
    space Xh = cavity_space (omega, "P2");
    field uh = cavity_field (Xh, 1);
    space Qh (omega, "P1");
    field ph (Qh, 0.);
    form a (Xh, Xh, "2D_D");
    form b = - form (Xh, Qh, "div");
    form mp (Qh, Qh, "mass");
    solver_abtb stokes (a.uu(), b.uu(), mp.uu());
    stokes.solve (-a.ub()*uh.b(), -b.ub()*uh.b(),
                 uh.set_u(),
                 ph.set_u());
    dout << catchmark(\"u\") << uh
       << catchmark(\"p\") << ph;
}
```

Comments

The spaces and boundary conditions and grouped in specific functions, defined in file ‘cavity.icc’. This file is suitable for a future re-usage. Next, forms are defined as usual, in file ‘stokes_cavity.cc’.
The problem admits the following matrix form:

\[
\begin{pmatrix}
 a.uu & \text{trans}(b.uu) \\
 b.uu & 0
\end{pmatrix}
\begin{pmatrix}
 uh.u \\
 ph.u
\end{pmatrix}
= \begin{pmatrix}
 -a.ub * uh.b \\
 -b.ub * uh.b
\end{pmatrix}
\]

An initial value for the pressure field is provided:

\texttt{field ph (Qh, 0);}

The main Stokes solver call writes:

\texttt{solver_abtb stokes (a.uu(), b.uu(), mp.uu());
stokes.solve (-a.ub()*uh.b()), -(b.ub()*uh.b()),
uh.set_u(), ph.set_u());}

For tridimensional geometries ($d = 3$), this system is solved by the preconditioned conjugate gradient algorithm. The preconditioner is here the mass matrix \texttt{mp.uu} for the pressure: as showed in [24], the number of iterations need by the conjugate gradient algorithm to reach a given precision is then independent of the mesh size. For more details, see the Rheolef reference manual related to mixed solvers, available e.g. via the unix command:

\texttt{man solver_abtbc}

When $d = 2$, it is interesting to turn to direct methods and factorize the whole matrix of the linear system. As the pressure is defined up to a constant, the whole matrix is singular. By adding a Lagrange multiplier that impose a null average pressure value, the system becomes regular and the modified matrix can be inverted. Such a technique has already been presented in section 4 for the Neumann-Laplace problem. Finally, the choice between iterative and direct algorithm for the Stokes solver is automatically done, regarding the geometry dimension.

\section*{How to run the program}

We assume that the previous code is contained in the file `stokes_cavity.cc’. Then, compile the program as usual (see page 14):
make stokes_cavity

and enter the commands:

```
mkgeo_grid -t 10 > square.geo
./stokes_cavity square > square.field
```

The previous command solves the problem for the corresponding mesh and writes the solution in a `.field` file. Run the velocity vector visualization:

```
field square.field -velocity
```

Run also some scalar visualizations:

```
field square.field -comp 0
field square.field -comp 1
field square.field -catchmark p
```

Note the `-catchmark` option to the `field` command: the file reader jumps to the label and then starts to read the selected field. Next, perform another computation on a finer mesh:

```
mkgeo_grid -t 20 > square-20.geo
./stokes_cavity square-20.geo > square-20.field
```

and observe the convergence.

Finally, let us consider the three dimensional case:

```
mkgeo_grid -T 5 > cube.geo
./stokes_cavity cube.geo > cube.field
```

and the corresponding visualization:

```
field cube.field -velocity
field cube.field -comp 0
field cube.field -comp 1
field cube.field -comp 2
field cube.field -catchmark p
```

5.5 Computing the vorticity

Formulation and approximation

When $d = 2$, we define [19, page 30] for any distributions ϕ and v:

\[
\text{curl} \phi = \left(\frac{\partial \phi}{\partial x_1}, -\frac{\partial \phi}{\partial x_0} \right),
\]

\[
\text{curl} v = \frac{\partial v_1}{\partial x_0} - \frac{\partial v_0}{\partial x_1},
\]
and when \(d = 3 \):

\[
\text{curl} v = \left(\frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2}, \frac{\partial v_0}{\partial x_2} - \frac{\partial v_2}{\partial x_0}, \frac{\partial v_1}{\partial x_0} - \frac{\partial v_0}{\partial x_1} \right)
\]

Let \(u \) be the solution of the Stokes problem \((S)\). The vorticity is defined by:

\[
\omega = \text{curl} u \quad \text{when} \ d = 2,
\]

\[
\omega = \text{curl} u \quad \text{when} \ d = 3.
\]

Since the approximation of the velocity is piecewise quadratic, we are looking for a discontinuous piecewise linear vorticity field that belongs to:

\[
Y_h = \left\{ \xi \in L^2(\Omega); \frac{\xi}{K} \in P_1, \forall K \in \mathcal{T}_h \right\}, \quad \text{when} \ d = 2
\]

\[
Y_h = \left\{ \xi \in (L^2(\Omega))^3; \frac{\xi}{K} \in P_1, \forall K \in \mathcal{T}_h \right\}, \quad \text{when} \ d = 3
\]

The approximate variational formulation writes:

\[
\omega_h \in Y_h, \quad \int_{\Omega} \omega_h \xi \, dx = \int_{\Omega} \text{curl} u_h \xi \, dx, \quad \forall \xi \in Y_h \quad \text{when} \ d = 2,
\]

\[
\omega \in Y_h, \quad \int_{\Omega} \omega_h \xi \, dx = \int_{\Omega} \text{curl} u_h \xi \, dx, \quad \forall \xi \in Y_h \quad \text{when} \ d = 3.
\]

File ‘vorticity.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;

int main(int argc, char** argv) {
    environment rheolef(argc, argv);
    field uh;
    din >> uh;
    string grad_approx = "P" + itos(uh.get_space().degree()-1) + "d";
    string valued = (uh.size() == 3) ? "vector" : "scalar";
    space Lh (uh.get_geo(), grad_approx, valued);
    form curl (uh.get_space(), Lh, "curl");
    form inv_m (Lh, Lh, "inv_mass");
    dout << catchmark("\omega") << inv_m(curl*uh);
}
```
How to run the program

Figure 5.7: The vorticity: elevation view for $d = 2$ and vector representation for $d = 3$ (with anaglyph).

For $d = 2$, just enter:

```
make vorticity
./vorticity < square.field | field -elevation -stereo -
```

and you observe a discontinuous piecewise linear representation of the approximate vorticity. Also, the vorticity presents two sharp peaks at the upper corners of the driven cavity: the vorticity is unbounded and the peaks will increase with mesh refinements. This singularity of the solution is due to the boundary condition for the first component of the velocity u_0 that jumps from zero to one at the corners. The approximate vorticity field can also be projected on a continuous piecewise linear space, using the `-proj` option (See Fig. 5.7 left):

```
./vorticity < square.field | field -elevation -stereo -nofill -
./vorticity < square.field | field -elevation -stereo -proj -
```

For $d = 3$, the whole vorticity vector can also be visualized (See Fig. 5.7 right):

```
./vorticity < cube.field | field -proj -velocity -stereo -
```

In the previous command, the `-proj` option has been used: since the 3D render has no support for discontinuous piecewise linear fields, the P_1-discontinuous field is transformed into a P_1-continuous one, thanks to a L^2 projection. P_1 The following command shows the second component of the vorticity vector, roughly similar to the bidimensional case.

```
./vorticity < cube.field | field -comp 1 -
./vorticity < cube.field | field -comp 1 -proj -
```
5.6 Computing the stream function

Formulation and approximation

When \(d = 3 \), the stream function is a vector-valued field \(\psi \) that satisfies [19, page 90]: \(\text{curl} \psi = u \) and \(\text{div} \psi = 0 \). From the identity:

\[
\text{curl} \, \text{curl} \psi = -\Delta \psi + \nabla (\text{div} \psi)
\]

we obtain the following characterization of \(\psi \):

\[
\begin{align*}
-\Delta \psi &= \text{curl} u \quad \text{in } \Omega, \\
\psi &= 0 \quad \text{on } \Gamma_{\text{back}} \cup \Gamma_{\text{front}} \cup \Gamma_{\text{top}} \cup \Gamma_{\text{bottom}}, \\
\frac{\partial \psi}{\partial n} &= 0 \quad \text{on } \Gamma_{\text{left}} \cup \Gamma_{\text{right}}.
\end{align*}
\]

When \(d = 2 \), the stream function \(\psi \) is a scalar-valued field the solution of the following problem [19, page 88]:

\[
-\Delta \psi = \text{curl} u \quad \text{in } \Omega, \\
\psi &= 0 \quad \text{on } \partial \Omega.
\]

File `streamf_cavity.cc`

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;

int main (int argc, char ** argv) {
  environment rheolef (argc, argv);
  field uh;
  std::cin >> uh;
  string valued = (uh.size() == 3) ? "vector" : "scalar";
  space Ph (uh.get_geo(), "P2", valued);
  Ph.block("top"); Ph.block("bottom");
  if (uh.get_geo().dimension() == 3) {
    Ph.block("back"); Ph.block("front");
  } else {
    Ph.block("left"); Ph.block("right");
  }
  const space& Xh = uh.get_space();
  form a (Ph, Ph, "grad_grad");
  form b (Xh, Ph, "curl");
  field psi_h (Ph, 0.);
  field lh = b*uh;
  solver sa (a.uu());
  psi_h.set_u() = sa.solve (lh.u() - a.ub()*psi_h.b());
  std::cout << catchmark("psi") << psi_h;
}
```
How to run the program

Figure 5.8: The stream function visualization: isolines for $d = 2$, and combined vectors and isonorm surface for $d = 3$.

For $d = 2$, just enter (see Fig. 5.8 left):

```
make streamf_cavity
./streamf_cavity < square.field | field -bw -
```

For $d = 3$, the whole stream function vector can be visualized:

```
./streamf_cavity < cube.field | field -velocity -
```

The second component of the stream function is showed by:

```
./streamf_cavity < cube.field | field -comp 1
```

The combined representation of Fig. 5.8.right has been obtained in two steps. First, enter:

```
./streamf_cavity < cube.field | field -comp 1 -noclean -noexecute -
mv output.vtk psi1.vtk
./streamf_cavity < cube.field | field -velocity -
```

The -noclean -noexecute options cause the creation of the `.vtk` file for the second component, without running the mayavi visualization. Next, in the mayavi window associated to the whole stream function, select the File/Load data/VTK file menu and load `psi1.vtk`. Finally, select the Visualize/Module/ISOsurface menu. Observe that the 3D stream function is mainly represented by its second component.
Chapter 6

Nearly incompressible elasticity and the stabilized Stokes problems

6.1 The incompressible elasticity problem

Formulation

Let us go back to the linear elasticity problem.
When λ becomes large, this problem is related to the incompressible elasticity and cannot be solved as it was previously done. To overcome this difficulty, the pressure is introduced:

$$ p = -\lambda \text{div} \, u $$

and the problem becomes:

\[(E) \text{ find } u \text{ and } p \text{ defined in } \Omega \text{ such that:} \]
\[-\text{div}(2D(u)) + \nabla p = f \text{ in } \Omega, \]
\[-\text{div} u - \frac{1}{\lambda} p = 0 \text{ in } \Omega, \]
\[+ \text{B.C.} \]

The variational formulation of this problem expresses:

\[(VFE) \text{ find } u \in V(1) \text{ and } p \in L^2(\Omega) \text{ such that:} \]
\[a(u, v) + b(v, p) = m(f, v), \forall v \in V(0), \]
\[b(u, q) - c(p, q) = 0, \forall q \in L^2_0(\Omega), \]

where

\[m(u, v) = \int_{\Omega} u \cdot v \, dx, \]
\[a(u, v) = \int_{\Omega} D(u) : D(v) \, dx, \]
\[b(v, q) = -\int_{\Omega} \text{div}(v) \, q \, dx. \]
\[c(p, q) = \frac{1}{\lambda} \int_{\Omega} p \, q \, dx. \]
\[V = \{ v \in (H^1(\Omega))^2; \, v = 0 \, \text{ on } \Gamma_{left} \cup \Gamma_{bottom} \} \]

When λ becomes large, we obtain the incompressible elasticity problem, that coincides with the Stokes problem.
Approximation

As for the Stokes problem, the Taylor-Hood \cite{TaylorHood1973} finite element approximation is considered. We introduce a mesh T_h of Ω and the following finite dimensional spaces:

$$
X_h = \{ v \in (H^1(\Omega)); \frac{v}{K} \in (P_2)^2, \forall K \in T_h \},
$$

$$
V_h(\alpha) = X_h \cap V,
$$

$$
Q_h = \{ q \in L^2(\Omega) \cap C^0(\overline{\Omega}); \frac{q}{K} \in P_1, \forall K \in T_h \}.
$$

The approximate problem writes:

$$
(VFE)_h \text{ find } u_h \in V_h(1) \text{ and } p \in Q_h \text{ such that:}
$$

$$
a(u_h,v) + b(v,p_h) = 0, \forall v \in V_h(0),
$$

$$
b(u_h,q) - c(p,q) = 0, \forall q \in Q_h.
$$

File `incompressible-elasticity.cc`

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "embankment.icc"
int main(int argc, char** argv) {
    environment rheolef(argc, argv);
    geo omega(argv[1]);
    Float inv_lambda = (argc > 2 ? atof(argv[2]) : 0);
    size_t d = omega.dimension();
    space Xh = embankment_space(omega, "P2");
    space Qh(omega, "P1");
    point f(0,0,0);
    f[d-1] = -1;
    field lh = riesz(Xh, f);
    form mp(Qh, Qh, "mass");
    form a(Xh, Xh, "2D_D");
    form b(Xh, Qh, "div"); b = -b;
    form c = inv_lambda*mp;
    field uh(Xh, 0);
    field ph(Qh, 0);
    solver_abtb elasticity(a.uu(), b.uu(), c.uu(), mp.uu());
    elasticity.solve(lh.u() - a.ub()*uh.b(), -(b.ub()*uh.b())),
    uh.set_u(), ph.set_u();
    dout << catchmark("inv_lambda") << endl
    << catchmark("u") << uh
    << catchmark("p") << ph;
}
```

Comments

The problem admits the following matrix form:

$$
\begin{pmatrix}
 a_{uu} & trans(b_{uu}) \\
 b_{uu} & -c_{uu}
\end{pmatrix}
\begin{pmatrix}
 uh.u \\
 ph.u
\end{pmatrix}
=
\begin{pmatrix}
 lh.u - a_{uu} * uh.b \\
 -b_{uu} * uh.b
\end{pmatrix}
$$

The problem is similar to the Stokes one (see page 58). This system is solved by:

```cpp
solver_abtb elasticity(a.uu(), b.uu(), c.uu(), mp.uu());
elasticity.solve(lh.u() - a.ub()*uh.b(), -(b.ub()*uh.b())),
uh.set_u(), ph.set_u();
```

For two-dimensional problems, a direct solver is used by default. In the three-dimensional case, an iterative algorithm is the default: the preconditioned conjugate gradient. The preconditioner is here the mass matrix mp.uu for the pressure. As showed in \cite{Chaouche2013}, the number of iterations need by the conjugate gradient algorithm to reach a given precision is then independent of the mesh size and is uniformly bounded when λ becomes small, i.e. in the incompressible case.
How to run the program

Figure 6.1: The incompressible linear elasticity \(\lambda = +\infty \) for \(N = 2 \) and \(N = 3 \).

We assume that the previous code is contained in the file ‘incompressible-elasticity.cc’. Compile the program as usual (see page 14):

```
make incompressible-elasticity
```

and enter the commands:

```
mkgeo_grid -t 10 > square.geo
./incompressible-elasticity square.geo 0 > square.field
field square.field -mayavi -nofill

mkgeo_grid -T 10 > cube.geo
./incompressible-elasticity cube.geo 0 > cube.field
field cube.field -mayavi -fill
```

The visualization is performed as usual: see section 5.1, page 48. Compare the results on Fig. 6.1, obtained for \(\lambda = +\infty \) with those of Fig. 5.2, page 48, obtained for \(\lambda = 1 \).

Finally, the stress computation and the mesh adaptation loop is left as an exercise to the reader.

6.2 The \(P_1 b - P_1 \) element for the Stokes problem

Formulation and approximation

Let us go back to the Stokes problem. In section 5.4, page 56, the Taylor-Hood finite element was considered. Here, we turn to the mini-element [3] proposed by Arnold, Brezzi and Fortin, also well-known as the \(P1\)-bubble element. This element is generally less precise than the Taylor-Hood one, but becomes popular, mostly because it is easy to implement in two and three dimensions
and furnishes a P_1 approximation of the velocity field. Moreover, this problem develops some links with stabilization technique and will presents some new Rheolef features.

We consider a mesh T_h of $\Omega \subset \mathbb{R}^N$, $N = 2, 3$ composed only of simplicial elements: triangles when $N = 2$ and tetrahedra when $N = 3$. The following finite dimensional spaces are introduced:

$$X_h^{(1)} = \{v \in (H^1(\Omega))^N; v_K \in (P_1)^N, \forall K \in T_h\},$$

$$B_h = \{\beta \in (C^0(\Omega))^N; \beta_K \in B(K)^N, \forall K \in T_h\}$$

$$X_h = X_h^{(1)} \oplus B_h$$

$$V_h(\alpha) = X_h \cap V(\alpha),$$

$$Q_h = \{q \in L^2(\Omega) \cap C^0(\Omega); q_K \in P_1, \forall K \in T_h\},$$

where $B(K) = \text{vect}(\lambda_1 \times \ldots \times \lambda_{N+1})$ and λ_i are the barycentric coordinates of the simplex K. The $B(K)$ space is related to the bubble local space. The approximate problem is similar to (5.4), page 57, up to the choice of finite dimensional spaces.

Remark that the velocity field splits in two terms: $u_h = u_h^{(1)} + u_h^{(b)}$, where $u_h^{(1)} \in X_h^{(1)}$ is continuous and piecewise linear, and $u_h^{(b)} \in B_h$ is the bubble term.

File ‘stokes_contraction_bubble.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "poiseuille.h"

int main(int argc, char**argv) {
  environment rheolef(argc, argv);
  geo omega (argv[1]);
  string sys_coord = omega.coordinate_system_name();
  Float c = omega.xmax()[1];
  space X1h (omega, "P1", "vector");
  space Bh (omega, "bubble", "vector");
  X1h.block ("wall");
  X1h.block ("upstream");
  X1h[1].block ("axis");
  X1h[1].block ("downstream");
  space Xh = X1h * Bh;
  space Qh (omega, "P1");
  space Wh (omega["upstream"], "P1");
  field uh (Xh, 0);
  field ph (Qh, 0);
  uh[0][0]["upstream"] = interpolate (Wh, u(c, sys_coord));
  form a1 (X1h, X1h, "2D_D");
  form ab (Bh, Bh, "2D_D");
  form b1 = - form(X1h, Qh, "div");
  form bb = - form(Bh, Qh, "div");
  form a = {{a1, 0},
            {0, ab}};
  form b = {{b1, bb},
            {0, ab}};
  form mp (Qh, Qh, "mass");
  solver_abtb stokes (a.uu(), b.uu(), mp.uu());
  stokes.solve (- (a.ub() * uh.b()), -(b.ub() * uh.b()),
                uh.set_u(),
                ph.set_u());
  dout << catchmark ("inv lambda") << 0 << endl
  << catchmark ("u") << uh[0]
  << catchmark ("ub") << uh[1]
  << catchmark ("p") << ph;
}
```
Comments

The matrix structure is similar to those of the Taylor-Hood element, and thus the same mixed solver approach applies. We consider the abrupt contraction geometry:

\[\Omega = [-L_u,0[\times]0,c[\cup]0,L_d[\times]0,1[\]

where \(c \geq 1 \) stands for the contraction ratio, and \(L_u,L_d > 0 \), are the upstream and downstream tube lengths. The boundary conditions on \(u = (u_0,u_1) \) for this test case are:

\[
\begin{align*}
 u_0 &= u_{\text{poiseuille}} \quad \text{and} \quad u_1 = 0 \quad \text{on } \Gamma_{\text{upstream}} \\
 u &= 0 \quad \text{on } \Gamma_{\text{wall}} \\
 \partial u_0 / \partial x_1 &= 0 \quad \text{and} \quad u_1 = 0 \quad \text{on } \Gamma_{\text{axis}} \\
 \partial u / \partial n &= 0 \quad \text{on } \Gamma_{\text{downstream}}
\end{align*}
\]

where

\[
\begin{align*}
 \Gamma_{\text{upstream}} &= \{-L_u\} \times]0,c[\\
 \Gamma_{\text{downstream}} &= \{L_d\} \times]0,1[\\
 \Gamma_{\text{axis}} &=]-L_u,L_d[\times \{0\} \\
 \Gamma_{\text{wall}} &=]-L_u,0[\times]0,c[\cup]0\cup \cup 0,L_d[\times]1[\\
\end{align*}
\]

Notices the automatic computation of the geometric contraction ratio \(c \) from the input mesh, as:

\[
\text{Float } c = \omega . \text{xmax}()[1];
\]

The global form \(a(.,.) \) over \(X_h \) is obtained by concatenation of the forms \(a_1(.,.) \) and \(a_b(.,.) \) over \(X_h^{(1)} \) and \(B_h \) respectively, thanks to the \texttt{form} initializer list:

\[
a = \left(\begin{array}{cc} a_1 & 0 \\ 0 & a_b \end{array} \right) \quad \text{and} \quad b = \left(\begin{array}{c} b_1 \\ b_b \end{array} \right)
\]

that writes simply with \texttt{Rheolef}:

\[
\text{form } a = \{\{a1,0\}, \\
\{0,ab\}\}; \\
\text{form } b = \{b1,bb\};
\]

File ‘poiseuille.h’

```cpp
struct u : std::unary_function<point,Float> {
    Float operator() (const point& x) const {
        return a*(c+x[1])*(c-x[1]); }
    u (const Float& c1, std::string sc) : c(c1)
    { a = (sc == "cartesian") ? 3/(2*pow(c,3)) : 4/pow(c,4); }
    protected : Float c, a;
};
struct psi : std::unary_function<point,Float> {
    Float operator() (const point& x) const {
        return xy ? a*sqr(c-x[1])*(2*c+x[1]) : a*sqr(c-x[1])*sqr(c+x[1]); }
    psi (const Float& c1, std::string sc) : c(c1), xy(sc == "cartesian")
    { a = xy ? -1/(2*pov(c,3)) : -1/pov(c,4); }
    protected : Float c, a; bool xy;
};
```

The file \texttt{poiseuille.h} contains code for the velocity and stream function boundary conditions. The Poiseuille velocity upstream boundary condition \(u_{\text{poiseuille}} \) has been scaled such that the total flow rate is equal to one. The stream function is equal to \(-1\) on the axis and to zero on the wall. This file contains also a treatment of the axisymmetric variant of the geometry: this case will be presented in the next paragraphs.
How to run the program

Figure 6.2: Solution of the Stokes problem in the abrupt contraction: (top) the mesh; (center) the P_1 stream function associated to the $P_1 b - P_1$ element; (bottom) the P_2 stream function associated to the $P_2 - P_1$ Taylor-Hood element.

The boundary conditions in this example are related to an abrupt contraction geometry with a free surface. The corresponding mesh `contraction.geo` can be easily builted from the geometry description file `contraction.mshcad`, which is provided in the example directory of the Rheolef distribution. The building mesh procedure is presented with details in appendix B, page B.

```
gmsh -2 contraction.mshcad -o contraction.msh
msh2geo contraction.msh > contraction.geo
geo contraction.geo
```

The mesh is represented on Fig. 6.2.top. Then, the computation and the visualization writes:

```
make stokes_contraction_bubble
```
The visualization of the velocity field brings few informations about the properties of the flow. The stream function is more relevant for stationary flow visualization.

File ‘streamf_contraction.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;

int main (int argc, char** argv) {
  environment rheolef(argc, argv);
  field uh;
  din >> uh;
  const geo omega = uh.get_geo();
  string sys_coord = omega.coordinate_system_name();
  Float c = omega.xmax()[1];
  string approx = "P" + itos(uh.get_space().degree());
  space Ph (omega, approx);
  Ph.block("upstream");
  Ph.block("wall");
  Ph.block("axis");
  space Wh (omega["upstream"], approx);
  form a (Ph, Ph, "s_grad_grad");
  form b (Ph, Wh, "s_curl");
  field psi_h (Ph, 0);
  psi_h["upstream"] = interpolate (Wh, psi(c,sys_coord));
  psi_h["wall"] = 0;
  psi_h["axis"] = -1;
  field lh = b.trans_mult(uh);
  solver sa (a.uu());
  psi_h.set_u() = sa.solve(lh.u() - a.ub()*psi_h.b());
  dout << catchmark("psi") << psi_h;
}
```

Notice the use of special extensions of the \texttt{grad Grad} and \texttt{curl} forms for the stream function computation:

```cpp
form a (Ph, Ph, "s_grad_grad");
form b (Ph, Wh, "s_curl");
```

These forms are suitable for the axisymmetric coordinate system specific definition of the stream function, while they coincide with the usual \texttt{grad Grad} and \texttt{curl} forms on Cartesian coordinate systems. The axisymmetric case will be presented in the next section.

The stream function ψ (see also section 5.6) is computed and visualized as:

```bash
make streamf_contraction
./streamf_contraction < contraction-P1.field > contraction-P1-psi.field
field contraction-P1-psi.field
field contraction-P1-psi.field -n-isolevels 15 -n-isolevels-negative 10 -bw
```

The P_1 stream function is represented on Fig. 6.2. The stream function is zero along the wall and the line separating the main flow and the vortex located in the outer corner of the contraction. Thus, the isoline associated to the zero value separates the main flow from the vortex. In order to observe this vortex, an extra \texttt{-n-isolevels-negative 10} option is added: ten isolines are drawn for negatives values of ψ, associated to the main flow, and $\text{n_iso}=10$ for the positives values, associated to the vortex.
A similar computation based on the Taylor-Hood $P_2 - P_1$ element is implemented in `stokes_contraction.cc`. The code is similar, up to the boundary conditions, to `stokes_cavity.cc` (see page 57): thus it is not listed here but is available in the Rheolef example directory.

```plaintext
make stokes_contraction
./stokes_contraction contraction.geo > contraction-P2.field
field contraction-P2.field -mayavi -velocity
./streamf_contraction < contraction-P2.field > contraction-P2-psi.field
field contraction-P2-psi.field -n-iso-negative 10 -bw
```

The associated P_2 stream function is represented on Fig. 6.2.bottom. Observe that the two solutions are similar and that the vortex activity, defined as ψ_{max}, is accurately computed with the two methods (see also [41], Fig. 5.11.a, page 143).

```plaintext
field contraction-P1-psi.field -max
field contraction-P2-psi.field -max
```

Recall that the stream function is negative in the main flow and positive in the vortex located in the outer corner of the contraction. Nevertheless, the Taylor-Hood based solution is more accurate: this is perceptible on the graphic, in the region where the upstream vortex reaches the boundary.

6.3 The stabilized Stokes problem

An alternative and popular implementation of this element eliminates the unknowns related to the bubble components (see e.g. [1], page 24). Remark that the system has the following structure:

\[
\begin{pmatrix}
 A_1 & 0 & B_1^T \\
 0 & A_b & B_b^T \\
 B_1 & B_b & 0 \\
\end{pmatrix}
\begin{pmatrix}
 U_1 \\
 U_b \\
 P \\
\end{pmatrix} =
\begin{pmatrix}
 F_1 \\
 F_b \\
 G \\
\end{pmatrix}
\]

This elimination can be easily performed since the form $a_b(.,.)$ over B_b is diagonal, due to the fact that the bubble functions vanishes on the boundary of elements. The system reduces to:

\[
\begin{pmatrix}
 A_1 & B_1^T \\
 B_1 & -C \\
\end{pmatrix}
\begin{pmatrix}
 U_1 \\
 P \\
\end{pmatrix} =
\begin{pmatrix}
 F \\
 \tilde{G} \\
\end{pmatrix}
\]

where $\tilde{G} = G - B_b A_b^{-1} F_b$ and $C = B_b A_b^{-1} B_b^T$. Recall that A_b is diagonal, since each bubble function vanishes at element boundary. Remarks that the matrix structure is similar to those of the nearly incompressible elasticity (see 6.1, page 6.1). A direct matrix formulation for this problem is similar to the direct $P_1 - P_1$ stabilized element, proposed by Brezzi and Pitkäranta [9].

6.4 Axisymmetric geometries

Axisymmetric geometries are fully supported in Rheolef: the coordinate system is associated to the geometry description, stored together with the mesh in the `.geo` and this information is propagated in spaces, forms and fields without any change in the code. Thus, a code that works in plane a 2D plane geometry is able to support a 3D axisymmetric one without changes. A simple axisymmetric geometry writes:
mkgeo_grid -t 10 -zr > square-zr.geo
more square-zr.geo

Remark the additional line in the header:

coordinate_system zr

The axis of symmetry is denoted as \(z \) while the polar coordinates are \((r, \theta)\). By symmetry, the problem is supposed to be independent upon \(\theta \) and the computational domain is described by \((x_0, x_1) = (z, r)\). Conversely, in some cases, it could be convenient to swap the order of the coordinates and use \((r, z)\): this feature is obtained by the -rz option:

mkgeo_grid -t 10 -rz > square-rz.geo
more square-rz.geo

Axisymmetric problems use \(L^2 \) functional space equipped with the following weighted scalar product:

\[
(f, g) = \int_{\Omega} f(z, r) g(z, r) r \, dr \, dz
\]

and all usual bilinear forms support this weight. Thus, the coordinate system can be chosen at run time and we can expect an efficient source code reduction.

6.5 The axisymmetric stream function and stress tensor

In the axisymmetric case, the velocity field \(u = (u_z, u_r) \) can be expressed in terms of the Stokes stream function \(\psi \) by (see [5, p.453] and [47]):

\[
u = (u_z, u_r) = \begin{pmatrix} \frac{1}{r} \frac{\partial \psi}{\partial r} \cr - \frac{1}{r} \frac{\partial \psi}{\partial z} \end{pmatrix}
\] (6.1)

Recall that in the axisymmetric case:

\[
\text{curl} \psi = \begin{pmatrix} \frac{1}{r} \frac{\partial (r \psi)}{\partial r} \\
- \frac{\partial \psi}{\partial z} \end{pmatrix}
\]

Thus, from this definition, in axisymmetric geometries \(u \neq \text{curl} \psi \) and the definition of \(\psi \) differs from the 2D plane or 3D cases (see section 5.6, page 62).

Let us turn to a variational formulation in order to compute \(\psi \) from \(u \). For any \(\xi \in H^1(\Omega) \), let us multiply (6.1) by \(\mathbf{v} = (\partial_r \xi, -\partial_z \xi) \) and then integrate over \(\Omega \) with the \(r \, dr \, dz \) weight. For any known \(u \) velocity field, the problem writes:

\((P)\): find \(\psi \in \Psi(\psi_T) \) such that

\[
a(\psi, \xi) = b(\xi, u), \quad \forall \xi \in \Psi(0)
\]

where we have introduced the following bilinear forms:

\[
a(\psi, \xi) = \int_{\Omega} \left(\frac{\partial \psi}{\partial r} \frac{\partial \xi}{\partial r} + \frac{\partial \psi}{\partial z} \frac{\partial \xi}{\partial z} \right) \, dr \, dz
\]

\[
b(\xi, u) = \int_{\Omega} \left(\frac{\partial \xi}{\partial r} u_z - \frac{\partial \xi}{\partial z} u_r \right) r \, dr \, dz
\]

As an example, let us reconsider the contraction geometry (see section 6.2, page 67), extended in the axisymmetric case. In that case, the functional space is defined by:

\[
\Psi(\psi_T) = \{ \varphi \in H^1(\Omega); \; \varphi = \psi_T \text{ on } \Gamma_{\text{upstream}} \cup \Gamma_{\text{wall}} \cup \Gamma_{\text{axis}} \}
\]
with
\[
\psi_\Gamma = \begin{cases}
\psi_{\text{poiseuile}} & \text{on } \Gamma_{\text{upstream}} \\
0 & \text{on } \Gamma_{\text{wall}} \\
-1 & \text{on } \Gamma_{\text{axis}}
\end{cases}
\]

This space corresponds to the imposition of Dirichlet boundary conditions on \(\Gamma_{\text{upstream}}, \Gamma_{\text{wall}} \) and \(\Gamma_{\text{axis}} \) and a Neumann boundary condition on \(\Gamma_{\text{downstream}} \).

These forms are defined in 'streamf_contraction.cc' as:

\[
\text{form } a (\Phi_h, \Phi_h, "s_grad_grad");
\text{form } b (\Phi_h, \mathbf{X}_h, "s_curl");
\]

Notice that \(a \) is similar to the \textit{grad} \textit{grad} form, but where the usual \(r \, dr \, dz \) measure is replaced by \(dr \, dz \), i.e. without the \(r \) weight. Conversely, \(b \) is related to the \textit{s} \textit{curl} operator:

\[
s_{\text{curl}} \xi = \left(\frac{\partial \xi}{\partial r}, -\frac{\partial \xi}{\partial z} \right)
\]

that is closely related to the standard \textit{curl} operator:

\[
c_{\text{curl}} \xi = \left(\frac{1}{r} \frac{\partial (r \xi)}{\partial r}, -\frac{\partial \xi}{\partial z} \right)
\]

Notice the apparition of \(r \) and \(1/r \) in the last expression.

Figure 6.3: Solution of the axisymmetric Stokes problem in the abrupt contraction: (top) the \(P_2 \) stream function associated to the \(P_2 - P_1 \) element; (bottom) comparison with the 2D Cartesian solution (in red).

The following unix commands generate the axisymmetric geometry:

```
gmsh -2 contraction.mshcad -o contraction.msh
msh2geo -zr contraction.msh > contraction-zr.geo
```
The previous code stokes_contraction.cc and streamf_contraction.cc are both reused as:

```bash
./stokes_contraction contraction-zr.geo > contraction-zr-P2.field
./streamf_contraction < contraction-zr-P2.field > contraction-zr-P2-psi.field
field contraction-zr-P2-psi.field -n-iso-negative 10 -bw
```

The solution is represented on Fig. 6.3: it slightly differs from the 2D Cartesian solution, as computed in the previous section (see Fig. 6.2). The vortex size is smaller but its intensity $\psi_{\text{max}} = 1.84 \times 10^{-3}$ is higher. Despite the stream functions looks like similar, the plane solutions are really different, as we can observe from a cut of the first component of the velocity along the axis (see Fig. 6.4):

```bash
field contraction-P2.field -comp 0 -cut -normal 0 1 -origin 0 1e-15
field contraction-zr-P2.field -comp 0 -cut -normal 0 1 -origin 0 1e-15
```

The $1e-15$ argument replace the zero value, as the mesh intersection cannot yet be done exactly on the boundary. Notice that the stokes_contraction_bubble.cc can be also reused in a similar way:

```bash
./stokes_contraction_bubble contraction-zr.geo > contraction-zr-P1.field
./streamf_contraction < contraction-zr-P1.field > contraction-zr-P1-psi.field
field contraction-zr-P1-psi.field -n-iso-negative 10 -bw
```

There is another major difference with axisymmetric problems: the rate of deformation tensor writes:

$$\tau = 2D(u) = \begin{pmatrix} \tau_{zz} & \tau_{rz} & 0 \\ \tau_{rz} & \tau_{rr} & 0 \\ 0 & 0 & \tau_{\theta\theta} \end{pmatrix}$$
Thus, there is an additional non-zero component $\tau_{\theta\theta}$ that is automatically integrated into the computations in Rheolef. The incompressibility relation leads to $\text{tr}(\tau) = \tau_{zz} + \tau_{rr} + \tau_{\theta\theta} = 0$. Here $\sigma_{\text{tot}} = -p.I + \tau$ is the total Cauchy stress tensor (by a dimensionless procedure, the viscosity can be taken as one). By reusing the stress.cc code (see page 50) we are able to compute the tensor components:

```
make stress
   ./stress < contraction-zr-P1.field > contraction-zr-P1-tau.field
```

The visualization along the axis of symmetry for the $\tau_{\theta\theta}$ component is obtained by (see Fig. 6.4):

```
field contraction-zr-P1-tau.field -comp 22 -proj -cut -normal 0 1 -origin 0 1e-15
```

Recall that the τ_{zz} and τ_{rr} components are obtained by the `-comp 00` and `-comp 11` options, respectively. The non-zero values along the axis of symmetry expresses the elongational effects in the entry region of the abrupt contraction.
Chapter 7

Time-dependent problems

7.1 The heat equation

Formulation

Let $T > 0$, $\Omega \subset \mathbb{R}^d$, $d = 1, 2, 3$ and f defined in Ω. The heat problem writes:

$$(P): \text{find } u, \text{ defined in } \Omega \times]0,T[, \text{ such that}$$

$$\frac{\partial u}{\partial t} - \Delta u = f \quad \text{in } \Omega \times]0,T[,$$

$$u(0) = 0 \quad \text{in } \Omega,$$

$$u(t) = 0 \quad \text{on } \partial \Omega \times]0,T[.$$

where f is a known function.

Approximation

Let $\Delta t > 0$ and $t_n = n\Delta t$, $n \geq 0$. The problem is approximated with respect to time by the following first-order implicit Euler scheme:

$$u^{n+1} - u^n = \Delta t \left(\frac{u^{n+1} - u^n}{\Delta t} - \Delta u^{n+1} = f(t_{n+1}) \right) \text{ in } \Omega$$

where $u^n \approx u(n\Delta t)$ and $u^{(0)} = 0$. We reuse the bilinear forms a and m defined in section 1.1, page 11 for the Dirichlet problem and introduce the bilinear form $c = m + \Delta t a$. The variational formulation of the time-discretized problem writes:

$$(VF)_n: \text{Let } u^n \text{ being known, find } u^{n+1} \in H^1_0(\Omega) \text{ such that}$$

$$c(u^{n+1}, v) = m(u^n + \Delta t f(t_{n+1}), v), \ \forall v \in H^1_0(\Omega).$$

This is a Poisson-like problem. The discretization with respect to space of this problem is similar to those presented in section 1.1, page 11.
File ‘heat.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;

int main (int argc, char **argv) {
    environment rheolef (argc, argv);
    geo omega (argv[1]);
    size_t n_max = (argc > 2) ? atoi(argv[2]) : 100;
    Float delta_t = 0.5/n_max;
    space Xh (omega, "P1");
    Xh.block ("boundary");
    form m (Xh, Xh, "mass");
    form a (Xh, Xh, "grad_grad");
    form c = m + delta_t*a;
    solver sc = ldlt (c.uu ());
    field lh = riesz (Xh, 1);
    field uh (Xh, 0);
    branch event ("t", "u");
    dout << event (0, uh);
    for (size_t n = 1; n <= n_max; n++) {
        field kh = m*uh + delta_t*lh;
        uh.set_u () = sc.solve (kh.u () - c.ub ()*uh.b ());
        dout << event (Float(n)*delta_t, uh);
    }
}
```

Comments

Notice the use of the `branch` class:

```cpp
branch event ("t", "u");
```

this is a wrapper class that is used here to print the branch of solution \((t_n, u^n)_{n\geq 0}\), on the standard output in the ‘.branch’ file format. An instruction as:

```cpp
dout << event (t, uh);
```

is equivalent to the formatted output

```cpp
dout << catchmark("t") << t << endl << catchmark("u") << uh;
```
How to run the program

![Image: Animation of the solution of the heat problem.](image)

Figure 7.1: Animation of the solution of the heat problem.

We assume that the previous code is contained in the file ‘heat.cc’. Then, compile the program as usual (see page 14):

```
make heat
```

For a one dimensional problem, enter the commands:

```
mkgeo_grid -e 10 > line.geo
./heat line.geo > line.branch
```

The previous commands solve the problem for the corresponding mesh and write the solution in the field-family file format ‘.branch’. For a bidimensional one:

```
mkgeo_grid -t 10 > square.geo
./heat square.geo > square.branch
```

For a tridimensional one:
```bash
mkgeo_grid -T 10 > box.geo
./heat box.geo > box.branch
```

How to run the animation

```
branch line.branch -gnuplot -umax 0.125
```

A gnuplot window appears. Enter q to exit the window. For a bidimensional case, a more sophisticated procedure is required. Enter the following unix commands:

```
branch square.branch -paraview
paraview &
```

A window appears, that looks like a video player. Then, open the File->open menu and load square-*.vtk. The first '.' stands for a wildcard, i.e. the time index family. Then, press the apply button and, click a first time on the video play button, at the top of the window. Next, go to the object inspector window, select display and click on the re-scale to data range button. Then click a second time on the video play button. An elevation view can be also obtained: Select the Filter->alphabetical->wrap(scalar) menu, choose 10 as scale factor and press the apply green button. Then, click on the graphic window, rotate the view and finally re-play the animation.

To generate an animation file\(^1\), go to the File->save animation menu and enter as file name square and as file type jpeg. A collection of jpeg files are generated by paraview. Then, run the unix command:

```
ffmpeg -r 2 -i 'square.%04d.jpg' square.mov
```

The animation file square.mov can now be started from any video player, such as vlc:

```
vlc --loop square.mov
```

For the tridimensional case, the animation feature is similar.

7.2 The convection-diffusion problem

Formulation

Let \(T > 0 \) and \(\nu > 0 \). The convection-diffusion problem writes:

\[
(P): \text{find } \phi, \text{ defined in } \Omega \times]0,T[, \text{ such that }
\]

\[
\frac{\partial \phi}{\partial t} + \mathbf{u} \nabla \phi - \nu \Delta \phi + \sigma \phi = 0 \quad \text{in } \Omega \times]0,T[\\
\phi(0) = \phi_0 \quad \text{in } \Omega \\
\phi(t) = \phi_T(t) \quad \text{on } \partial \Omega \times]0,T[
\]

where \(\mathbf{u}, \sigma \geq 0, \phi_0 \text{ and } \phi_T \) being known. Notice the additional \(\mathbf{u} \nabla \) operator.

\(^1\)At this time, the avi output feature is broken in paraview, and an alternate mpeg output is here suggested.
Time approximation

This problem is approximated by the following first-order implicit Euler scheme:

\[
\frac{\phi^{n+1} - \phi^n \circ X^n}{\Delta t} - \nu \Delta \phi^{n+1} = 0 \quad \text{in } \Omega
\]

where \(\Delta t > 0 \), \(\phi^n \approx \phi(n\Delta t) \) and \(\phi^{(0)} = \phi_0 \).

Let \(t_n = n\Delta t, \ n \geq 0 \). The term \(X^n(x) \) is the position at \(t_n \) of the particle that is in \(x \) at \(t_{n+1} \) and is transported by \(u^n \). Thus, \(X^n(x) = X(t_n, x) \) where \(X(t, x) \) is the solution of the differential equation

\[
\begin{align*}
\frac{dX}{dt} &= u(X(t, x), t) \quad p.p. \ t \in [t_n, t_{n+1}], \\
X(t_{n+1}, x) &= x.
\end{align*}
\]

Then \(X^n(x) \) is approximated by the first-order Euler approximation

\[
X^n(x) \approx x - \Delta t n^n(x).
\]

This algorithm has been introduced by O. Pironneau (see e.g. [35]), and is known as the method of characteristic in the finite difference context and as the Lagrange-Galerkin in the finite element one. The efficient evaluation of \(\phi_n \circ X^n(x) \) in an unstructured mesh involves a hierarchical \(d \)-tree (quadtree, octree) data structure for the localization of the element \(K \) of the mesh that contains \(x \). When \(d = 3 \) requires also sophisticated geometric predicates to test whether \(x \in K \) without rounding errors, and avoid to conclude that no elements contains a point \(x \) close to \(\partial K \) up to rounding errors. This problems is addressed in Rheolef based on the cgal library.

The following code implements the classical rotating Gaussian hill test case (see e.g. [40]).
File ‘convect.cc’

```cpp
// mkgeo_grid -e 20 -a -2 -b 2 > line2.geo
// ./convect-P2 line2 P1 1e-2 100 > line2-P1.branch
// ./convect_error < line2-P1.branch > line2-P1-cmp.branch
# include "rheolef.h"
using namespace rheolef;
using namespace std;
# include "rotating-hill.h"

int main (int argc, char **argv) {
  environment rheolef (argc, argv);
  geo omega (argv[1]);
  string approx = (argc > 2) ? argv[2] : "P1";
  Float nu = (argc > 3) ? atof(argv[3]) : 1e-2;
  size_t n_max = (argc > 4) ? atoi(argv[4]) : 50;
  size_t d = omega.dimension();
  Float delta_t = 2*acos(-1.)/n_max;
  space Vh (omega, approx, " vector ");
  field uh = interpolate (Vh , u(d ));
  space Xh (omega, approx);
  Xh.block (" boundary ");
  field phi_h = interpolate (Xh , phi(d,nu,0));
  characteristic X (-delta_t*uh);
  quadrature_option_type qopt;
  qopt.set_family ( quadrature_option_type::gauss_lobatto );
  qopt.set_order (Xh.degree());
  form m (Xh , Xh , " lumped_mass ");
  form a (Xh , Xh , " grad_grad ");
  branch event ("t"," phi ");
  dout << catchmark("nu") << nu << endl
      << event (0 , phi_h );
  for (size_t n = 1; n <= n_max ; n++) {
    Float t = n*delta_t ;
    field lh = riesz(Xh , compose (phi_h , X ));
    form c = (1 + delta_t*phi::sigma(d,nu,t))*m + delta_t*nu*a;
    solver sc (c.uu());
    phi_h.set_u () = sc.solve (lh.u() - c.ub()*phi_h.b());
    dout << event (t, phi_h );
  }
}
```

Comments

The characteristic variable X implements the localizer $X^n(x)$:

```
characteristic X (-delta_t*uh);
```

Combined with the compose function, it perform the composition $\phi_h \circ X^n$. The right-hand side is then computed as usual by using the riesz function:

```
field lh = riesz(Xh , compose (phih , X ));
```

Notice also the use of the lumped mass matrix:

```
form m (Xh , Xh , " lumped_mass ");
```

The lumped procedure leads to profitable spectral properties of the mass matrix that are profitable to the stability of the method. As test case is described in [36]: we take $\Omega = [-2,2]^d$ and $T = 2\pi$. This problem provides an example for a convection-diffusion equation and a known analytical solution:

$$
\phi(t,x) = \exp \left(-\lambda t - r(t)|x - x_0(t)|^2 \right)
$$

where $\lambda = 4\nu t_0 \geq 0$ with $t_0 > 0$ and $\nu \geq 0$, $x_0(t)$ is the moving center of the hill and $r(t) = 1/(t_0 + 4\nu t)$. The source term is time-dependent: $\sigma(t) = \lambda - 2d\nu r(t)$ and has been adjusted such
that the right-hand side is zero. The moving center of the hill $x_0(t)$ is associated to the velocity field $u(t,x)$ as:

$$
\begin{array}{ccc}
 d & u(t,x) & x_0(t) \\
 1 & 1/(2\pi) & t/(2\pi) - 1/2 \\
 2 & (y,-x) & (-\cos(t)/2, \sin(t)/2) \\
 3 & (y,-x,0) & (-\cos(t)/2, \sin(t)/2, 0) \\
\end{array}
$$

File ‘rotating-hill.h’

```c
struct u : std::unary_function<point, point> {
  point operator() (const point & x) {
    return (d == 1) ? point(u0) : point(x[1], -x[0]); }
  u (size_t d1) : d(d1), u0 (0.5/acos(Float(-1))) {}}
protected: size_t d; Float u0;
};
struct phi : std::unary_function<point, Float> {
  static Float sigma (size_t d, Float nu1, Float t) {
    const Float t0 = 0.2;
    return 4*nu1/t0 - 2*d*nu1/(t0 + 4*nu1*t); }
  Float operator() (const point & x) {
    point x0t;
    if (d == 1) { x0t = point(x0[0] + u0*t); }
    else { x0t = point( x0[0]*cos(t) + x0[1]*sin(t),
                      -x0[0]*sin(t) + x0[1]*cos(t)); }
    return exp(-4*nu*(t/t0) - dist2(x,x0t)/(t0+4*nu1*t)); }
  phi (size_t d1, Float nu1, Float t1) : d(d1), nu(nu1), t(t1),
    t0(0.2), u0 (0.5/acos(Float(-1))), x0(-0.5,0) {}
protected: size_t d; Float nu, t, t0, u0; point x0;
};
```

Notice the use of a class-function phi for the implementation of $\phi(t)$ as a function of x. Such programming style has been introduced in the standard template library [30], which is a part of the standard C++ library. By this way, for a given t, $\phi(t)$ can be interpolated as an usual function on a mesh.

How to run the program

We assume that the previous code is contained in the file ‘convect.cc’. Then, compile the program as usual (see page 14):

```
make convect
```

and enter the commands: Running the one-dimensional test case:

```
mkgeo_grid -e 500 -a -2 -b 2 > line2.geo
./convect line2.geo P1 > line2.branch
branch line2.branch -gnuplot
```

Notice the hill that moves from $x = -1/2$ to $x = 1/2$. Since the exact solution is known, it is possible to analyze the error:
Figure 7.2: Animation of the solution of the rotating hill problem.

File ‘convect_error.cc’

#include "rheolef.h"
#include "rotating-hill.h"
int main (int argc, char **argv) {
 environment rheolef (argc,argv);
 Float nu;
 din >> catchmark("nu") >> nu;
 branch get("t","phi");
 branch put("t","phi_h","pi_h_phi");
 derr << "# t	terror_l2	terror_linf" << endl;
 field phi_h;
 Float err_l2_l2 = 0;
 Float err_linf_linf = 0;
 for (Float t = 0, t_prec = 0; din >> get(t, phi_h); t_prec = t) {
 const space & Xh = phi_h . get_space ();
 size_t d = Xh . get_geo () . dimension ();
 field pi_h_phi = interpolate (Xh, phi(d,nu,t));
 form m (Xh, Xh, "mass");
 field eh = phi_h - pi_h_phi;
 Float err_l2 = sqrt(m(eh,eh));
 Float err_linf = eh . max_abs ();
 err_l2_l2 += sqr (err_l2) * (t - t_prec);
 err_linf_linf = max (err_linf_linf, err_linf);
 dout << put (t, phi_h, pi_h_phi);
 derr << t << "t" << err_l2 << "\t" << err_linf << endl;
 }
 derr << "# error_l2_l2 = " << sqrt (err_l2_l2) << endl;
 derr << "# error_linf_linf = " << err_linf_linf << endl;
}
The numerical error $\phi_h - \pi_h(\phi)$ is computed as:

```plaintext
field eh = phih - interpolate (Xh, phi(t));
```

and its L^2 norm is printed on the standard error. Observe the use of the `branch` class as both input and output field stream.

```plaintext
make convect_error
./convect_error < line2.branch > line2-cmp.branch
branch line2-cmp.branch -gnuplot
```

The instantaneous $L^2(\Omega)$ norm is printed at each time step and the total error in $L^2(0,T;L^2(\Omega))$ is finally printed at the end of the stream.

![Figure 7.3: Diffusion-convection when $d = 1$ and $\nu = 10^{-2}$: convergence versus h and Δt for P_1 and P_2 elements: (left) in $L^2(L^2)$ norm; (right) in $L^\infty(L^\infty)$ norm.](image)

A P_2 approximation can be used as well:

```plaintext
./convect line2.geo P2 > line2.branch
branch line2.branch -gnuplot
./convect_error < line2.branch > line2-cmp.branch
```

On Fig. 7.3.left we observe the $L^2(L^2)$ convergence versus h for the P_1 and P_2 elements when $d = 1$: the errors reaches a plateau that decreases versus Δt. On Fig. 7.3.right the $L^\infty(L^\infty)$ norm of the error presents a similar behavior. Since the plateau are equispaced, the convergence versus Δt is of first order.

These computation was performed for a convection-diffusion problem with $\nu = 10^{-2}$. The pure transport problem ($\nu = 0$, without diffusion) computation is obtained by:

```plaintext
./convect line2.geo P1 0 > line2.branch
branch line2.branch -gnuplot
```

Let us turn to the two-dimensional test case:
The visualization and animation are similar to those of the head problem previously presented in paragraph 7.1. Observe the rotating hill. The result is shown on Fig. 7.2. The error analysis writes:

```
./convect_error < square2.geo > square2-cmp.branch
branch square2-cmp.branch -paraview
```

From the paraview menu, you can visualize simultaneously both the approximate solution and the Lagrange interpolate of the exact one. Finally, the three-dimensional case:

```
mkgeo_grid -T 15 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube2.geo
./convect cube2.geo P1 > cube2.branch
```

The visualization is similar to the two-dimensional case.

7.3 The Navier-Stokes problem

Formulation

This longer example combines most functionalities presented in the previous examples.

Let us consider the Navier-Stokes problem for the driven cavity in $\Omega = [0, 1]^d$, $d = 2, 3$. Let $Re > 0$ be the Reynolds number, and $T > 0$ a final time. The problem writes:

\[
\begin{align*}
Re \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \nabla \mathbf{u} \right) - \nabla (2D(\mathbf{u})) + \nabla p &= 0 \quad \text{in } \Omega \times [0, T], \\
- \text{div} \mathbf{u} &= 0 \quad \text{in } \Omega \times [0, T], \\
\mathbf{u}(t=0) &= 0 \quad \text{in } \Omega \times \{0, T\}, \\
\mathbf{u} &= (1, 0) \quad \text{on } \Gamma_{\text{top}} \times [0, T], \\
\mathbf{u} &= 0 \quad \text{on } (\Gamma_{\text{left}} \cup \Gamma_{\text{right}} \cup \Gamma_{\text{bottom}}) \times [0, T], \\
\frac{\partial u_0}{\partial n} = \frac{\partial u_1}{\partial n} &= u_2 = 0 \quad \text{on } (\Gamma_{\text{back}} \cup \Gamma_{\text{front}}) \times [0, T] \quad \text{when } d = 3,
\end{align*}
\]

where $D(\mathbf{u}) = (\nabla \mathbf{u} + \nabla \mathbf{u}^T)/2$. This nonlinear problem is the natural extension of the linear Stokes problem, as presented in paragraph 7.3, page 86. The boundaries are represented on Fig. 5.1, page 46.

Time approximation

Let $\Delta t > 0$. Let us consider the following backward second order scheme, for all $\phi \in C^2([0, T])$:

\[
\frac{d\phi}{dt}(t) = \frac{3\phi(t) - 4\phi(t - \Delta t) + \phi(t - 2\Delta t)}{2\Delta t} + O(\Delta t^2)
\]
The problem is approximated by the following second-order implicit Euler scheme:

\[
\frac{3u^{n+1} - 4u^n \circ X^n + u^{n-1} \circ X^{n-1}}{2\Delta t} - \text{div}(2D(u^{n+1})) + \nabla p^{n+1} = 0 \quad \text{in } \Omega,
\]

\[
\frac{u^{n+1} - u^n}{\Delta t} = \frac{u^{n+1} - u^n}{2\Delta t} + u^n - u^{n-1} \circ X^n \quad \text{on } \Gamma_{\text{top}},
\]

\[
\frac{\partial u^{n+1}}{\partial n} = \frac{\partial u^{n+1}}{\partial n} = u_2^{n+1} = 0 \quad \text{on } \Gamma_{\text{back}} \cup \Gamma_{\text{front}} \quad \text{when } d = 3,
\]

where, following [7,15]:

\[
X^n(x) = x - \Delta t u^*(x)
\]

\[
X^{n-1}(x) = x - 2\Delta t u^*(x)
\]

\[
u^* = 2u^n - u^{n-1}
\]

It is a second order extension of the method previously introduced in paragraph 7.2 page 81. The scheme defines a second order recurrence for the sequence \((u^n)_{n \geq -1}\), that starts with \(u^{-1} = u^0 = 0\).

Variational formulation

The variational formulation of this problem expresses:

\[
(\text{NS})_{\Delta t}: \quad \text{find } u^{n+1} \in V(1) \text{ and } p^{n+1} \in L^2_0(\Omega) \text{ such that:}
\]

\[
a(u^{n+1}, v) + b(v, p^{n+1}) = m(f^n, v), \quad \forall v \in V(0),
\]

\[
b(u^{n+1}, q) = 0, \quad \forall q \in L^2_0(\Omega),
\]

where

\[
f^n = \frac{Re}{2\Delta t} \left(4u^n \circ X^n - u^{n-1} \circ X^n\right)
\]

and \(b(., .)\) and \(V(\alpha)\) was already introduced in paragraph 5.4, page 56, while studying the Stokes problem.

Space approximation

The Taylor-Hood [22] finite element approximation of this generalized Stokes problem was also considered in paragraph 5.4, page 56. We introduce a mesh \(T_h\) of \(\Omega\) and the finite dimensional spaces \(X_h, V_h(\alpha)\) and \(Q_h\). The approximate problem writes:

\[
(\text{NS})_{\Delta t, h}: \quad \text{find } u^{n+1}_h \in V_h(1) \text{ and } p^{n+1}_h \in Q_h \text{ such that:}
\]

\[
a(u^{n+1}_h, v) + b(v, p^{n+1}_h) = m(f^n_h, v), \quad \forall v \in V_h(0),
\]

\[
b(u^{n+1}_h, q) = 0, \quad \forall q \in Q_h.
\]

where

\[
f^n_h = \frac{Re}{2\Delta t} \left(4u^n_h \circ X^n - u^{n-1}_h \circ X^n\right)
\]

The problem reduces to a sequence resolution of a generalized Stokes problems.
File ‘navier_stokes_solve.icc’

```cpp
using namespace std;

int navier_stokes_solve (Float Re, Float delta_t, field l0h, field & uh, field & ph,
size_t & max_iter, Float & tol, ostringstream * p_derr=0) {
    const space & Xh = uh.get_space();
    const space & Qh = ph.get_space();
    string label = "navier-stokes-" + Xh.get_geo().name();
    quadrature_option_type qopt;
    qopt.set_family(quadrature_option_type::gauss_lobatto);
    qopt.set_order(Xh.degree());
    form m(Xh, Xh, "mass", qopt);
    form a(Xh, Xh, "2D_D");
    form mp(Qh, Qh, "mass");
    a = a + 1.5*(Re/delta_t)*m;
    solver sa(a.uu());
    form b(Xh, Qh, "div"); b = -b;
    solver_abtb stokes(a.uu(), b.uu(), mp.uu());
    field uh1 = uh;
    for (size_t n = 0; true; n++) {
        field uh2 = uh1;
        uh1 = uh;
        field uh_star = 2.0*uh1 - uh2;
        characteristic X1 (-delta_t*uh_star);
        characteristic X2 (-2.0*delta_t*uh_star);
        field l1h = riesz(Xh, compose(uh1, X1), qopt);
        field l2h = riesz(Xh, compose(uh2, X2), qopt);
        field lh = l0h + (Re/delta_t)*(2*l1h - 0.5*l2h);
        stokes.solve(lh.u() - a.ub()*uh.b(), -(b.ub()*uh.b()),
                     uh.set_u(), ph.set_u());
        field duh_dt = (3*uh - 4*uh1 + uh2)/(2*delta_t);
        Float residual = sqrt(m(duh_dt, duh_dt));
        if (p_derr != 0) * p_derr << "[" << label << "] #n |du/dt|" << endl;
        field uh1 = uh;
        for (size_t n = 0; true; n++) {
            field uh2 = uh1;
            uh1 = uh;
            field uh_star = 2.0*uh1 - uh2;
            characteristic X1 (-delta_t*uh_star);
            characteristic X2 (-2.0*delta_t*uh_star);
            field l1h = riesz(Xh, compose(uh1, X1), qopt);
            field l2h = riesz(Xh, compose(uh2, X2), qopt);
            field lh = l0h + (Re/delta_t)*(2*l1h - 0.5*l2h);
            stokes.solve(lh.u() - a.ub()*uh.b(), -(b.ub()*uh.b()),
                         uh.set_u(), ph.set_u());
            field duh_dt = (3*uh - 4*uh1 + uh2)/(2*delta_t);
            Float residual = sqrt(m(duh_dt, duh_dt));
            if (p_derr != 0) * p_derr << "[" << label << "] " << n << " " << residual << endl;
            if (residual < tol) {
                tol = residual;
                max_iter = n;
                return 0;
            }
            if (n == max_iter-1) {
                tol = residual;
                return 1;
            }
        }
    }
}
```

Comments

The `navier_stokes_solve` function is similar to the ‘stokes_cavity.cc’. It solves here a generalized Stokes problem and manages a right-hand side f_h:

```cpp
characteristic X1 (-delta_t*uh_star);
characteristic X2 (-2.0*delta_t*uh_star);
field l1h = riesz(Xh, compose(uh1, X1), qopt);
field l2h = riesz(Xh, compose(uh2, X2), qopt);
field lh = l0h + (Re/delta_t)*(2*l1h - 0.5*l2h);
```

This last computation is similar to those done in the ‘convect.cc’ example. The generalized Stokes problem is solved by the `solver_abtb` class. The stopping criterion is related to the stationary solution or the maximal iteration number.
Rheolef version 6.1 update 15 May 2012

File ‘navier_stokes_cavity.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "navier_stokes_solve.icc"
#include "navier_stokes_criterion.icc"
#include "cavity.icc"
int main (int argc, char**argv) {
  environment rheolef (argc, argv);
  if (argc < 2) {
    cerr << "usage: " << argv[0] << " <geo> <Re> <err> <hmin> <delta t> <n_adapt>" << endl;
    exit (1);
  }
  geo omega (argv[1]);
  adapt_option_type options;
  Float Re = (argc > 2) ? atof(argv[2]) : 100;
  options.err = (argc > 3) ? atof(argv[3]) : 1e-2;
  size_t n_adapt = (argc > 4) ? atoi(argv[4]) : 5;
  Float delta_t = 0.05;
  options.hmin = 0.004;
  options.hmax = 0.1;
  space Xh = cavity_space (omega, "P2");
  space Qh (omega, "P1");
  field uh = cavity_field (Xh, 1.0);
  field ph (Qh, 0);
  field fh (Xh, 0);
  for (size_t i = 0; true; i++) {
    size_t max_iter = 1000;
    Float tol = 1e-5;
    navier_stokes_solve (Re, delta_t, fh, uh, ph, max_iter, tol, &derr);
    odiststream o (omega.name(), " field");
    o << catchmark("Re") << Re << endl
      << catchmark(" delta_t") << delta_t << endl
      << catchmark("u") << uh
      << catchmark("p") << ph;
    o.close();
    if (i >= n_adapt) break;
    field ch = navier_stokes_criterion (Re, uh);
    omega = adapt (ch, options);
    o.open (omega.name(), "geo");
    o << omega;
    o.close();
    Xh = cavity_space (omega, "P2");
    Qh = space (omega, "P1");
    uh = cavity_field (Xh, 1.0);
    ph = field (Qh, 0);
    fh = field (Xh, 0);
  }
}
```

File ‘navier_stokes_criterion.icc’

```cpp
field navier_stokes_criterion (Float Re, const field& uh) {  
space Xh (uh.get_geo(), "P1d", "vector");
  form mpt (uh.get_space (), Xh, "mass");
  form inv_m (Xh, Xh, "inv_mass");
  field c1 = norm2(inv_m*(mpt*uh));
  space Th (uh.get_geo(), "P1d", "tensor");
  form two_D (uh.get_space (), Th, "2D");
  form inv_mt (Th, Th, "inv_mass");
  field two_Duh = inv_mt*(two_D*uh);
  field c2 = norm2(two_Duh);
  return sqrt(Re*c1 + c2);
}
```
The code performs a computation by using adaptive mesh refinement, in order to capture recirculation zones. The `adapt_option_type` declaration is used by `rheolef` to send options to the mesh generator. The code reuse the file `cavity.icc` introduced page 57. This file contains two functions that defines boundary conditions associated to the cavity driven problem.

The `criteria` function computes the adaptive mesh refinement criteria:

\[c_h = (Re|u_h|^2 + 2|D(u_h)|^2)^{1/2} \]

The `criteria` function is similar to those presented in the `embankment-adapt-2d.cc` example.
How to run the program

$Re = 100$: 4804 elements, 2552 vertices

$\psi_{\text{max}} = 9.5 \times 10^{-6}, \psi_{\text{min}} = -0.103$

$Re = 400$: 5233 elements, 2768 vertices

$\psi_{\text{max}} = 6.4 \times 10^{-4}, \psi_{\text{min}} = -0.111$

Figure 7.4: Meshes and stream functions associated to the solution of the Navier-Stokes equations for $Re = 100$ (top) and $Re = 400$ (bottom).
\[Re = 1000: \text{5873 elements, 3106 vertices} \]

\[\psi_{\text{max}} = 1.64 \times 10^{-3}, \psi_{\text{min}} = -0.117 \]

Figure 7.5: Meshes and stream functions associated to the solution of the Navier-Stokes equations for \(Re = 1000 \).

The mesh loop adaptation is initiated from a \texttt{bamg} mesh (see also appendix B.1).

\begin{verbatim}
bamg -g square.bamg -o square.bamg
bamg2geo square.bamg square.dmn > square.geo
\end{verbatim}

Then, compile and run the Navier-Stokes solver for the driven cavity for \(Re = 100 \):

\begin{verbatim}
make navier_stokes_cavity
./navier_stokes_cavity square.geo 100
\end{verbatim}

The program performs a computation with \(Re = 100 \). By default the time step is \(\Delta t = 0.05 \) and the computation loops for five mesh adaptations. At each time step, the program prints an approximation of the time derivative, and stops when a stationary solution is reached. Then, we visualize the ‘square-5’ adapted mesh and its associated solution:

\begin{verbatim}
geo square-5.geo
field square-5.field.gz -velocity -scale 4 -mayavi
\end{verbatim}

Notice the \texttt{-scale} option that applies a multiplicative factor to the arrow length when plotting. The representation of the stream function writes:

\begin{verbatim}
make streamf_cavity
zcat square-5.field.gz | ./streamf_cavity | field -bw -n-iso-negative 10 -
\end{verbatim}

The programs \texttt{streamf_cavity}, already introduced page 62, is here reused. The last options of the \texttt{field} program draws isocontours of the stream function using lines, as shown on Fig. 7.4. The zero isovalue separates the main flow from recirculations, located in corners at the bottom of the cavity.

For \(Re = 400 \) and 1000 the computation writes:
Figure 7.6: Navier-Stokes: velocity profiles along lines passing thought the center of the cavity, compared with data from [18]: (a) u_0 along the vertical line; (b) u_1 along the horizontal line.

The visualization of the cut of the horizontal velocity along the vertical median line writes:

```
field square-5.field.gz -comp 0 -cut -normal -1 0 -origin 0.5 0
field square-5.field.gz -comp 1 -cut -normal 0 1 -origin 0 0.5
```

Fig. 7.6 compare the cuts with data from [18], table 1 and 2 (see also [20]). Observe that the solution is in good agreement with these previous computations.

<table>
<thead>
<tr>
<th>Re</th>
<th>x_c</th>
<th>y_c</th>
<th>$-\psi_{\text{min}}$</th>
<th>ψ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>present</td>
<td>0.613</td>
<td>0.738</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td>Labeur and Wells [26]</td>
<td>0.608</td>
<td>0.737</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>Donea and Huerta [13]</td>
<td>0.62</td>
<td>0.74</td>
<td>0.103</td>
</tr>
<tr>
<td>400</td>
<td>present</td>
<td>0.554</td>
<td>0.607</td>
<td>0.111</td>
</tr>
<tr>
<td></td>
<td>Labeur and Wells [26]</td>
<td>0.557</td>
<td>0.611</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>Donea and Huerta [13]</td>
<td>0.568</td>
<td>0.606</td>
<td>0.110</td>
</tr>
<tr>
<td>1000</td>
<td>present</td>
<td>0.532</td>
<td>0.569</td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td>Labeur and Wells [26]</td>
<td>0.524</td>
<td>0.560</td>
<td>0.121</td>
</tr>
<tr>
<td></td>
<td>Donea and Huerta [13]</td>
<td>0.540</td>
<td>0.573</td>
<td>0.110</td>
</tr>
</tbody>
</table>

Figure 7.7: Cavity flow: primary vortex position and stream function value.

Finally, table 7.7 compares the primary vortex position and its associated stream function value. Notice also the good agreement with previous simulations. The stream function extremal values are obtained by:
zcat square-5.field.gz | ./streamf_cavity | field -min -
zcat square-5.field.gz | ./streamf_cavity | field -max -

The maximal value has not yet been communicated to our knowledge and is provided in table 7.7 for cross validation purpose. The small program that computes the primary vortex position is showed below.

make vortex_position
zcat square-5.field.gz | ./streamf_cavity | ./vortex_position

File ‘vortex_position.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
int main (int argc, char** argv) {
  environment rheolef (argc, argv);
  check_macro (communicator().size() == 1, "please, use sequentially");
  field psi_h;
  din >> psi_h;
  size_t idof_min = 0;
  Float psi_min = std::numeric_limits<Float>::max();
  for (size_t idof = 0, ndof = psi_h.ndof(); idof < ndof; idof++) {
    if (psi_h.dof(idof) >= psi_min) continue;
    psi_min = psi_h.dof(idof);
    idof_min = idof;
  }
  const array<point>& xdof = psi_h.get_space().get_xdofs();
  point xmin = xdof[idof_min];
  dout << "xc\t\tyc\t\t\tps\n" << xmin[0] << "\t" << xmin[1] << "\t" << psi_min << std::endl;
}
```

For higher Reynolds number, Shen [45] showed in 1991 that the flow converges to a stationary state for Reynolds numbers up to 10,000; for Reynolds numbers larger than a critical value 10,000 < \(\text{Re}_1 \) < 10,500 and less than another critical value 15,000 < \(\text{Re}_2 \) < 16,000, these authors founded that the flow becomes periodic in time which indicates a Hopf bifurcation; the flow loses time periodicity for \(\text{Re} \geq \text{Re}_2 \). In 1998, Ould Salihi [33] founded a loss of stationarity between 10,000 and 20,000. In 2002, Auteri et al. [4] estimated the critical value for the apparition of the first instability to \(\text{Re}_1 \approx 8018 \). In 2005, Erturk et al. [14] computed steady driven cavity solutions up to \(\text{Re} \leq 21,000 \). Also in 2005, this result was inirmed by [16]: these authors estimated \(\text{Re}_1 \) close to 8000, in agreement with [4]. The 3D driven cavity has been investigated in [28] by the method of characteristic (see also [27] for 3D driven cavity computations). In conclusion, the exploration of the driven cavity at large Reynolds number is a fundamental challenge in computational fluid dynamics.
Part III

Advanced and highly nonlinear problems
Chapter 8

The highly nonlinear \(p \)-laplacian problem

8.1 Problem statement

Let us consider the classical \(p \)-Laplacian problem with homogeneous Dirichlet boundary conditions in a domain bounded \(\Omega \subset \mathbb{R}^d, d = 1, 2, 3 \):

\[
(P): \text{find } u, \text{ defined in } \Omega \text{ such that:}

- \text{div } (|\nabla u|^{p-2} \nabla u) = f \text{ in } \Omega \\
u = 0 \text{ on } \partial \Omega
\]

where \(f \) is known and \(f = 1 \) in the computational examples. When \(p = 2 \), this problem reduces to the linear Poisson problem with homogeneous Dirichlet boundary conditions. Otherwise, for any \(p > 1 \), the nonlinear problem is equivalent to the following minimization problem:

\[
(MP): \text{find } u \in W^{1,p}_0(\Omega) \text{ such that:}

u = \arg \min_{v \in W^{1,p}_0(\Omega)} \frac{1}{p} \int_{\Omega} |\nabla v|^p \, dx - \int_{\Omega} f v \, dx,
\]

where \(W^{1,p}_0(\Omega) \) denotes the usual Sobolev spaces of functions in \(W^{1,p}(\Omega) \) that vanishes on the boundary \[8, \text{p. 118}\]. The variational formulation of this problem expresses:

\[
(VF): \text{find } u \in W^{1,p}_0(\Omega) \text{ such that:}

a(u; u, v) = m(f, v), \forall v \in W^{1,p}_0(\Omega)
\]

where \(a(\cdot, \cdot) \) and \(m(\cdot, \cdot) \) are defined for any \(u_0, u, v \in W^{1,p}(\Omega) \) by

\[
a(u_0; u, v) = \int_{\Omega} |\nabla u_0|^{p-2} \nabla u_0 \cdot \nabla v \, dx, \quad \forall u, v \in W^{1,p}_0(\Omega)
\]

\[
m(u,v) = \int_{\Omega} u v \, dx, \quad \forall u, v \in L^2(\Omega)
\]

The \(m(\cdot, \cdot) \) is here the classical scalar product on \(L^2(\Omega) \), and is related to the mass form. The quantity \(a(u; u, u) = \| \nabla u \|_{p, \Omega} \) induces a norm in \(W^{1,p}_0 \), equivalent to the standard norm. The form \(a(\cdot, \cdot, \cdot) \) is bilinear with respect to the two last variable and is related to the energy form.
8.2 The fixed-point algorithm

8.2.1 Principle of the algorithm

This nonlinear problem is then reduced to a sequence of linear subproblems by using the fixed-point algorithm. The sequence \((u^{(n)})_{n \geq 0}\) is defined by recurrence as:

- \(n = 0\): let \(u^{(0)} \in W^{1,p}_0(\Omega)\) be known.
- \(n \geq 0\): suppose that \(u^{(n)} \in W^{1,p}_0(\Omega)\) is known and find \(u^{(n+1)} \in W^{1,p}_0(\Omega)\) such that:

\[
a \left(u^{(n)}; u^{(n+1)}, v\right) = m(f, v), \forall v \in W^{1,p}_0(\Omega)
\]

Let \(u^{(n+1)} = G\left(u^{(n)}\right)\) denotes the operator that solve the previous linear subproblem for a given \(u^{(n)}\). Since the solution \(u\) satisfies \(u = G(u)\), it is a fixed-point of \(G\).

Let us introduce a mesh \(T_h\) of \(\Omega\) and the finite dimensional space \(X_h\) of continuous piecewise polynomial functions and \(V_h\), the subspace of \(X_h\) containing elements that vanishes on the boundary of \(\Omega\):

\[
X_h = \{ v_h \in C_0^0(\overline{\Omega}); v_{h/K} \in P_k, \forall K \in T_h \}
\]

\[
V_h = \{ v_h \in X_h; v_h = 0 \text{ on } \partial \Omega \}
\]

where \(k = 1\) or \(2\). The approximate problem expresses: suppose that \(u_h^{(n)} \in V_h\) is known and find \(u_h^{(n+1)} \in V_h\) such that:

\[
a \left(u_h^{(n)}; u_h^{(n+1)}, v_h\right) = m(f, v_h), \forall v_h \in V_h
\]

By developing \(v_h\) on a basis of \(V_h\), this problem reduces to a linear system. The implementation with \texttt{Rheolef}, involving weighted forms, is quite standard: the weight field \(w_h\) is inserted as the last argument to the form constructor. The following code implement this problem in the \texttt{Rheolef} environment.
8.2.2 File ‘p_laplacian_fixed_point.h’

```cpp
#include "not_too_small.h"

int p_laplacian_fixed_point (Float p, field lh, field& uh, Float& r, size_t& n)
{
  Float tol = r;
  Float r0 = 0;
  size_t max_iter = n;
  const geo& omega = uh.get_geo();
  const space& Xh = uh.get_space();
  string grad_approx = "P" + itos(Xh.degree()-1) + "d";
  space Th (omega, grad_approx, "vector");
  form inv_mt (Th, Th, "inv_mass");
  form grad (Xh, Th, "grad");
  derr << "# Fixed-point algorithm" << endl
      << "# p = " << p << endl
      << "# n r v" << endl;
  n = 0;
  do {
    field grad_uh = inv_mt*(grad*uh);
    field nh = norm2(grad_uh);
    field wh = pow(nh, p/2-1);
    form a (Xh, Xh, "grad_grad", wh);
    field mrh = a*uh - lh;
    r = mrh.u().max_abs();
    if (n == 0) r0 = r;
    Float v = (n == 0) ? 0 : log10(r0/r)/n;
    if (r <= tol || n++ >= max_iter ) break;
    solver sa(a.uu());
    uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
  } while (true);
  return (r <= tol ) ? 0 : 1;
}
```

8.2.3 File ‘p_laplacian_fixed_point.cc’

```cpp
#include "rheolef.h"
#include "p_laplacian_fixed_point.icc"
#include "dirichlet.icc"

int main(int argc, char** argv) {
  environment rheolef (argc,argv);
  geo omega (argc[1]);
  string approx = (argc > 2) ? argv[2] : "P1";
  Float p = (argc > 3) ? atof(argv[3]) : 1.5;
  Float tol = (argc > 4) ? atof(argv[4]) : 1e-10;
  size_t max_iter = 500;
  derr << "# P-Laplace problem by fixed-point:" << endl
       << "# geo = " << omega.name() << endl
       << "# approx = " << approx << endl
       << "# p = " << p << endl;
  space Xh (omega, approx);
  Xh.block ("boundary");
  field uh (Xh);
  uh ["boundary"] = 0;
  field lh = riesz (Xh, 1);
  dirichlet (lh, uh);
  int status = p_laplacian_fixed_point (p, lh, uh, tol, max_iter);
  dout << catchmark("p") << p << endl
       << catchmark("u") << uh;
  return status;
}
```
8.2.4 File ‘dirichlet.icc’

```c
void dirichlet (field lh, field & uh) {
    const space & Xh = uh.get_space ();
    form a (Xh, Xh, "grad_grad");
    solver sa(a.uu());
    uh.set_u() = sa.solve (lh.u() - a.u*b());
}
```

8.2.5 Comments

The fixed-point algorithm is initiated with \(u^{(0)}\) as the solution of the linear problem associated to \(p = 2\), i.e. the standard Poisson problem with Dirichlet boundary conditions. The construction of the weighted form \(a(\cdot,\cdot,\cdot)\) writes:

```c
field eta_h = pow (sqr (grad_uh[0]) + sqr (grad_uh[1]), p/2. -1);
form a (Vh, Vh, "grad_grad", eta_h);
```

8.2.6 Running the program

We assume that the previous code is contained in the file ‘p_laplacian_fixed_point.cc’. Compile the program, as usual:

```
make p_laplacian_fixed_point
```

and enter the commands:

```
mkgeo_grid -t 10 > square.geo
geo square.geo
```

The triangular mesh has a boundary domain named boundary.

```
./p_laplacian_fixed_point square.geo P1 1.2 > square.field
```

The previous command solves the problem for the corresponding mesh and writes the solution in the file format ‘.field’.

Figure 8.1: The \(p\)-Laplacian for \(d = 2\): (a) elevation view for \(p = 1.2\); (b) cut along the first bisector \(x_0 - x_1 = 0\).
Run the field visualization:

```plaintext
field square.field -elevation
field square.field -cut -origin 0.5 0.5 -normal 1 1
```

The first command shows an elevation view of the solution (see 8.1.a) while the second one shows a cut along the first bisector \(x_0 = x_1 \). (see 8.1.b).

8.2.7 Convergence properties of the fixed-point algorithm

![Graphs showing convergence properties](image)

Figure 8.2: The fixed-point algorithm on the \(p \)-Laplacian for \(d = 2 \): (a) convergence when \(p < 2 \); (b) when \(p > 2 \); (c) convergence rate versus \(p \); (d) convergence rate versus \(p \) in semi-log scale.

The fixed-point algorithm prints also at each iteration \(n \), the residual term \(r_n \) in discrete \(H^{-1}(\Omega) \) and the convergence rate \(v_n = \log_{10}(r_n/r_0)/n \). The residual term is defined by

\[
 r_n^{(h)} = A_h \left(u^{(n)} \right) - M_h f_h
\]

where \(A_h \) and \(M_h \) are the discrete operators induced by the forms \(a(\cdot, \cdot) \) and \(m(\cdot, \cdot) \) on \(V_h \), and defined for all \(u_h, v_h \in V_h \) by:

\[
 A_h(u_h) v_h^T = a(u_h; u_h, v_h) \\
 (M_h u_h) v_h^T = m(u_h, v_h)
\]
where the elements of V_h are identified to elements of $\mathbb{R}^{\dim(V_h)}$. The $W^{-1,p}(\Omega)$ norm, defined for all $r \in W^{-1,p}(\Omega)$ by duality:

$$\|r\|_{-1,p,\Omega} = \sup_{v \in W^{1,p}(\Omega)} m(r, v)$$

By analogy, the discrete $W^{-1,p}(\Omega)$ norm, denoted as $\|\cdot\|_{-1,h}$, is defined by duality for all $r_h \in V_h$ by:

$$\|r_h\|_{-1,h} = \sup_{v_h \in V_h} m(r_h, v_h) = \sup_{x \in \text{xdof}(V_h)} |r_h(x)|$$

where $\text{xdof}(V_h)$ denotes the set of nodes associated to the V_h degrees of freedom. Since elements of V_h vanish on the boundary, the $\text{xdof}(V_h)$ contains all nodes associated to the degrees of freedoms of X_h except nodes located on the boundary. Fig 8.2.a and 8.2.b show that the residual term decreases exponentially versus n, since the slope of the plot in semi-log scale tends to be straight.

Thus, the convergence rate \(v\) is defined as:

$$v_n = \log_{10}(r_n/r_0)/n$$

and then compute explicitly:

$$u^{(n+1)} = u^{(n)} + \delta u^{(n)}$$

The notation $F'(u)$ stands for the Fréchet derivative of F, as an operator from $W^{-1,p}(\Omega)$ into $W^{1,p}(\Omega)$. For any $r \in W^{-1,p}(\Omega)$, the linear tangent problem writes:

$$F'(u) \delta u = -r$$
After the computation of the Fréchet derivative, we obtain the strong form of this problem:

\((\text{LT}): \text{find } \delta u, \text{defined in } \Omega, \text{such that}\)

\[-\text{div}\left(\frac{|\nabla u|^{p-2}}{p} \nabla (\nabla u \cdot \nabla \delta u) + \frac{p}{2} \frac{|\nabla u|^{p-4}}{p} (\nabla u \cdot \nabla (\nabla u \cdot \nabla \delta u)) \right) \nabla u = -r \text{ in } \Omega \]

\[\delta u = 0 \text{ on } \partial \Omega\]

This is a Poisson-like problem with homogeneous Dirichlet boundary conditions and a non-constant tensorial coefficient. The variational form of the linear tangent problem writes:

\((\text{VLT}): \text{find } \delta u \in W^{1,p}_0(\Omega) \text{ such that}\)

\[a_1(u; \delta u, \delta v) = m(r, v), \quad \forall \delta v \in W^{1,p}_0(\Omega)\]

where the \(a_1(u; \cdot, \cdot)\) is defined for any \(u, \delta u, \delta v \in W^{1,p}_0(\Omega)\) by:

\[a_1(u; \delta u, \delta v) = \int_{\Omega} \left(|\nabla u|^{p-2} \nabla \delta v \cdot \nabla u + \frac{p}{2} |\nabla u|^{p-4} \nabla u \cdot \nabla \delta u \nabla \delta v \right) dx\]

For any \(\xi \in \mathbb{R}^d\) let us denote by \(\eta(\xi)\) the following \(d \times d\) matrix:

\[\eta(\xi) = |\xi|^{p-2} I + \frac{p}{2} |\xi|^{p-4} \xi \otimes \xi\]

where \(I\) stands for the \(d\)-order identity matrix. Then the \(a_1\) expresses in a more compact form:

\[a_1(u; \delta u, \delta v) = \int_{\Omega} (\eta(\nabla u) \nabla (\delta u)) \cdot (\nabla (\delta v)) dx\]

Clearly \(a_1\) is linear and symmetric with respect to the two last variables.

8.3.2 File ‘p_laplacian_newton.cc’

```cpp
#include "rheolef.h"
#include "rheolef/newton.h"
using namespace rheolef;
using namespace std;
#include "p_laplacian.h"

int main(int argc, char** argv) {
  environment rheolef(argc, argv);
  geo omega_h (argv[1]);
  string approx = (argc > 2) ? argv[2] : "P1";
  Float p = (argc > 3) ? atof(argv[3]) : 1.5;
  derr << "# P-Laplacian problem by Newton:" << endl
       << " geo = " << omega_h.name() << endl
       << " approx = " << approx << endl
       << " p = " << p << endl;
  p_laplacian F (p, omega_h, approx);
  field uh = F.initial();
  Float tol = 1e6*numeric_limits<Float>::epsilon();
  size_t max_iter = 500;
  int status = newton (F, uh, tol, max_iter, &derr);
  dout << setprecision (numeric_limits<Float>::digits10)
       << catchmark("p") << p << endl
       << catchmark("u") << uh;
  return status;
}
```
8.3.3 File ‘p_laplacian.h’

class p_laplacian {
public:
 typedef field value_type;
 typedef Float float_type;
 p_laplacian(Float p, const geo & omega_h, string approx = "P1");
 void reset(const geo & omega_h, string approx = "previous");
 field initial () const;
 field residue (const field & uh) const;
 void update_derivative (const field & uh) const;
 field derivative_solve (const field & mrh) const;
 field derivative_trans_mult (const field & mrh) const;
 Float norm (const field & uh) const;
 Float dual_norm (const field & Muh) const;
 Float dot (const field & uh, const field & vh) const;
 float criteria(const field & uh) const;
 Float p;
 space Xh, Kh;
 field fh;
 form m, inv_mt, grad;
 solver sm;
 mutable form a1;
 mutable solver sa1;
};
#include "p_laplacian1.icc"
#include "p_laplacian2.icc"
8.3.4 File ‘p_laplacian.icc’

```cpp
#include "dirichlet.icc"
#include "not-too-small.h"
p_laplacian::p_laplacian(Float p1, const geo& omega_h, string approx1)
: p(p1), Xh(), Kh(), fh(),
m(), inv_mt(), grad(), sm(), a1(), sa1() {
  reset(omega_h, approx1);
}
void p_laplacian::reset(const geo& omega_h1, string approx1) {
  if (approx1 == "previous") approx1 = Xh.get_approx();
  Xh = space(omega_h1, approx1);
  Xh.block("boundary");
  fh = field(Xh, 1);
  m = form(Xh, Xh, "mass");
  sm = solver(m.uu());
  string grad_approx = "P" + itos(Xh.degree()-1) + "d";
  space Th(fh.get_geo(), grad_approx, "vector");
  inv_mt = form(Th, Th, "inv_mass");
  grad = form(Xh, Th, "grad");
  Kh = space(fh.get_geo(), grad_approx, "tensor");
}
field p_laplacian::initial() const {
  field uh(Xh);
  uh[Xh.get_geo()["boundary"]] = 0;
  dirichlet(fh, uh);
  return uh;
}
void p_laplacian::update_derivative (const field & uh) const {
  field grad_uh = inv_mt*(grad*uh);
  field norm2_grad_uh = norm2(grad_uh);
  if (p/2 - 4 <= 0) norm2_grad_uh = compose(not-too-small(1e-10), norm2_grad_uh);
  field w0h = pow(norm2_grad_uh, p/2)/norm2_grad_uh;
  field w1h = pow(norm2_grad_uh, p/2)/sqr(norm2_grad_uh);
  field eta_h(Kh);
  eta_h(0,0) = w0h + (p -2)*w1h*sqr(grad_uh[0]);
  size_t d = uh.get_geo().dimension();
  if (d >= 2) {
    eta_h(1,1) = w0h + (p -2)*w1h*sqr(grad_uh[1]);
    eta_h(0,1) = (p -2)*w1h*grad_uh[0]*grad_uh[1];
  }
  if (d == 3) {
    eta_h(2,2) = w0h + (p -2)*w1h*sqr(grad_uh[2]);
    eta_h(1,2) = (p -2)*w1h*grad_uh[1]*grad_uh[2];
    eta_h(0,2) = (p -2)*w1h*grad_uh[0]*grad_uh[2];
  }
  a1 = form(Xh, Xh, "grad_grad", eta_h);
  sa1 = solver(a1.uu());
}
field p_laplacian::residue (const field& uh) const {
  field grad_uh = inv_mt*(grad*uh);
  field norm2_grad_uh = norm2(grad_uh);
  field w0h = pow(norm2_grad_uh, p/2);
  field a (Xh, Xh, "grad_grad", w0h);
  field mrh = a*uh - m*fh;
  mrh.set_b() = 0;
  return mrh;
}
field p_laplacian::derivative_solve (const field & mrh) const {
  field delta_uh (Xh, 0);
  delta_uh.set_b() = 0;
  delta_uh.set_u() = sa1.solve(mrh.u());
  return delta_uh;
}
```
8.3.5 Comments

The code implements a generic Newton algorithm in the file ‘newton.h’. The main program is ‘plaplacian_newton.cc’, that uses a class plaplacian. This class interface is defined in the file ‘plaplacian.h’ and its implementation in ‘plaplacian.icc’ The residual term $F(u_h)$ is computed by the member function residual while the resolution of $F'(u_h)\delta u_h = M_r h$ is performed by the function derivative.solve. The derivative $F'(u_h)$ is computed separately by the function update_derivative. Notice that the $a_1(u;..)$ bilinear form is a tensorial weighted form, where $\eta(\nabla u)$ is the weight tensor. In Rheolef, the tensorial weight field eta_h is inserted as an usual scalar weight, by passing the weight parameter as the last argument to the form constructor. The introduction of the class ‘plaplacian’ allows an easiest implementation of several variants of the Newton algorithm.
8.3.6 Running the program

![Diagram showing the Newton algorithm on the p-laplacian for d=2](image)

Figure 8.3: The Newton algorithm on the p-laplacian for $d = 2$: (a) convergence when $p < 2$; (b) when $p > 2$.

We assume that the previous code is contained in the file ‘p-laplacian-newton.cc’. As usual, enter:

```
make p_laplacian_newton
mkgeo_grid -t 10 > square.geo
./p_laplacian_newton square.geo P1 1.5 | field -mayavi -elevation -
```

The program prints at each iteration n, the residual term r_n in discrete $L^2(\Omega)$ norm. Fig. 8.3.a and. 8.3.b shows that the residual terms tends very fast to zero. Observe that the slope is no more constant in semi-log scale: the convergence rate accelerates and the slope tends to be vertical, the so-called super-linear convergence. This is the major advantage of the Newton method. Also the algorithm converge when $p \geq 3$, until $p \approx 4$. It was not the case with the fixed point algorithm that diverges in that case. Finally, the Newton algorithm diverges for small values of p, e.g. $p < 1.5$. and the plot is not showed here. Conversely, when $p > 4$, the first iterations increases dramatically the residual terms, before to decrease. In that case, another strategy should be considered: the damped Newton algorithm. This is the subject of the next section.

8.4 The damped Newton algorithm

8.4.1 Principle of the algorithm

The Newton algorithm diverges when the initial $u^{(0)}$ is too far from a solution. Our aim is to modify the Newton algorithm and to obtain a globally convergent algorithm, i.e to converge to a solution for any initial $u^{(0)}$. The basic idea is to decrease the step length while maintaining the direction of the original Newton algorithm:

$$u^{(n+1)} := u^{(n)} + \lambda_n \delta u^{(n)}$$

where $\lambda^{(n)} \in [0, 1]$ and $\delta u^{(n)}$ is the direction from the Newton algorithm, given by:

$$F' \left(u^{(n)} \right) \delta u^{(n)} = -F \left(u^{(n)} \right)$$

Let V a Banach space and let $T : V \to \mathbb{R}$ defined for any $v \in V$ by:

$$T(v) = \frac{1}{2} \| C^{-1} F(v) \|_V^2,$$
where C is some non-singular operator, easy to invert, used as a non-linear preconditioner. The simplest case, without preconditioner, is $C = I$. The T function furnishes a measure of the residual term in L^2 norm. The convergence is global when for any initial $u^{(0)}$, we have for any $n \geq 0$:

$$
T\left(u^{(n+1)}\right) \leq T\left(u^{(n)}\right) + \alpha \left\langle T'\left(u^{(n)}\right), u^{(n+1)} - u^{(n)}\right\rangle_{V',V} \tag{8.1}
$$

where $\langle \cdot, \cdot \rangle_{V',V}$ is the duality product between V and its dual V', and $\alpha \in [0, 1]$ is a small parameter. Notice that

$$
T'(u) = \left\{ C^{-1}F'(u) \right\}^* C^{-1}F(u)
$$

where the superscript * denotes the adjoint operator, i.e. the transpose matrix the in finite dimensional case. In practice we consider λ the step length term in the n dimensional case. In order to avoid too small steps. Let us consider a fixed step $n \geq 0$: for convenience the n superscript is dropped in $u^{(n)}$ and $\delta u^{(n)}$. Let $g: \mathbb{R} \to \mathbb{R}$ defined for any $\lambda \in \mathbb{R}$ by:

$$
g(\lambda) = T(u + \lambda \delta u)
$$

Then:

$$
g'(\lambda) = \langle T'(u + \lambda \delta u), \delta u \rangle_{V',V} = \langle C^{-1}F(u + \lambda \delta u), F'(u + \lambda \delta u)C^{-1}\delta u \rangle_{V',V'}
$$

where the superscript * denotes the adjoint operator, i.e. the transpose matrix the in finite dimensional case. The practical algorithm for obtaining λ was introduced first in [23] and is also presented in [37, p. 385]. The step length λ that satisfy (8.1) is computed by using a finite sequence λ_k, $k = 0, 1 \ldots$ with a second order recurrence:

- $k = 0 :$ initialization $\lambda_0 = 1$. If (8.1) is satisfied with $u + \lambda_0 d$ then let $\lambda := \lambda_0$ and the sequence stop here.

- $k = 1 :$ first order recursion. The quantities $g(0) = f(u)$ et $g'(0) = \langle f'(u), d \rangle$ are already computed at initialization. Also, we already have computed $g(1) = f(u + d)$ when verifying whether (8.1) was satisfied. Thus, we consider the following approximation of $g(\lambda)$ by a second order polynomial:

$$
\tilde{g}_1(\lambda) = \{g(1) - g(0) - g'(0)\} \lambda^2 + g'(0) \lambda + g(0)
$$

After a short computation, we find that the minimum of this polynomial is:

$$
\lambda_1 = \frac{-g'(0)}{2[g(1) - g(0) - g'(0)]}
$$

Since the initialization at $k = 0$ does not satisfy (8.1), it is possible to show that, when α is small enough, we have $\lambda_1 \leq 1/2$ and $\lambda_1 \approx 1/2$. Let $\lambda_1 := \max(\lambda_{\min}, \lambda_1)$. If (8.1) is satisfied with $u + \lambda_1 d$ then let $\lambda := \lambda_1$ and the sequence stop here.

- $k \geq 2 :$ second order recursion. The quantities $g(0) = f(u)$ et $g'(0) = \langle f'(u), d \rangle$ are available, together with λ_{k-1}, $g(\lambda_{k-1})$, λ_{k-2} and $g(\lambda_{k-2})$. Then, $g(\lambda)$ is approximated by the following third order polynomial:

$$
\tilde{g}_k(\lambda) = a \lambda^3 + b \lambda^2 + g'(0) \lambda + g(0)
$$

where a et b are expressed by:

$$
\begin{pmatrix}
 a \\
 b
\end{pmatrix} = \frac{1}{\lambda_{k-1} - \lambda_{k-2}} \begin{pmatrix}
 \frac{1}{\lambda_{k-1}} & -1 \\
 -1 & \frac{1}{\lambda_{k-2}}
\end{pmatrix} \begin{pmatrix}
 \lambda_{k-1} & -\lambda_{k-1}
 \lambda_{k-2} & \lambda_{k-2}
\end{pmatrix} \begin{pmatrix}
 g(\lambda_{k-1}) - g'(0) \lambda_{k-1} + g(0) \\
 g(\lambda_{k-2}) - g'(0) \lambda_{k-2} + g(0)
\end{pmatrix}
$$
The minimum of $\tilde{g}_k(\lambda)$ is

$$\tilde{\lambda}_k = -b + \frac{b^2 - 3ag'(0)}{3a}$$

Let $\lambda_k = \min(1/2, \max(\tilde{\lambda}_k/10, \tilde{\lambda}_{k+1})$ in order for λ_k to be at the same order of magnitude as λ_{k-1}. If (8.1) is satisfied with $u + \lambda_k d$ then let $\lambda := \lambda_k$ and the sequence stop here.

The sequence $(\lambda_k)_{k \geq 0}$ is strictly decreasing: when the stopping criteria is not satisfied until λ_k reaches the machine precision $\varepsilon_{\text{mach}}$ then the algorithm stops with an error.

8.4.2 File ‘p_laplacian_damped_newton.cc’

```cpp
#include "rheolef.h"
#include "rheolef/damped-newton.h"
using namespace rheolef;
using namespace std;
#include "p_laplacian.h"

int main(int argc, char **argv)
{
    environment rheolef(argc, argv);
    geo omega_h (argc > 1) ? argv[1] : "P1";
    string approx = (argc > 2) ? argv[2] : "P1";
    Float p = (argc > 3) ? atof(argv[3]) : 1.5;
    derr << "# P-Laplacian problem by damped Newton:" << endl
         << "# geo = " << omega_h.name() << endl
         << "# approx = " << approx << endl
         << "# p = " << p << endl;
    p_laplacian F(p, omega_h, approx);
    field uh = F.initial();
    Float tol = numeric_limits<Float>::epsilon();
    size_t max_iter = 500;
    int status = damped_newton (F, uh, tol, max_iter, &derr);
    dout << catchmark("p") << p << endl
         << catchmark("u") << uh;
    return status;
}
```

8.4.3 Comments

The file damped-newton-generic.h implements the damped Newton algorithm for a generic $T(u)$ function, i.e. a generic nonlinear preconditioner. This algorithms use a backtrack strategy implemented in file ‘newton-backtrack.h’. The simplest choice of the identity preconditioner $C = I$ i.e. $T(u) = \|F(u)\|_{V',V}^2$ is showed in file damped-newton.h. The gradient at $\lambda = 0$ is

$$T'(u) = F'(u)^*F(u)$$

and the slope at $\lambda = 0$ is:

$$g'(0) = \langle T'(u), \delta u \rangle_{V',V}$$
$$= \langle F(u), F'(u)\delta u \rangle_{V',V'}$$
$$= -\|F(u)\|_{V'}^2.$$

The ‘p_laplacian_damped_newton.cc’ is the application program to the p-Laplacian problem together with the $\|\cdot\|_{L^2(\Omega)}$ discrete norm for the function T.

8.4.4 Running the program

We assume that the previous code is contained in the file 'p_laplacian_damped_newton.cc'. As usual, enter:

```
make p_laplacian_damped_newton
mkgeo_grid -t 10 > square.geo
./p_laplacian_damped_newton square.geo P1 1.5 | field -
./p_laplacian_damped_newton square.geo P1 5.0 | field -
```

The algorithm is now quite robust: the convergence occurs for a large range of $p > 1$ values. and has been pushed until $p = 100$. The only limitation is due to machine roundoff when $p = 1.1$: the residual term reaches only 10^{-10} instead of 10^{-15}.
8.4.5 Robustness and mesh invariance

Figure 8.5: Convergence versus n for various meshes: (a) Newton algorithm when $p = 1.7$ and (b) $p = 1.6$; (c) Newton algorithm when $p = 1.5$; (d) damped-Newton algorithm when $p = 1.5$.

Fig. 8.5.a, 8.5.b and 8.5.c show the convergence of the Newton method when $p = 1.7$, 1.6 and 1.5, respectively. Observe that the convergence is asymptotically invariant of the mesh when the element size decreases. The convergence is more difficult when p decreases to 1.5 and the Newton algorithm is no more mesh invariant. Fig. 8.5.d shows the convergence of the damped Newton method when $p = 1.5$: the convergence is now very fast and also mesh-invariant.
Chapter 9

Equation defined on a surface

This chapter deals with equations defined on a closed hypersurface. We present three different numerical methods: the direct resolution of the problem on an explicit surface mesh generated independently of Rheolef, the direct resolution on a surface mesh generated by Rheolef from a volume mesh, and finally a level set type method based on a volume mesh in an h-narrow band containing the surface. This last method allows to define hybrid operators between surface and volume-based finite element fields. These methods are demonstrated on two model problems and two different surfaces.

Let us consider a closed surface $\Gamma \in \mathbb{R}^d$, $d = 2$ or 3 and Γ is a connected C^2 surface of dimension $d - 1$ with $\partial \Gamma = 0$. We first consider the following problem:

\((P1)\) find u, defined on Γ such that:

$$u - \Delta_s u = f \quad \text{on } \Gamma$$

where $f \in L^2(\Gamma)$. For all function u defined on Γ, Δ_s denotes the Laplace-Beltrami operator:

$$\Delta_s u = \text{div}_s (\nabla_s u)$$

where ∇_s and div_s are the tangential derivative and the surface divergence along Γ, defined respectively, for all scalar field φ and vector field \mathbf{v} by:

$$\nabla_s \varphi = (I - \mathbf{n} \otimes \mathbf{n}) \nabla \varphi$$

$$\text{div}_s \mathbf{v} = (I - \mathbf{n} \otimes \mathbf{n}) : \nabla \mathbf{v}$$

Here, \mathbf{n} denotes a unit normal on Γ.

We also consider the following variant of this problem:

\((P2)\) find u, defined on Γ such that:

$$- \Delta_s u = f \quad \text{on } \Gamma$$

This second problem is similar to the first one: the Helmholtz operator $I - \Delta_s$ has been replaced by the Laplace-Beltrami one $-\Delta_s$. In that case, the solution is defined up to a constant: if u is a solution, then $u + c$ is also a solution for any constant $c \in \mathbb{R}$. Thus, we refers to \((P1)\) as the Helmholtz-Beltrami problem and to \((P2)\) as the Laplace-Beltrami one.

9.1 Approximation on an explicit surface mesh

The Helmholtz-Beltrami problem

Thanks to the surface Green formula (see appendix A.3), the variational formulation of problem \((P1)\) writes:
\[(VF1)\]: find \(u \in H^1(\Gamma)\) such that:

\[a(u, v) = l(v), \forall v \in H^1(\Gamma)\]

where

\[
a(u, v) = \int_{\Gamma} uv \, ds + \int_{\Gamma} \nabla_s u \cdot \nabla_s v \, ds
\]

\[
l(v) = \int_{\Gamma} fv \, ds
\]

Let \(k \geq 1\) and consider a \(k\)-th order curved surface finite element mesh \(\Gamma_h\) of \(\Gamma\). We define the space \(W_h\):

\[W_h = \{ v_h \in H^1(\Gamma_h); v_{|S} \in P_k, \forall S \in \Gamma_h \}\]

The approximate problem writes:

\[(VF1)_h\]: find \(u_h \in W_h\) such that:

\[a(u_h, v_h) = l(v_h), \forall v_h \in W_h\]

File ‘helmholtz_s.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "sphere.icc"
int main(int argc, char** argv) {
    environment rheolef(argc, argv);
    geo gamma (argv[1]);
    space Wh (gamma, argv[2]);
    size_t d = gamma.dimension();
    form m (Wh, Wh, "mass");
    form a (Wh, Wh, "grad_grad");
    a = m + a;
    field lh = riesz(Wh, f(d));
    field uh (Wh);
    solver sa (a.uu());
    uh.set_u() = sa.solve lh.u() - a.ub()*uh.b();
    dout << uh;
}
```

Comments

The problem involves the Helmholtz operator and thus, the code is similar to neumann.cc presented in section 2.2, page 29. Let us comments the only differences:

```cpp
field lh = riesz(Wh, f(d));
```

The right-hand-side does not involve any boundary term, since the surface \(\Gamma\) is closed: the boundary domain \(\partial \Gamma = \emptyset\). As test problem, the surface \(\Gamma\) is the unit circle when \(d = 2\) and the unit sphere when \(d = 3\). The data \(f\) has been chosen as in [11, p. 17]. This choice is convenient since the exact solution is known. Recall that the spherical coordinates \((\rho, \theta, \phi)\) are defined from the artesian ones \((x_0, x_1, x_2)\) by:

\[
\rho = \sqrt{x_0^2 + x_1^2 + x_2^2}, \quad \phi = \arccos(x_2/\rho), \quad \theta = \begin{cases}
\arccos(x_0/\sqrt{x_0^2 + x_1^2}) & \text{when } x_1 \geq 0 \\
2\pi - \arccos(x_0/\sqrt{x_0^2 + x_1^2}) & \text{otherwise}
\end{cases}
\]
File ‘sphere.icc’

```cpp
struct p : std::unary_function<point, Float> {
    Float operator () (const point & x) const {
        if (d == 2) return 26*(pow(x[0],5) - 10*pow(x[0],3)*sqr(x[1])
            + 5*x[0]*pow(x[1],4));
        else return 3*sqr(x[0])*x[1] - pow(x[1],3);
    }
    p (size_t d1) : d(d1) {}
    protected: size_t d;
};
struct f : std::unary_function<point, Float> {
    Float operator () (const point & x) const {
        if (d == 2) return _p(x)/pow(norm(x),5);
        else return alpha_*p(x);
    }
    f (size_t d1) : d(d1), _p(d1) {
        Float pi = acos(Float(-1));
        alpha = -(13./8.)*sqrt(35./pi);
    }
    protected: size_t d; p _p; Float alpha;
};
struct u : std::unary_function<point, Float> {
    Float operator () (const point & x) const {
        if (d == 2) return _f(x)/(25+sqr(norm(x)));
        else return sqr(norm(x))/(12+sqr(norm(x)))*_f(x);
    }
    u (size_t d1) : d(d1), _f(d1) {}
    protected: size_t d; f _f;
};
Float phi (const point & x) { return norm(x) - 1; }
```

How to run the program

The program compile as usual:

```
make helmholtz_s
```

A mesh of a circle is generated by:

```
mkgeo_ball -s -e 10 > circle.geo
geo circle -mayavi
```

The `mkgeo_ball` is a convenient script that generates a mesh with the `gmsh` mesh generator. Then, the problem resolution writes:

```
./helmholtz_s circle P1 > circle.field
field circle.field -mayavi
```

The tridimensional case is similar:

```
mkgeo_ball -s -t 10 > sphere.geo
./helmholtz_s sphere P1 > sphere.field
field sphere.field -mayavi -stereo
```

The solution is represented on Fig 9.1.left.
Figure 9.1: Helmholtz-Beltrami problem: high-order curved surface mesh and its corresponding isoparametric solution: (top) order = 1; (bottom) order = 3.

Higher-order isoparametric finite elements can be considered for the curved geometry:

```bash
mkgeo_ball -s -e 10 -order 3 > circle-P3.geo
geo circle-P3.geo -subdivide 10
```

Observe the curved edges (see Fig. 9.1). The `-subdivide` option allows a graphical representation of the curved edges by subdividing each edge in ten linear parts, since graphical softwares are not yet able to represent curved elements. The computation with the P_3 isoparametric approximation writes:

```bash
./helmholtz_s circle-P3 P3 > circle-P3.field
dfield circle-P3.field -mayavi
```

Notice that both the curved geometry and the finite element are second order. The tridimensional counterpart writes simply:

```bash
mkgeo_ball -s -t 10 -order 3 > sphere-P3.geo
geo sphere-P3.geo
```
The solution is represented on Fig. 9.1). right-bottom. The graphical representation is not yet able to represent the high-order approximation: each element is subdivided and a piecewise linear representation is used in each sub-elements.

Since the exact solution is known, the error can be computed: this is done by the program `helmholtz_s_error.cc`. This file is not presented here, as it is similar to some others examples, but can be founded in the `Rheolef` example directory. Figure 9.2 plots the error in various norms versus element size for different isoparametric approximations.
Figure 9.2: Curved non-polynomial surface: error analysis in L^2, L^∞ and H^1 norms.
The Laplace-Beltrami problem

This problem has been introduced in (9.2), page 113. While the treatment of the Helmholtz-Beltrami problem was similar to the Helmholtz problem with Neumann boundary conditions, here, the treatment of the Laplace-Beltrami problem is similar to the Laplace problem with Neumann boundary conditions: see section 4, page 39. Notice that for both problems, the solution is defined up to a constant. Thus, the linear problem has a singular matrix. The ‘laplace.s.cc’ code is similar to the ‘neumann-laplace.cc’ one, as presented in section 4. The only change lies one the definition of the right-hand side.

File ‘laplace_s.cc’
As test problem, the surface Γ is the a torus when $d = 3$. The data f has been chosen as in [32, p. 3355]. This choice is convenient since the exact solution is known. Let R and r denotes the large and small torus radii, respectively. The torus coordinates (ρ, θ, ϕ) are defined linked to the Cartesian ones by:

\[
\begin{pmatrix}
 x_0 \\
 x_1 \\
 x_2
\end{pmatrix} = R \begin{pmatrix}
 \cos(\phi) \\
 \sin(\phi) \\
 0
\end{pmatrix} + \rho \begin{pmatrix}
 \cos(\phi) \cos(\theta) \\
 \sin(\phi) \cos(\theta) \\
 \sin(\theta)
\end{pmatrix}
\]

Here ρ is the distance from the point to the circle in the x_0x_1 plane around 0 with radius R, θ is the angle from the positive $(x_0, x_1, 0)$ to x_0 and ϕ is the angle from the positive x_0 axis to $(x_0, x_1, 0)$.
How to run the program?

The surface mesh of the torus is generated by:

```
gmsh -2 torus.mshcad -o torus.msh
msh2geo torus.msh > torus.geo
geo torus.geo -mayavi -stereo
```

Then, the computation and visualization writes:

```
make laplace_s
./laplace_s torus.geo P1 > torus.field
field torus.field -mayavi -stereo
```

For a higher-order approximation:

```
gmsh -2 -order 2 torus.mshcad -o torus-P2.msh
msh2geo torus-P2.msh > torus-P2.geo
geo torus-P2.geo
./laplace_s torus-P2.geo P2 > torus-P2.field
field torus-P2.field -mayavi
```

The solution is represented on Fig. 9.3. By editing ‘torus.mshcad’ and changing the density of discretization, we can improve the approximate solution and converge to the exact solution. Due to a bug [44] in the current gmsh version 2.5.1 the convergence is not optimal $O(h^k)$ for higher values of k.
9.2 Building a surface mesh from a level set function

The previous method is limited to not-too-complex surface Γ, that can be described by a regular finite element surface mesh Γ_h. When the surface change, as in a time-dependent process, complex change of topology often occurs and the mesh Γ_h can degenerate or be too complex to be efficiently meshed. In that case, the surface is described implicitly as the zero isosurface, or zero level set, of a function:

$$\Gamma = \{ x \in \Lambda; \phi(x) = 0 \}$$

where $\Lambda \subset \mathbb{R}^d$ is a bounding box of the surface Γ.

The following code automatically generates the mesh Γ_h of the surface described by the zero isosurface of a discrete $\phi_h \in X_h$ level set function:

$$\Gamma_h = \{ x \in \Lambda; \phi_h(x) = 0 \}$$

where X_h is a piecewise affine functional space over a mesh T_h of Λ:

$$X_h = \{ \varphi \in L^2(\Lambda) \cap C^0(\Lambda); \varphi/K \in P_1, \forall K \in T_h \}$$

The polynomial approximation is actually limited here to first order: building higher order curved finite element surface meshes from a level set function is planned for the future versions of Rheolef.

Finally, a computation, as performed in the previous paragraph can be done using Γ_h. We also point out the limitations of this approach.

File ‘level_set_sphere.cc’

```cpp
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "sphere.icc"
int main (int argc, char **argv) {
  environment rheolef(argc, argv);
  geo lambda (argv[1]);
  level_set_option_type opts;
  opts.split_to_triangle = (argc > 2 && argv[2] == std::string("-tq")) ? false : true;
  space Xh (lambda, "P1");
  field phi_h = interpolate(Xh, phi);
  geo gamma = level_set (phi_h, opts);
  dout << gamma;
}
```

Comments

All the difficult work of building the intersection mesh Γ_h, defined as the zero level set of the ϕ_h function, is performed by the level_set function:

```cpp
geo gamma = level_set (phi_h, opts);
```

When $d = 3$, intersected tetrahedra leads to either triangular or quadrangular faces. By default, quadrangular faces are split into two triangles. An optional -tq program flag allows to conserve quadrangles in the surface mesh: it set the split_to_triangle optional field to false.

How to run the program ?

After the compilation, generates the mesh of a bounding box $\Lambda = [-2, 2]^d$ of the surface and run the program:
make level_set_sphere
mkgeo_grid -t 20 -a -2 -b 2 -c -2 -d 2 > square2.geo
./level_set_sphere square2.geo > circle.geo
geo circle.geo -mayavi -stereo

The computation of the previous paragraph can be reused:

./helmholtz_s circle.geo P1 | field -mayavi -stereo -

Notice that, while the bounding box mesh was uniform, the intersected mesh could present arbitrarily small edge length (see also Fig. 9.4):

geo -min-element-measure circle.geo
geo -max-element-measure circle.geo

Let us turn to the $d = 3$ case:

mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube2.geo
./level_set_sphere cube2.geo | geo -upgrade - > sphere.geo
geo sphere.geo -mayavi -stereo
./helmholtz_s sphere.geo P1 | field -mayavi -stereo -

This approach can be extended to the Laplace-Beltrami problem on a torus:

sed -e 's/sphere/torus/' < level_set_sphere.cc > level_set_torus.cc
make level_set_torus
./level_set_torus cube2.geo | geo -upgrade - > torus.geo
geo torus.geo -mayavi -stereo
./laplace_s torus.geo P1 | field -mayavi -stereo -

While the bounding box mesh was uniform, the triangular elements obtained by intersecting the 3D bounding box mesh with the level set function can present arbitrarily irregular sizes and shapes (see also Fig. 9.4):

geo -min-element-measure -max-element-measure sphere.geo
geo -min-element-measure -max-element-measure torus.geo

Thus, there is no theoretical guarantees for the finite element method to converge on these irregular families of meshes, despite, most of the time, the computations run well. This is the major drawback of this method.
Figure 9.4: Building an explicit surface mesh from level set: (top) circle; (center) sphere; (bottom) torus.
9.3 The banded level set method

The banded level set method presents the advantages of the two previous methods without their drawback: it applies to very general geometries, as described by a level set function, and has theoretical foundations, as usual finite element methods. The previous drawback of the intersection mesh can be circumvented by enlarging the surface Γ_h to a band β_h containing all the intersected elements of \mathcal{T}_h (see [2,12,32]):

$$\beta_h = \{ K \in \mathcal{T}_h; K \cap \Gamma_h \neq \emptyset \}$$

Then, we introduce B_h the piecewise affine functional space over β_h:

$$B_h = \{ v \in L^2(\beta_h) \cap H^1(\beta_h); v|_K \in P_1, \forall K \in \mathcal{T}_h \}$$

The problem is extended from Γ_h to β_h as:

$$(VF)_h: \text{find } u_h \in B_h \text{ such that:}$$

$$a(u_h, v_h) = l(v_h), \forall v_h \in B_h$$

where

$$a(u_h, v_h) = \int_{\Gamma_h} u_h v_h \, ds + \int_{\Gamma_h} \nabla_u u_h \cdot \nabla_v v_h \, ds$$

$$l(v_h) = \int_{\Gamma_h} f v_h \, ds$$

for all $u_h, v_h \in B_h$. Notice that while u_h and v_h are defined over β_h, the summations in the variational formulations are restricted only to $\Gamma_h \subset \beta_h$.

File ‘helmholtz_band_iterative.cc’

```cpp
#include "rheolef.h"
using namespace std;
using namespace rheolef;
#include "sphere.icc"
int main ( int argc, char** argv ) {
    environment rheolef(argc, argv);
    geo lambda (argv[1]);
    space Xh (lambda, "P1");
    field phi_h = interpolate(Xh, phi);
    band gh (phi_h);
    space Bh (gh.band(), "P1");
    form m (Bh, Bh, "mass", gh);
    form a (Bh, Bh, "grad_grad", gh);
    a = m+a;
    size_t d = lambda.dimension();
    field lh = riesz (Bh, f(d), gh);
    field uh (Bh, 0);
    size_t max_iter = 10000;
    Float tol = 1e-10;
    pminres (a.uu(), uh.set_u(), lh.u(), eye(), max_iter, tol, &derr);
    gh.band().save();
    dout << catchmark("u") << uh
         << catchmark("phi") << phi_h;
}
```

Comments

The band is build directly from the level set function as:
band gh (phi_h);

The band structure is a small class that groups the surface mesh Γ_h, available as gh.level_set(), and the β_h mesh, available as gh.band(). It also manages some correspondence between both meshes. Then, the space of piecewise affine functions over the band is introduced:

\[
\text{space } B_h \text{ (gh.band(), "P1")};
\]

Next, two forms are declared, with the band gh as an additional domain-like argument:

\[
\text{form } m \text{ (Bh, Bh, "mass", gh)}; \\
\text{form } a \text{ (Bh, Bh, "grad_grad", gh)};
\]

The right-hand side also admits an additional gh argument:

\[
\text{field } lh = \text{ riesz (Bh, f(d), gh)};
\]

Recall that summations for both forms and right-hand side will be performed on Γ_h, represented by gh.level_set(), while the approximate functional space is B_h. Due to this summation on Γ_h instead of β_h, the matrix of the system is singular \cite{2,31,32} and the MINRES algorithm has been chosen to solve the linear system:

\[
\text{pminres (a.uu(), uh.set_u(), lh.u(), eye(), max_iter, tol, &derr)};
\]

The eye() argument represents here the identity preconditioner, i.e. no preconditioner at all. It has few influence of the convergence properties of the matrix and could be replaced by another simple one: the diagonal of the matrix diag(a.uu()) without sensible gain of performance:

\[
\text{pminres (a.uu(), uh.set_u(), lh.u(), diag(a.uu()), max_iter, tol, &derr)};
\]

Finally, the β_h mesh is saved: it will be required for the post-treatment of the solution.

How to run the program

The compilation and run writes:

\[
\text{make helmholtz_band_iterative} \\
\text{mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube-20.geo} \\
./helmholtz_band_iterative cube-20.geo > sphere-band.field
\]

The run generates also two meshes (see Fig. 9.5): the intersection mesh and the band around it. The solution is here defined on this band: this extension has no interpretation in terms of the initial problem and can be restricted to the intersection mesh for visualization purpose:

\[
\text{make proj_band} \\
./proj_band < sphere-band.field | field -mayavi -stereo -
\]

The `proj_band.cc` is presented below. The run generates also the Γ_h mesh (see Fig. 9.5), required for the visualization. The two-dimensional case is obtained simply by replacing the 3D bounding box by a 2D one:

\[
\text{mkgeo_grid -t 20 -a -2 -b 2 -c -2 -d 2 > square-20.geo} \\
./helmholtz_band_iterative square-20.geo > circle-band.field \\
./proj_band < circle-band.field | field -mayavi -
./proj_band < circle-band.field | field -mayavi -elevation -
9.4 A direct solver for the banded level set method

The iterative algorithm previously used for solving the linear system is not optimal: for 3D problems on a surface, the bidimensional connectivity of the sparse matrix suggests that a direct sparse factorisation would be much more efficient.

Recall that $\phi_h = 0$ on Γ_h. Thus, if $u_h \in B_h$ is solution of the problem, then $u_h + \alpha \phi_{h|\beta_h} \in B_h$ is also solution for any $\alpha \in \mathbb{R}$, where $\phi_{h|\beta_h} \in B_h$ denotes the restriction of the level set function $\phi_h \in X_h$ on the band β_h. Thus there is multiplicity of solutions and the matrix of the problem is singular. The direct resolution is still possible on a modified linear system with additional constraints in order to recover the unicity of the solution. We impose the constraint that the solution u_h should be orthogonal to $\phi_{h|\beta_h} \in B_h$. In some special cases, the band is composed of several connected components (see Fig. 9.6): this appends when a vertex of the bounding box mesh belongs to Γ_h. In that case, the constraint should be expressed on each connected component. Fig. 9.6 shows also the case when a full side of an element is included in Γ_h: such an element of the band is called isolated.
File ‘helmholtz_band.cc’

```cpp
#include "rheolef.h"
using namespace std;
using namespace rheolef;
#include "sphere.icc"
int main (int argc, char ** argv) {
  environment rheolef(argc, argv);
  geo lambda (argv[1]);
  space Xh (lambda, "P1");
  field phi_h = interpolate(Xh, phi);
  field phi_h_band = phi_h [gh.band()];
  space Bh (gh.band(), "P1");
  Bh.block ("isolated");
  Bh.unblock ("zero");
  form m = (Bh, Bh, "mass", gh);
  form a = (Bh, Bh, "grad_grad", gh);
  a = m+a;
  size_t d = lambda.dimension();
  field lh = riesz (Bh, f(d), gh);
  vector<vector<Float>> b (gh.n_connected_component());
  vector<Float> z (gh.n_connected_component(), 0);
  for (size_t i = 0; i < b.size(); i++) {
    const domain & cci = gh.band() ["cc"+itos(i)];
    field phi_h_cci (Bh, 0);
    phi_h_cci [cci] = phi_h_band [cci];
    b[i] = phi_h_cci.u();
  }
  csr<Float> A = { { a.uu(), trans(b)},
                  { b, 0 } };
  vec<Float> F = { lh.u(), z };
  A.set_symmetry(true);
  solver sa = ldlt(A);
  vec<Float> U = sa.solve (F);
  field uh(Bh, 0);
  uh.set_u() = U [range(0, uh.u().size())];
  gh.band().save();
  dout << catchmark ("u") << uh
       << catchmark ("phi") << phi_h;
}
```

Comments

The management of the special sides and vertices that are fully included in Γ_h is performed by:

```
Bh.block ("isolated");
Bh.unblock ("zero");
```

The addition of linear constraints is similar to the ‘neumann-laplace.cc’ code, as presented in section 4:

```
csr<Float> A = { { a.uu(), trans(b)},
                { b, 0 } };
```

Here b is a `vector<vec<Float>>`, i.e. a vector of linear constraints, one per connected component of the band β_h.

How to run the program

The commands are similar to the previous iterative implementation, just replacing `helmholtz_band_iterative` by `helmholtz_band`.

This approach could be also adapted to the Laplace-Beltrami problem on the torus.
File ‘laplace_band.cc’

```cpp
#include "rheolef.h"
using namespace std;
using namespace rheolef;
#include "torus.icc"

int main (int argc, char**argv) {
    environment rheolef(argc, argv);
    geo lambda (argv[1]);
    space Xh (lambda, "P1");
    field phi_h = interpolate(Xh, phi);
    band gh (phi_h);
    field phi_h_band = phi_h [gh.band()];
    space Bh (gh.band(), "P1");
    Bh.block ("isolated");
    Bh.unblock ("zero");
    form m (Bh, Bh, "mass", gh);
    form a (Bh, Bh, "grad_grad", gh);
    size_t d = lambda.dimension();
    field lh = riesz (Bh, f(d), gh);
    vector<vec<Float>> b (gh.n_connected_component());
    vector<Float> z (gh.n_connected_component(), 0);
    for (size_t i = 0; i < b.size(); i++) {
        const domain& cci = gh.band() ["cc"+itos(i)];
        field phi_h_cci (Bh, 0);
        phi_h_cci [cci] = phi_h_band [cci];
        b[i] = phi_h_cci.u();
    }
    field c = m*field (Bh, 1);
    csr<Float> A = {
        { a.uu(), trans(b), c.u()},
        { b, 0, 0 },
        { trans(c.u()), 0, 0 }
    };
    vec<Float> F = { lh.u(), z, 0};
    solver sa = ldlt(A);
    vec<Float> U = sa.solve (F);
    field uh(Bh, 0);
    uh.set_u() = U [range(0, uh.u().size())];
    gh.band().save();
    dout << catchmark("u") << uh
         << catchmark("phi") << phi_h;
}
```

Comments

The code is similar to the previous one helmholtz_band.cc. Since the solution is defined up to a constant, an additional linear constraint has to be inserted:

\[\int_{\Gamma_h} u_h \, dx = 0 \]

This writes:

```cpp
field c = m*field(Bh, 1);
csr<Float> A = {
    { a.uu(), trans(b), c.u()},
    { b, 0, 0 },
    { trans(c.u()), 0, 0 }
};
```

How to run the program

```bash
make laplace_band
mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube-20.geo
./laplace_band cube-20.geo > torus-band.field
```
geo cube-20.band.geo -stereo -cut
./proj_band < torus-band.field | field -mayavi -stereo -

The solution is represented on Fig. 9.5.bottom.
Figure 9.5: The banded level set method: (top) circle; (center) sphere; (bottom) torus.
Figure 9.6: The banded level set method: the band is composed of several connected components.
Part IV

Technical appendices
Appendix A

How to write a variational formulation?

The major keypoint for using Rheolef is to put the problem in variational form. Then this variational form can be efficiently translated into C++ language. This appendix is dedicated to readers who are not fluent with variational formulations and some related functional analysis tools.

A.1 The Green formula

Let us come back to the model problem presented in section 1.1, page 11, equations (1.1)-(1.2) and details how this problem is transformed into (1.3).

Let $H^1_0(\Omega)$ the space of functions whose gradient square has a finite sum over Ω and that vanishes on $\partial\Omega$:

$$H^1_0(\Omega) = \{ v \in L^2(\Omega); \nabla v \in L^2(\Omega)^d \text{ and } v = 0 \text{ on } \partial\Omega \}$$

We start by multiplying (1.1) by an arbitrarily test-function $v \in H^1_0(\Omega)$ and then integrate over Ω:

$$- \int_\Omega \Delta u \, v \, dx = \int_\Omega f \, v \, dx, \quad \forall v \in H^1_0(\Omega)$$

The next step is to invoke an integration by part, the so-called Green formula:

$$\int_\Omega \Delta u \, v \, dx + \int_\Omega \nabla u . \nabla v \, dx = \int_{\partial\Omega} \frac{\partial u}{\partial n} \, v \, ds, \quad \forall u, v \in H^1(\Omega)$$

Since our test-function v vanishes on the boundary, the integral over $\partial\Omega$ is zero and the problem becomes:

$$\int_\Omega \nabla u . \nabla v \, dx = \int_\Omega f \, v \, dx, \quad \forall v \in H^1_0(\Omega)$$

This is exactly the variational formulation (1.3), page 11.

A.2 The vectorial Green formula

In this section, we come back to the linear elasticity problem presented in section 5.1, page 45, equations (5.1)-(5.2) and details how this problem is transformed into (5.3).

Let Γ_d (resp. Γ_n) denotes the parts of the boundary $\partial\Omega$ related to the homogeneous Dirichlet boundary condition $u = 0$ (resp. the homogeneous Neumann boundary condition $\sigma(u) \cdot n = 0$).
We suppose that $\partial \Omega = \Gamma_d \cap \Gamma_n$. Let us introduce the following functional space:

$$V = \{v \in H^1(\Omega)^d; \ v = 0 \text{ on } \Gamma_d\}$$

Then, multiplying the first equation of (5.2) by an arbitrarily test-function $v \in V$ and then integrate over Ω:

$$- \int_\Omega \text{div}(\sigma(u)) \cdot v \, dx = \int_\Omega f \cdot v \, dx, \ \forall v \in V$$

The next step is to invoke an integration by part:

$$\int_\Omega \text{div} \tau \cdot v \, dx + \int_{\partial \Omega} \tau : D(v) \, ds = \int_\Omega \tau : (v \otimes n) \, ds, \ \forall \tau \in L^2(\Omega)^{d \times d}, \ \forall v \in V$$

Recall that $\text{div} \tau$ denotes $\left(\sum_{j=0}^{d-1} \partial_j \tau_{i,j}\right)_{0 \leq i < d}$, i.e. the vector whose component are the divergence of each row of τ. Also, $\sigma : \tau$ denotes the double contracted product $\sum_{i,j=0}^{d-1} \sigma_{i,j} \tau_{i,j}$ for any tensors σ and τ, and that $u \otimes v$ denotes the $\tau_{i,j} = u_i v_j$ tensor, vectors u and v. Remark that $\tau : (u \otimes v) = (\tau \cdot v)u = \sum_{i,j=0}^{d-1} \tau_{i,j} u_i v_j$. Choosing $\tau = \sigma(u)$ in the previous equation leads to:

$$\int_\Omega \sigma(u) : D(v) \, dx = \int_{\partial \Omega} (\sigma(u) \cdot n) \, ds + \int_\Omega f \cdot v \, dx, \ \forall v \in V$$

Since our test-function v vanishes on Γ_d and the solution satisfies the homogeneous Neumann boundary condition $\sigma(u) \cdot n = 0$ on Γ_n, the integral over $\partial \Omega$ is zero and the problem becomes:

$$\int_\Omega \sigma(u) : D(v) \, dx = \int_\Omega f \cdot v \, dx, \ \forall v \in V$$

From the definition of $\sigma(u)$ in (5.1) page 45 we have:

$$\sigma(u) : D(v) = \lambda \text{div}(u) (I : D(v)) + 2\mu D(u) : D(v)$$

and the previous relation becomes:

$$\int_\Omega \lambda \text{div}(u) \, \text{div}(v) \, dx + \int_\Omega 2\mu D(u) : D(v) \, dx = \int_\Omega f \cdot v \, dx, \ \forall v \in V$$

This is exactly the variational formulation (5.3), page 46.

A.3 The Green formula on a surface

Let Γ a closed and orientable surface of \mathbb{R}^d, $d = 2, 3$ and n its unit normal. From [25], appendix C we have the following integration by part:

$$\int_{\Gamma} \text{div}_s v \xi \, ds + \int_{\Gamma} v \cdot \nabla_s \xi \, ds = \int_{\Gamma} v \cdot n \xi \cdot \text{div} n \, ds$$

for all $\xi \in H^1(\Gamma)$ and $v \in H^1(\Gamma)^d$. Notice that $\text{div} n$ represent the surface curvature. Next, we choose $v = \nabla_s \varphi$, for any $\varphi \in H^2(\Gamma)$. Remaking that $v \cdot n = 0$ and that $\text{div}_s v = \Delta_s \varphi$. Then:

$$\int_{\Gamma} \Delta_s \xi \, ds + \int_{\Gamma} \nabla_s \varphi \cdot \nabla_s \xi \, ds = 0$$

This formula is the starting point for all variational formulations of problems defined on a surface (see chapter 9).

Rheolef version 6.1 update 15 May 2012
Appendix B

How to prepare a mesh?

Since there is many good mesh generators, Rheolef does not provide a built-in mesh generator. There are several ways to prepare a mesh for Rheolef.

We present here several procedures: by using the bamg bidimensional anisotropic mesh generator, written by Frédéric Hecht [21], and the gmsh mesh generator, suitable when $d = 1, 2$ and 3, and written by Christophe Geuzaine and Jean-François Remacle [17].

B.1 Bidimensional mesh with bamg

We first create a ‘square.bamgcad’ file:

```
MeshVersionFormatted
0
Dimension
2
Vertices
4
 0 0 1
 1 0 2
 1 1 3
 0 1 4
Edges
4
 1 2 101
 2 3 102
 3 4 103
 4 1 104
hVertices
0.1 0.1 0.1 0.1
```

This is an uniform mesh with element size $h = 0.1$. We refer to the bamg documentation [21] for the complete file format description. Next, enter the mesh generator commands:

```
bamg -g square.bamgcad -o square.bamg
```

Then, create the file ‘square.dmn’ that associate names to the four boundary domains of the mesh. Here, there is four boundary domains:
and enter the translation command:

```
bamg2geo square.bamg square.dmn > square.geo
```

This command creates a ‘square.geo’ file. Look at the mesh via the command:

```
geo square
```

This presents the mesh it in a graphical form, usually with gnuplot. You can switch to the mayavi renders:

```
geo square -mayavi
```

A finer mesh could be generated by:

```
bamg -coef 0.5 -g square.bamgcad -o square-0.5.bamg
```

B.2 Unidimensional mesh with gmsh

The simplest unidimensional mesh is a line:

```plaintext
h_local = 0.1;
Point(1) = {0, 0, 0, h_local};
Point(2) = {1, 0, 0, h_local};
Line(3) = {1,2};
Physical Point("left") = {1};
Physical Point("right") = {2};
Physical Point("boundary") = {1,2};
Physical Line("interior") = {3};
```

The mesh generation command writes:

```
gmsh -1 line.mshcad -format msh -o line.msh
```

Then, the conversion to ‘.geo’ format and the visualization:

```
msh2geo line.msh > line.geo
geo line
```
B.3 Bidimensional mesh with \texttt{gmsh}

We first create a \texttt{square.mshcad} file:

\begin{verbatim}
 n = 10.0;
 hloc = 1.0/n;
 Point(1) = {0, 0, 0, hloc};
 Point(2) = {1, 0, 0, hloc};
 Point(3) = {1, 1, 0, hloc};
 Point(4) = {0, 1, 0, hloc};
 Line(1) = {1,2};
 Line(2) = {2,3};
 Line(3) = {3,4};
 Line(4) = {4,1};
 Line Loop(5) = {1,2,3,4};
 Plane Surface(6) = {5} ;
 Physical Point("left_bottom") = {1};
 Physical Point("right_bottom") = {2};
 Physical Point("right_top") = {3};
 Physical Point("left_top") = {4};
 Physical Line("boundary") = {1,2,3,4};
 Physical Line("bottom") = {1};
 Physical Line("right") = {2};
 Physical Line("top") = {3};
 Physical Line("left") = {4};
 Physical Surface("interior") = {6};
\end{verbatim}

This is an uniform mesh with element size $h = 0.1$. We refer to the \texttt{gmsh} documentation \cite{gmsh} for the complete file format description. Next, enter the mesh generator commands:
gmsh -2 square.mshcad -format msh -o square.msh

Then, enter the translation command:

 msh2geo square.msh > square.geo

This command creates a 'square.geo' file. Look at the mesh via the command:

 geo square

Remark that the domain names, defined in the .mshcad file, are included in the gmsh .msh input file and are propagated in the .geo by the format conversion.

B.4 Tridimensional mesh with gmsh

First, create a 'cube.mshcad' file:

```plaintext
Mesh.Algorithm = 7; // bamg
Mesh.Algorithm3D = 7; // mmg3d
a = 0; c = 0; f = 0;
b = 1; d = 1; g = 1;
n = 10;
iloc = 1.0/n;
Point(1) = {a, c, f, iloc};
Point(2) = {b, c, f, iloc};
Point(3) = {b, d, f, iloc};
Point(4) = {a, d, f, iloc};
Point(5) = {a, c, g, iloc};
Point(6) = {b, c, g, iloc};
Point(7) = {b, d, g, iloc};
Point(8) = {a, d, g, iloc};
Line(1) = {1,2};
Line(2) = {2,3};
Line(3) = {3,4};
Line(4) = {4,1};
Line(5) = {5,6};
Line(6) = {6,7};
Line(7) = {7,8};
Line(8) = {8,5};
Line(9) = {1,5};
Line(10) = {2,6};
Line(11) = {3,7};
Line(12) = {4,8};
Line Loop(21) = {-1,-4,-3,-2};
Plane Surface(31) = {21} ;
Line Loop(22) = {5,6,7,8};
Plane Surface(32) = {22} ;
Line Loop(23) = {1,10,-5,-9};
Plane Surface(33) = {23} ;
Line Loop(24) = {12,-7,-11,3};
Plane Surface(34) = {24} ;
```
Line Loop(25) = {2,11,-6,-10};
Plane Surface(35) = {25} ;
Line Loop(26) = {9,-8,-12,4};
Plane Surface(36) = {26} ;
Surface Loop(41) = {31,32,33,34,35,36};
Volume(51) = {41};
Physical Surface("bottom") = {31};
Physical Surface("top") = {32};
Physical Surface("left") = {33};
Physical Surface("front") = {35};
Physical Surface("right") = {34};
Physical Surface("back") = {36};
Physical Volume("internal") = {51};

Next, enter the mesh generator commands:

 gmsh -3 cube.mshcad -format msh -o cube.msh

Then, enter the translation command:

 msh2geo cube.msh > cube.geo

This command creates a ‘cube.geo’ file. Look at the mesh via the command:

 geo cube
 geo cube.geo -mayavi -cut

The second command allows to see inside the mesh.
Appendix C

Migrating to Rheolef version 6.0

Due to its new distributed memory and computation support, Rheolef version 6.0 presents some backward incompatibilities with previous versions: codes using previous versions of the library should be slightly modified. This appendix presents some indications for migrating existing code.

C.1 What is new in Rheolef 6.0?

The major main features are:

- support distributed architectures: the code looks sequential, is easy to read and write but can be run massively parallel and distributed, based on the MPI library.

- high order polynomial approximation: P_k basis are introduced in this version, for $k \geq 0$. This feature will be improved in the future developments.

- mesh adaptation and the characteristic method are now available for three-dimensional problems.

In order to evaluate in these directions, internal data structures inside the library are completely rewritten in a different way, and thus this version is a completely new library. Conversely, the library and unix command interfaces was as less as possible modified. Nevertheless, the user will find some few backward incompatibilities: 5.93 based codes will not directly compile with the 6.0 library version. Let us review how to move a code from 5.93 to 6.0 version.

C.2 What should I have to change in my code?

1. Namespace

The namespace rheolef was already introduced in last 5.93 version. Recall that a code usually starts with:

```cpp
#include "rheolef.h"
using namespace rheolef;
```

2. Environment

The MPI library requires initialisation and the two command line arguments. This initialisation is performed via the boost::mpi class environment: The code entry point writes:
3. Fields and forms data accessors

The accesses to unknown and blocked data was of a field \texttt{uh} was direct, as \texttt{uh.u} and \texttt{uh.b}. This access is no more possible in a distributed environment, as non-local value requests may be optimized and thus, read and write access may be controled thought accessors. These accessors are named \texttt{uh.u()} and \texttt{uh.b()} for read access, and \texttt{uh.set_u()} and \texttt{uh.set_b()} for write access. Similarly, a form \texttt{a} has accessors as \texttt{a.uu()}.

A typical 5.93 code writes:

\begin{verbatim}
ssk< Float > sa = ldlt (a.uu);
uh.u = sa.solve (lh.u - a.ub*uh.b);
\end{verbatim}

and the corresponding 6.0 code is:

\begin{verbatim}
solver sa (a.uu());
uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
\end{verbatim}

This major change in the library interface induces the most important work when porting to the 6.0 version.

Notice also that the old \texttt{ssk< Float>} class has been supersetted by the \texttt{solver} class, that manages both direct and iterative solvers in a more effective way. For three-dimensional problems, the iterative solver is the default while direct solvers are used otherwise. In the same spirit, a \texttt{solver_abtb} has been introduced, for Stokes-like mixed problem. These features facilitate the dimension-independent coding style provided by the \texttt{Rheolef} library.

4. Distributed input and output streams

Input and output \texttt{sequential} standard streams \texttt{cin}, \texttt{cout} and \texttt{cerr} may now replaced by \texttt{distributed} \texttt{Rheolef} streams \texttt{din}, \texttt{dout} and \texttt{derr} as:

\begin{verbatim}
din >> omega;
dout << uh;
\end{verbatim}

These new streams are available together with the \texttt{idiststream} and \texttt{odiststream} classes of the \texttt{Rheolef} library.

5. File formats \texttt{.geo} and \texttt{.field} have changed

The \texttt{.geo} and \texttt{.field} file formats have changed. The \texttt{.mfield} is now obsolete: it has been merged into the \texttt{.field} format that supports now multi-component fields. Also, the corresponding \texttt{mfield} unix command is obsolete, as these features are integrated in the \texttt{field} unix command.

At this early stage of the 6.0 version, it is not yet possible to read the old \texttt{.geo} format, but this backward compatibility will be assured soon.

6. Space on a domain

A space defined on a domain “boundary” of a mesh \texttt{omega} was defined in the 5.93 version as:

\begin{verbatim}
space Wh (omega[“boundary”], omega, “P1”);
\end{verbatim}

It writes now:

\begin{verbatim}
space Wh (omega[“boundary”], “P1”);
\end{verbatim}

as the repetition of \texttt{omega} is no more required.
Appendix D

GNU Free Documentation License

Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

*

Preamble
The purpose of this License is to make a manual, textbook, or other written document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, \LaTeX{} input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

- Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
- List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five).
- State on the Title page the name of the publisher of the Modified Version, as the publisher.
- Preserve all the copyright notices of the Document.
- Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
- Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
- Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.
- Include an unaltered copy of this License.
- Preserve the section entitled “History”, and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
- Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
• In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not be included in the Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles. You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties – for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original documents, forming one section entitled “History”; likewise combine any sections entitled “Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled “Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an “aggregate”, and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
Bibliography

Index of concepts

approximation, 10
 P0, 48, 49
 P1b-P1, 65
 P1d, 48, 49
 P1, 11, 45, 49, 54, 64, 65, 84
 P2-P1, Taylor-Hood, 55, 65, 67, 69
 P2, 11, 15, 45, 49, 54, 64, 84
 Pk, 11, 15, 141
 bubble, 65
discontinuous, 33, 48–50
geometry
 curved, 24
 high-order, 11, 15, 24, 35, 141
 isoparametric, 24, 114
 mixed, 55
arуг, argv, command line arguments, 10, 141
benchmark
driven cavity flow, 54, 84
Dziuk-Elliott-Heine on a sphere, 112
ebankment, 43
flow in an abrupt contraction, 67, 71
Olshanski-Reusken-Grande on a torus, 118
rotating hill, 79
boundary condition
 Dirichlet, 9, 19, 33, 43, 54, 63, 84, 95, 101
 Neumann, 27, 33, 37, 43, 63
 Poiseuille flow, 67
 Robin, 29
 mixed, 63, 67, 72
class
 Float, 21
 adapt_option_type, 53
 band, 123
 branch, 76, 83
 characteristic, 80
 communicator, 39
csr<T>, 39
doubledouble, 21
environment, 141
eye, 124
field, 10, 142
form, 10
geo, 10
idiststream, 142
odiststream, 51, 142
point, 21
solver_abtb, 86, 142
solver, 12, 56, 142
space, 10, 142
vec<T>, 39
compilation, 12
convergence
 rate, 99, 100
 super-linear, 105
 versus mesh, 22, 115
coordinate system
 axisymmetric, 67, 69, 70
 Cartesian, 20, 34
 spherical, 112
torus, 118
degree of freedom, 100
directory of example files, 9, 68, 70
distributed computation, 11, 13, 39, 141
element shape, 35
error analysis, 22, 83
file format
 `.bamgcad' bang geometry, 53, 135
 `.bang' bang mesh, 53, 135
 `.branch' family of fields, 77
 `.dmn' domain names, 135
 `.field' field, 13, 142
 `.field' multi-component field, 47, 142
 `.geo' mesh, 13, 68, 70, 135, 136, 138, 142
 `.gz' gzip compressed file, 53
 `.jpg' joint photographic experts group, 78
 `.mov' quicktime video file, 78
 `.mshcad' gnsh geometry, 54, 68, 72, 119, 136
 `.msh' gnsh mesh, 54, 68, 72, 136
`.vtk` vtk file, 61, 78
form
2D_D, 43, 54, 63, 66, 84
2D, 48
curl, 57, 72
div_div, 43, 63
div, 48, 54, 63, 66, 84
grad_grad, 11, 72
inv_mass, 48
lumped_mass, 80
mass, 11, 22
s_curl, 69, 72
s_grad_grad, 69, 72
concatenation, 67
energy, 10, 32, 95
weighted, 33, 96
tensorial weight, 104
Fréchet derivative, 100
function
adapt, 51
catchmark, 39, 45, 57, 76
compose, 80, 88
diag, 124
ldlt, 39
level_set_option_type, 120
level_set, 120
norm2, 87
riesz, 29, 80
class-function object, 20, 81
geometry
axisymmetric, 67, 69
circle, 24, 113
contraction, 67, 71
cube, 15, 138
curved, 114
line, 15, 136
sphere, 112
square, 13, 137
surface, 111
curvature, 134
torus, 119
Green formula, 111, 133
Lagrange
interpolation, 20, 21, 27, 38
multiplier, 38, 56
node, 11
Lamé coefficients, 43
Makefile, 12
matrix
block structure, 11
concatenation, 39
diagonal, 124
factorization
Choleski, 12
identity, 124
indefinite, 39
lumped mass, 80
singular, 39, 124
sparse, 39
mesh, 10, 135
adaptation, 141
anisotropic, 51, 88
connected components, 125
generation, 68, 72, 135
method
characteristic, 79, 84, 141
conjugate gradient algorithm, 12, 37, 55, 64
Euler implicit scheme, 75, 78
fixed-point, 96, 105
level set, 111, 120
banded, 123
MINRES algorithm, 124
minres algorithm, 37
Newton, 100
damped, 105
namespace
rheolef, 10, 141
std, 10
node, 100
norm
in $W^{-1,p}$, 100
discrete version, 100
in $W^{1,p}$, 95
in $W_0^{1,p}$, 95
operator
adjoint, 106
curl, 57
discrete, 99
divergence, 43
gradient, 43
symmetric part, 43
Helmholtz, 27
Helmholtz-Beltrami, 111
Laplace, 9
Laplace-Beltrami, 111
parallel computation, 11, 13, 39
polar coordinate system, 70
preconditioner, 55
Choleski incomplete factorization, 12
for nearly incompressible elasticity, 64
for Stokes problem, 55
problem
Helmholtz, 27
Navier-Stokes, 84
Poisson
non-constant tensorial coefficients, 101
Poisson, 9, 19, 29, 37, 75, 95, 98
Stokes, 54, 65, 84
convection-diffusion, 78
elasticity
incompressible, 63
elasticity, 43
heat, 75
linear tangent, 100
nonlinear, 84
p-Laplacian, 95
stabilized Stokes, 70
transmission, 32
projection, 49, 59
region, 32, 34
residual term, 99, 100
Riesz representer, 11

singular solution, 59
space
\(W^{-1,p} \), dual of \(W^{1,p}_0 \), 100
\(W^{1,p} \), 95
\(W^{1,p}_0 \), 95
dual, 100
weighted (axisymmetric), 71
stabilization, 63
stream function, 60, 69, 90
axisymmetric, 71
tensor
Cauchy stress, 43, 74
field, 49
rate of deformation, 73
visualization as ellipsoid, 49

variable
derr, 142
din, 142
dout, 142
visualization
animation, 78
elevation view, 14, 99
stereoscopic anaglyph, 14, 47
vortex, 69, 73
vorticity, 57
Index of example files

Makefile.demo, 12
makefile_pattern, 12
contraction_mshcad, 68, 72
convection.cc, 80, 86
convection error.cc, 82
cosinusprod.icc, 22
cosinusprod error.cc, 22
cosinusprod laplace.icc, 20
cosinusrad.icc, 24

cosinusrad error.cc, 24
cosinusrad laplace.icc, 24

cube.mshcad, 138
dirichlet-nh.cc, 20
dirichlet.cc, 10
dirichlet.icc, 98
dirichlet_nh_ball.cc, 24
elasticity criterion.icc, 52
elasticity solve.icc, 52
embankment.cc, 45
embankment.icc, 45
embankment_adapt.cc, 52

heat.cc, 76
helmholtz_band.cc, 126
helmholtz_band_iterative.cc, 123
helmholtz_s.cc, 112
helmholtz_s error.cc, 115
incompressible elasticity.cc, 64
laplace_band.cc, 127
laplace_s.cc, 117

level_set_sphere.cc, 120
line.mshcad, 54, 136
navier stokes cavity.cc, 87

navier stokes criterion.icc, 87
navier stokes solve.icc, 86
neumann laplace.cc, 38
neumann nh.cc, 28
neumann.cc, 112

p_laplacian.h, 102
p_laplacian1.icc, 103
p_laplacian2.icc, 104
p_laplacian damped newton.cc, 107
p_laplacian fixed point.cc, 97
p_laplacian fixed point.h, 97

p_laplacian newton.cc, 101
poiseuille.h, 67
proj band.cc, 125
robin.cc, 30
rotating hill.h, 81
sinusprod helmholtz.icc, 28

sphere.icc, 113
square.bamg, 53, 90, 135

square.mshcad, 137

stokes cavity.cc, 55
stokes contraction.cc, 69
stokes contraction bubble.cc, 66
streamf cavity.cc, 60, 90
streamf contraction.cc, 69, 72
stress.cc, 48, 74
torus.icc, 118
torus.mshcad, 119
transmission.cc, 33
vortex position.cc, 92
vorticity.cc, 58
Index of programs

bamg, 53, 90, 135
bamg2geo, 135
branch, 81
 -gnuplot, 78
 -paraview, 78, 83
 -umax, 78

convect, 81

ffmpeg, 78

field, 13, 142
 -, 15
 -bw, 14, 69, 73, 90
 -catchmark, 57
 -comp, 47, 50, 73, 91
 -cut, 73, 91, 99
 -elevation, 14, 50, 99, 124
 -fill, 47
 -gray, 14
 -iso, 50
 -max, 70, 91
 -mayavi, 14, 47
 -min, 91
 -n-iso, 69
 -n-iso-negative, 69, 73, 90
 -noclean, 61
 -noexecute, 61
 -nofill, 14, 47
 -normal, 73, 91, 99
 -origin, 73, 91, 99
 -proj, 49
 -scale, 90
 -stereo, 14, 16, 47, 49
 -velocity, 57, 90

geo, 13
 -cut, 15
 -full, 15
 -stereo, 15
 -subdivide, 114

gmsh, 54, 68, 72, 113, 119, 136

gnuplot, 13, 15, 34, 47, 78, 81, 136

gzip, 53

library
 boost, 11, 39, 141
 CGAL, computational geometry, 79
 STL, standard template library, 81

make, 12
man, 15
mayavi, 14, 16, 61, 136
mkgeo_ball, 113
 -e, 113
 -q, 27
 -s, 113
 -t, 24, 113
mkgeo_grid, 13, 81
 -H, 16
 -T, 15, 84
 -a, 81
 -b, 81
 -c, 83
 -d, 83
 -e, 15
 -f, 84
 -g, 84
 -q, 16
 -region, 34
 -t, 13
 -zr, 70
mkgeo_ugrid, 24

mpi, message passing interface, 11
mpirun, 13, 35, 39
msh2geo, 68, 136, 138
 -zr, 72

paraview, 78, 83

rheolef-config, 9
 -check, 9
 -example-dir, 9

sed, 24

visualization
 mesh, 13
 deformed, 47
vlc, 78
zcat, 90