, Line Loop(21) = {-1

, Plane Surface(31) = {21}

, Line Loop(22) = {5

, Plane Surface(32) = {22}

, Line Loop(23) = {1, vol.10

, Plane Surface(33) = {23}

, Line Loop(24) = {12

, Plane Surface(34) = {24}

, Line Loop(25) = {2,11,-6,-10}

, Plane Surface(35) = {25}

, Line Loop(26) = {9,-8,-12,4}

, Plane Surface(36) = {26}

, Surface Loop(41) = {31, vol.32, p.36

=. {41},

P. Surface and ;. {31},

P. Surface and ;. {32},

P. Surface and ;. {33},

P. Surface and ;. {35},

=. {34}, Physical Surface("right

P. Surface and ;. {36},

=. {51},

, Next, enter the mesh generator commands: gmsh -3 cube.mshcad -format msh2 -o cube

. Then, enter the translation command: msh2geo cube.msh > cube.geo This command creates a 'cube.geo' file. Look at the mesh via the command: geo cube geo cube

E. M. Abdalass, Résolution performante du problème de Stokes par mini-éléments, maillages autoadaptatifs et méthodes multigrilles -applications, 1987.

L. Abouorm, Méthodes mathématiques pour lesécoulements sur des surfaces, 2010.

P. Alart, Méthode de Newton généralisée en mécanique du contact, Journal de Mathématiques Pures et Appliquées, vol.76, issue.1, pp.83-108, 1997.

P. R. Amestoy, I. S. Duff, J. Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl, vol.23, issue.1, pp.15-41, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00808293

P. Amestoy, A. Guermouche, J. Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Comput, vol.32, issue.2, pp.136-156, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00358623

D. N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, Adv. Comput. Meth. Partial Diff. Eqn, vol.7, pp.28-34, 1992.

D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo, vol.21, pp.337-344, 1984.

U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for timedependent partial differential equations, Appl. Numer. Math, vol.25, issue.2, pp.151-167, 1997.

C. Ashcraft and J. W. Liu, Robust ordering of sparse matrices using multisection, SIAM J. Matrix Anal. Appl, vol.19, issue.3, pp.816-832, 1998.

F. Auteri, N. Parolini, and L. Quartapelle, Numerical investigation on the stability of singular driven cavity flow, J. Comput. Phys, vol.183, issue.1, pp.1-25, 2002.

G. K. Batchelor, An introduction to fluid dynamics, 1967.

R. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids, vol.1, 1987.

H. Borouchaki, P. L. George, F. Hecht, P. Laug, B. Mohammadi et al., Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie II: applications, 1995.

K. Boukir, Y. Maday, B. Metivet, and E. Razafindrakoto, A high-order characteristic/finite element method for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, vol.25, pp.1421-1454, 1997.

S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 2002.

H. Brezis, Analyse fonctionnelle. Théorie et application, 1983.

F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximation of the Stokes equations, Efficient solutions of elliptic systems, Kiel, Notes on numerical fluid mechanics, vol.10, pp.11-19, 1984.

A. Caglar and A. Liakos, Weak imposition of boundary conditions for the Navier-Stokes equations by a penalty method, Int. J. Numer. Meth. Fluids, vol.61, issue.4, pp.411-431, 2009.

M. P. Calvo, J. De-frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advectionreaction-diffusion equations, Appl. Numer. Math, vol.37, issue.4, pp.535-549, 2001.

G. F. Carey and B. Jianng, Least-squares finite elements for first-order hyperbolic systems, Int. J. Numer. Meth. Eng, vol.26, issue.1, pp.81-93, 1988.

P. Castillo, Performance of discontinuous Galerkin methods for elliptic PDEs, SIAM J. Sci. Comput, vol.24, issue.2, pp.524-547, 2002.

M. J. Castro-diaz, F. Hecht, B. Mohammadi, and O. Pironneau, Anisotropic unstructured mesh adaption for flow simulations, Int. J. Numer. Meth. Fluids, vol.25, issue.4, pp.475-491, 1997.

J. C. Chrispell, V. J. Ervin, and E. W. Jenkins, A fractional step ?-method approximation of time-dependent viscoelastic fluid flow, J. Comput. Appl. Math, vol.232, issue.2, pp.159-175, 2009.

B. Cockburn, An introduction to the discontinuous Galerkin method for convection-dominated problems, pp.151-268, 1998.

B. Cockburn, S. Hou, and C. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. the multidimensional case, Math. Comput, vol.54, pp.545-581, 1990.

B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab, Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal, vol.40, issue.1, pp.319-343, 2002.

B. Cockburn, G. Kanschat, and D. Schötzau, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comput, vol.74, issue.251, pp.1067-1095, 2005.

B. Cockburn, B. Dong, J. Guzmán, and J. Qian, Optimal convergence of the original DG method on special meshes for variable transport velocity, SIAM J. Numer. Anal, vol.48, issue.1, pp.133-146, 2010.

M. Crouzeix and J. Rappaz, On numerical approximation in bifurcation theory, 1990.

K. Deckelnick, G. Dziuk, C. M. Elliott, and C. Heine, An h-narrow band finite element method for elliptic equations on implicit surfaces, IMA Journal of Numerical Analysis, 2009.

D. A. Di-pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp, vol.79, pp.1303-1330, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00278925

D. A. Di-pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01820185

D. A. Di-pietro, S. L. Forte, and N. Parolini, Mass preserving finite element implementations of the level set method, Appl. Numer. Math, vol.56, issue.9, pp.1179-1195, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01818211

M. Dicko, Méthodes mathématiques pour lesécoulements sur des surfaces, M2P Université J. Fourier, 2011.

J. Donea, A. Huerta, ;. Enright, R. Fedkiw, J. Ferziger et al., A hybrid particle level set method for improved interface capturing, J. Comput. Phys, vol.183, issue.1, pp.83-116, 2002.

Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. Comput. Appl. Math, vol.206, issue.2, pp.843-872, 2007.

E. Erturk, T. C. Corke, and C. Gökçol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer. Meth. Fluids, vol.48, pp.747-774, 2005.

G. Fourestey and S. Piperno, A second-order time-accurate ALE Lagrange-Galerkin method applied to wind engineering and control of bridge profiles, Comput. Methods Appl. Mech. Engrg, vol.193, pp.4117-4137, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00607735

T. Gelhard, G. Lube, M. A. Olshanskii, and J. H. Starcke, Stabilized finite element schemes with LBB-stable elements for incompressible flows, J. Comput. Appl. Math, vol.177, pp.243-267, 2005.

A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal, vol.10, pp.345-363, 1973.

C. Geuzaine and J. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Meths Engrg, vol.79, issue.11, pp.1309-1331, 2009.

U. Ghia, K. N. Ghia, and C. T. Shin, High Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys, vol.48, pp.387-411, 1982.

V. Girault and P. A. Raviart, Finite element methods for the Navier-Stokes equations. Theory and algorithms, 1986.

S. Gottlieb and C. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comput, vol.67, issue.221, pp.73-85, 1998.

S. Gottlieb, -. W. Chi, E. Shu, and . Tadmor, Strong stability-preserving high-order time discretization methods, SIAM review, vol.43, issue.1, pp.89-112, 2001.

M. M. Gupta and J. C. Kalita, A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation, J. Comput. Phys, vol.207, pp.52-68, 2005.

A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys, vol.71, issue.2, pp.231-303, 1987.

F. Hecht, BAMG: bidimensional anisotropic mesh generator, 2006.

J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods. Algorithms, analysis and applications, 2008.

A. J. Hoffman, M. S. Martin, and D. J. Rose, Complexity bounds for regular finite difference and finite element grids, SIAM J. Numer. Anal, vol.10, issue.2, pp.364-369, 1973.

P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equations using the finite element technique, Comp. and Fluids, vol.1, pp.73-100, 1973.

J. S. Howell, Computation of viscoelastic fluid flows using continuation methods, J. Comput. Appl. Math, vol.225, issue.1, pp.187-201, 2009.

R. J. Dennis and . Schnablel, Numerical methods for unconstraint optimization and nonlinear equations, 1983.

C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp, vol.46, issue.173, pp.1-26, 1986.

A. Klawonn, An optimal preconditioner for a class of saddle point problems with a penalty term, SIAM J. Sci. Comput, vol.19, issue.2, pp.540-552, 1998.

A. Laadhari, C. Misbah, and P. Saramito, On the equilibrium equation for a generalized biological membrane energy by using a shape optimization approach, Phys. D, vol.239, pp.1568-1572, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00388733

R. J. Labeur and G. N. Wells, A Galerkin interface stabilisation method for the advection-diffusion and incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech. Engrg, vol.196, pp.4985-5000, 2007.

R. J. Leveque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal, vol.33, issue.2, pp.627-665, 1996.

A. Liakos, Discretization of the Navier-Stokes equations with slip boundary condition, Numer. Meth. Part. Diff. Eqn, vol.17, issue.1, pp.26-42, 2001.

E. Marchandise, J. Remacle, and N. Chevaugeon, A quadrature-free discontinuous Galerkin method for the level set equations, J. Comput. Phys, vol.212, pp.338-357, 2006.

S. Melchior, V. Legat, P. Van-dooren, and A. J. Wathen, Analysis of preconditioned iterative solvers for incompressible flow problems, Int. J. Numer. Meth. Fluids, vol.68, issue.3, pp.269-286, 2012.

P. D. Minev and C. R. Ethier, A characteristic/finite element algorithm for the 3-D Navier-Stokes equations using unstructured grids, Comput. Meth. in Appl. Mech. and Engrg, vol.178, issue.1-2, pp.39-50, 1998.

P. P. Mosolov and V. P. Miasnikov, Variational methods in the theory of the fluidity of a viscousplastic medium, J. Appl. Math. Mech, vol.29, issue.3, pp.545-577, 1965.

P. P. Mosolov and V. P. Miasnikov, On stagnant flow regions of a viscous-plastic medium in pipes, J. Appl. Math. Mech, vol.30, issue.4, pp.841-853, 1966.

P. P. Mosolov and V. P. Miasnikov, On qualitative singularities of the flow of a viscoplastic medium in pipes, J. Appl. Math. Mech, vol.31, issue.3, pp.609-613, 1967.

D. R. Musser and A. Saini, C++ STL tutorial and reference guide, 1996.

D. R. Musser and A. Saini, STL tutorial and reference guide, 1996.

J. G. Oldroyd, On the formulation of rheological equations of states, Proc. R. Soc. Lond. A, vol.200, pp.523-541, 1950.

M. A. Olshanskii and A. Reusken, A finite element method for surface PDEs: matrix properties, Numer. Math, vol.114, pp.491-520, 2010.

M. A. Olshanskii, A. Reusken, and J. Grande, A finite element method for elliptic equations on surfaces, SIAM J. Num. Anal, vol.47, issue.5, pp.3339-3358, 2009.

M. A. Olshanskii, A. Reusken, and X. Xu, On surface meshes induced by level set functions. Computing and visualization in science, vol.15, pp.53-60, 2012.

S. Osher and J. A. Sethian, Front propaging with curvature-dependent speed: agorithms based on Hamilton-Jacobi formulations, J. Comput. Phys, vol.79, issue.12, 1988.

M. L. Salihi, Couplage de méthodes numériques en simulation directe d'écoulements incompressibles, 1998.

O. Ozenda, P. Saramito, and G. Chambon, A new rate-independent tensorial model for suspensions of non-colloidal rigid particles in newtonian fluids, J. Rheol, vol.62, pp.889-903, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01528817

C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal, vol.12, issue.4, pp.617-629, 1975.

T. Pan, J. Hao, and R. Glowinski, On the simulation of a time-dependent cavity flow of an Oldroyd-B fluid, Int. J. Numer. Meth. Fluids, vol.60, issue.7, pp.791-808, 2009.

J. Paumier, Bifurcation et méthodes numériques. Applications aux problèmes elliptiques semilinéaires, 1997.

F. Pellegrini, PT-Scotch and libscotch 5.1 user's guide, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00410333

T. E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal, vol.28, issue.1, pp.133-140, 1991.

O. Pironneau, Méthode deséléments finis pour les fluides, 1988.

O. Pironneau and M. Tabata, Stability and convergence of a galerkin-characteristics finite element scheme of lumped mass type, Int. J. Numer. Meth. Fluids, vol.64, pp.1240-1253, 2010.

W. H. Press, S. A. Teulkolsky, W. T. Vetterling, and B. P. Flannery, Numerical recepies in C. The art of scientific computing

G. R. Richter, An optimal-order error estimate for the discontinuous galerkin method, Math. Comput, vol.50, issue.181, pp.75-88, 1988.

N. Roquet and P. Saramito, An adaptive finite element method for Bingham fluid flows around a cylinder, Comput. Meth. Appl. Mech. Engrg, vol.192, pp.3317-3341, 2003.

N. Roquet and P. Saramito, Stick-slip transition capturing by using an adaptive finite element method, vol.2, pp.249-260, 2004.

N. Roquet and P. Saramito, An adaptive finite element method for viscoplastic flows in a square pipe with stick-slip at the wall, J. Non-Newt. Fluid Mech, vol.155, pp.101-115, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00133116

N. Roquet, R. Michel, and P. Saramito, Errors estimate for a viscoplastic fluid by using Pk finite elements and adaptive meshes, C. R. Acad. Sci. Paris, ser. I, vol.331, issue.7, pp.563-568, 2000.

H. Rui and M. Tabata, A second order characteristic finite element scheme for convection diffusion problems, Numer. Math, 2001.

P. Saramito, Simulation numérique d'écoulements de fluides viscoélastiques paréléments finis incompressibles et une méthode de directions alternées; applications, 1990.

P. Saramito, Numerical simulation of viscoelastic fluid flows using incompressible finite element method and a ?-method, Math. Model. Numer. Anal, vol.28, issue.1, pp.1-35, 1994.

P. Saramito, Efficient simulation of nonlinear viscoelastic fluid flows, J. Non Newt. Fluid Mech, vol.60, pp.199-223, 1995.

P. Saramito, Operator splitting in viscoelasticity, Viscoélasticité et Contrôle Optimal, Lyon, décembre 1995, ESAIM: Proceedings, vol.2, pp.275-281, 1997.

P. Saramito, Rheolef home page, 2012.

P. Saramito, Language C++ et calcul scientifique, 2013.

P. Saramito, Méthodes numériques en fluides complexes : théorie et algorithmes. CNRS-CCSD, 2013.

P. Saramito, On a modified non-singular log-conformation formulation for Johnson-Segalman viscoelastic fluids, J. Non-Newt. Fluids Mech, vol.211, pp.16-30, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00957244

P. Saramito, Efficient C++ finite element computing with Rheolef, discontinuous Galerkin methods. CNRS and LJK, vol.2, 2015.
URL : https://hal.archives-ouvertes.fr/cel-00573970

P. Saramito, A damped Newton algorithm for computing viscoplastic fluid flows, J. Non-Newt. Fluid Mech, vol.238, pp.6-15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01228347

P. Saramito, Complex fluids: modelling and algorithms, 2016.

P. Saramito, Efficient C++ finite element computing with Rheolef, CNRS and LJK, 2018.
URL : https://hal.archives-ouvertes.fr/cel-00573970

P. Saramito and N. Roquet, An adaptive finite element method for viscoplastic fluid flows in pipes, Comput. Meth. Appl. Mech. Engrg, vol.190, pp.5391-5412, 2001.

P. Saramito and A. Wachs, Progress in numerical simulation of yield stress fluid flows, J. Rheol, vol.56, issue.3, pp.211-230, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01375720

P. Saramito, Are curved and high order gmsh meshes really high order ?, 2012.

L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, vol.2, pp.111-143, 1985.

N. D. Scurtu, Stability analysis and numerical simulation of non-Newtonian fluids of Oldroyd kind, 2005.

J. Sethian, Level set methods and fast marching methods, 1999.

K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method, J. Comput. Phys, vol.205, issue.2, pp.401-407, 2005.

J. Shen, Hopf bifurcation of the unsteady regularized driven cavity flow, J. Comp. Phys, vol.95, pp.228-245, 1991.

C. Shu, TVB boundary treatment for numerical solutions of conservation laws, Math. Comput, vol.49, issue.179, pp.123-134, 1987.

C. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys, vol.77, issue.2, pp.439-471, 1988.

P. Singh and L. G. Leal, Finite-element simulation of the start-up problem for a viscoelastic fluid in an eccentric rotating cylinder geometry using a third-order upwind scheme, Theor. Comput. Fluid Dyn, vol.5, issue.2-3, pp.107-137, 1993.

B. Stroustrup, C++ programming styles and libraries, 2002.

E. Süli and D. F. Mayers, An introduction to numerical analysis, 2003.

M. Ta, F. Pigeonneau, and P. Saramito, An implicit high order discontinuous Galerkin level set method for two-phase flow problems, 9th international conference on multiphase flow (ICMF), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01323548

G. I. Taylor, On the decay of vortices in a viscous fluid, Philos. Mag, vol.46, pp.671-674, 1923.

M. Vallet, Génération de maillages anisotropes adaptés, applicationà la capture de couches limites, INRIA, 1990.

R. Verfürth, Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions, ESAIM Math. Model. and Numer. Anal, vol.19, issue.3, pp.461-475, 1985.

R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition, Numer. Math, vol.50, pp.697-721, 1987.

R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary conditions II, Numer. Math, vol.59, pp.615-636, 1991.

H. Wang, C. Shu, and Q. Zhang, Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems, SIAM J. Numer. Anal, vol.53, issue.1, pp.206-227, 2015.

H. Wang, C. Shu, and Q. Zhang, Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems, Appl. Math. Comput, 2015.

. Wikipedia, The Stokes stream function, Wikipedia, 2012.

N. Wirth, Algorithm + data structure = programs, 1985.

S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys, vol.31, issue.3, pp.335-362, 1979.

S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comput, vol.74, issue.250, pp.543-554, 2005.

X. Zhong and C. Shu, avi' avi file (video), 74 '.bamgcad' bamg geometry, 48, 241 '.bamg' bamg mesh, 48, 241 '.branch' family of fields, 74 '.dmn' domain names, 241 '.field' field, 13 '.field' multi-component field, 42 '.geo' mesh, J. Comput. Phys, vol.232, issue.1, pp.241-243, 2013.