Optical Phase Conjugation

N. Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes
Unité de Recherche commune à l’Université Paul Verlaine Metz et à Supélec

Download this document: http://moodle.univ-metz.fr/
Useful reading. . .
[YY84, Yar97, San99]

F. Sanchez.
Optique non-linéaire - Cours et problèmes résolus.
Ellipses, 1999.

A. Yariv.
Optical Electronics in Modern Communications.

A. Yariv and P. Yeh.
Optical waves in crystals. Propagation and control of laser radiation.

. . . and many others.
Contents

1 Principle and application of phase conjugation
 - Experiment
 - Distortion correction theorem

2 Generation of phase conjugate waves
 - Non Linear Polarization Development
 - Four wave mixing coupled mode formulation
 - Conjugate wave amplitude

3 Self Pumped Phase Conjugation and Holography
 - Four Wave Mixing from a holographic point of view
 - Phase Conjugation without pumping
1 Principle and application of phase conjugation
 - Experiment
 - Distortion correction theorem

2 Generation of phase conjugate waves
 - Non Linear Polarization Development
 - Four wave mixing coupled mode formulation
 - Conjugate wave amplitude

3 Self Pumped Phase Conjugation and Holography
 - Four Wave Mixing from a holographic point of view
 - Phase Conjugation without pumping
A peculiar phenomenon
Discovered in the early 70ies
A peculiar phenomenon
Discovered in the early 70ies

Use Non Linear Material

- Third order: non zero χ_3
 - Photorefractivity
 - Stimulated Brillouin Scattering
 - Stimulated Raman Scattering
- Four wave mixing

Wavefront correction

- Distorted incident beam
- Reflected back as is
- Distortion corrected

Figure: Phase conjugation principle.

Source: Wikipedia
A peculiar phenomenon
Discovered in the early 70ies

- Use Non Linear Material
 - Third order: non zero χ_3
 - Photorefractivity
 - Stimulated Brillouin Scattering
 - Stimulated Raman Scattering
 - Four wave mixing

- Wavefront correction
 - Distorted incident beam
 - Reflected back as is
 - Distortion corrected

\textbf{Figure:} Phase conjugation principle.
Beams are reflected back as if time was reversed

Images source:
http://sharp.bu.edu/~slehar/PhaseConjugate/PhaseConjugate.html

Incident wavefronts...
- Are reflected back exactly
- Back and forth wavefronts are identical
Principle and application of phase conjugation

Generation of phase conjugate waves

Self Pumping and Holography

Experiment

Beams are reflected back *as if time was reversed*

Images source: http://sharp.bu.edu/~slehar/PhaseConjugate/PhaseConjugate.html

Incident wavefronts...

- Are reflected back **exactly**
- Back and forth wavefronts are **identical**
Attractive applications
All based on wavefront distortion correction

Phase conjugation applications

- All optical image transmission through fibers
- Distortion correction in high power lasers
- Dynamic wave front correction for optical sensors
- Dynamic Holography
- ...
Principle and application of phase conjugation

Generation of phase conjugate waves

Self Pumping and Holography

Experiment

Attractive applications
All based on wavefront distortion correction

Phase conjugation applications

- All optical image transmission through fibers
- Distortion correction in high power lasers
- Dynamic wave front correction for optical sensors
- Dynamic Holography
- ...
Principle and application of phase conjugation

Generation of phase conjugate waves

Self Pumping and Holography

Experiment

Attractive applications
All based on wavefront distortion correction

Phase conjugation applications

- All optical image transmission through fibers
- Distortion correction in high power lasers
- Dynamic wave front correction for optical sensors
- Dynamic Holography
- ...
Attractive applications
All based on wavefront distortion correction

Phase conjugation applications
- All optical image transmission through fibers
- Distortion correction in high power lasers
- Dynamic wave front correction for optical sensors
- Dynamic Holography
- ...
1. **Principle and application of phase conjugation**
 - Experiment
 - Distortion correction theorem

2. **Generation of phase conjugate waves**
 - Non Linear Polarization Development
 - Four wave mixing coupled mode formulation
 - Conjugate wave amplitude

3. **Self Pumped Phase Conjugation and Holography**
 - Four Wave Mixing from a holographic point of view
 - Phase Conjugation without pumping
A phase conjugate wave travels time the wrong way
Phase conjugation is also known as *time reversal*

Take some input monochromatic wave

\[E_1 = \Re \left[\psi (r) \exp (i (\omega t - kz)) \right] = \Re \left[\psi (r) \right] \cos (\omega t - kz) \]

Take the phase conjugate over space only

- \[E_2 = \Re \left[\psi (r) \exp (i (-kz)) e^{i\omega t} \right] \]
- \[E_2 = \Re \left[\psi (r) \exp (i (\omega t + kz)) \right] \]
- \[E_2 = \Re \left[\psi (r) \right] \cos (\omega t + kz) \]
- \[E_2 = \Re \left[\psi (r) \right] \cos (-\omega t - kz) \]
A phase conjugate wave travels time the wrong way
Phase conjugation is also known as *time reversal*

Take some input monochromatic wave

$$E_1 = \Re \left[\psi(r) \exp(i(\omega t - k z)) \right] = \Re \left[\psi(r) \right] \cos(\omega t - k z)$$

Take the phase conjugate over space only

- $$E_2 = \Re \left[\overline{\psi(r)} \exp(i(-k z)) e^{i\omega t} \right]$$
- $$E_2 = \Re \left[\psi(r) \exp(i(\omega t + k z)) \right]$$
- $$E_2 = \Re \left[\psi(r) \right] \cos(\omega t + k z)$$
- $$E_2 = \Re \left[\psi(r) \right] \cos(-\omega t - k z)$$
A phase conjugate wave travels time the wrong way
Phase conjugation is also known as *time reversal*

Take some input monochromatic wave

\[E_1 = \Re \{ \psi (r) \exp (i(\omega t - k z)) \} = \Re \{ \psi (r) \} \cos (\omega t - k z) \]

Take the phase conjugate over space only

- \[E_2 = \Re \{ \psi (r) \exp (i(-kz)) e^{i\omega t} \} \]
- \[E_2 = \Re \{ \overline{\psi (r)} \exp (i(\omega t + k z)) \} \]
- \[E_2 = \Re \{ \psi (r) \} \cos (\omega t + k z) \]
- \[E_2 = \Re \{ \overline{\psi (r)} \} \cos (-\omega t - k z) \]
Principle and application of phase conjugation

Generation of phase conjugate waves

Self Pumping and Holography

Distortion correction theorem

A phase conjugate wave travels time the wrong way
Phase conjugation is also known as \textit{time reversal}

Take some input monochromatic wave

\[
E_1 = \mathcal{R}e \left[\psi (r) \exp (i (\omega t - kz)) \right] = \mathcal{R}e \left[\psi (r) \right] \cos (\omega t - kz)
\]

Take the phase conjugate \textit{over space only}

\begin{itemize}
 \item \(E_2 = \mathcal{R}e \left[\bar{\psi} (r) \exp (i (-kz)) e^{i \omega t} \right] \)
 \item \(E_2 = \mathcal{R}e \left[\bar{\psi} (r) \exp (i (\omega t + kz)) \right] \)
 \item \(E_2 = \mathcal{R}e \left[\bar{\psi} (r) \right] \cos (\omega t + kz) \)
 \item \(E_2 = \mathcal{R}e \left[\psi (r) \right] \cos (-\omega t - kz) \)
\end{itemize}
A phase conjugate wave travels time the wrong way
Phase conjugation is also known as *time reversal*

Take some input monochromatic wave

\[E_1 = \Re \{ \psi(r) \exp(i(\omega t - kz)) \} = \Re \{ \psi(r) \} \cos(\omega t - kz) \]

Take the phase conjugate *over space only*

- \[E_2 = \Re \{ \overline{\psi(r)} \exp(i(-kz)) e^{i\omega t} \} \]
- \[E_2 = \Re \{ \overline{\psi(r)} \exp(i(\omega t + kz)) \} \]
- \[E_2 = \Re \{ \overline{\psi(r)} \} \cos(\omega t + kz) \]
- \[E_2 = \Re \{ \psi(r) \} \cos(-\omega t - kz) \]
The distortion correction theorem

If a backward traveling wave is phase conjugate \textit{somewhere} then it is \textit{everywhere}

Take a paraxial forward propagating wave

- Expressed as: \(E_1 (r, t) = \psi_1 (r) e^{i(\omega t - k z)} \)
- Obeys the wave equation: \(\Delta E_1 + \omega^2 \mu_0 \varepsilon (r) E_1 = 0 \)
 - In the paraxial limit: \(\Delta \psi_1 + \left[\omega^2 \mu_0 \varepsilon (r) - k^2 \right] \psi_1 - 2ik \frac{\partial \psi_1}{\partial z} = 0 \)
 - Conjugate equation: \(\Delta \overline{\psi_1} + \left[\omega^2 \mu_0 \overline{\varepsilon (r)} - k^2 \right] \overline{\psi_1} + 2ik \frac{\partial \psi_1}{\partial z} = 0 \)

Had we taken a backward propagating wave

- Expressed as: \(E_2 (r, t) = \psi_2 (r) e^{i(\omega t + k z)} \)
- Paraxial equation (\(z \to -z \)):
 \(\Delta \psi_2 + \left[\omega^2 \mu_0 \varepsilon (r) - k^2 \right] \psi_2 + 2ik \frac{\partial \psi_2}{\partial z} = 0 \)

Same second order linear differential equations for loss-less media

\(\varepsilon (r) \in \mathbb{R} \Rightarrow \left[\psi_2 (z = 0) = a \psi_1 (z = 0) \right] \iff \forall z, \psi_2 (z) = a \psi_1 (z) \)
The distortion correction theorem

If a backward traveling wave is phase conjugate *somewhere* then it is *everywhere*

Take a paraxial forward propagating wave

- Expressed as: \(E_1 (r, t) = \psi_1 (r) e^{i(\omega t - kz)} \)
- Obeys the wave equation: \(\Delta E_1 + \omega^2 \mu_0 \varepsilon (r) E_1 = 0 \)
- In the paraxial limit: \(\Delta \psi_1 + \left[\omega^2 \mu_0 \varepsilon (r) - k^2 \right] \psi_1 - 2ik \frac{\partial \psi_1}{\partial z} = 0 \)
- Conjugate equation: \(\Delta \overline{\psi_1} + \left[\omega^2 \mu_0 \overline{\varepsilon (r)} - k^2 \right] \overline{\psi_1} + 2ik \frac{\partial \overline{\psi_1}}{\partial z} = 0 \)

Had we taken a backward propagating wave

- Expressed as: \(E_2 (r, t) = \psi_2 (r) e^{i(\omega t + kz)} \)
- Paraxial equation \((z \rightarrow -z)\):
 \(\Delta \psi_2 + \left[\omega^2 \mu_0 \varepsilon (r) - k^2 \right] \psi_2 + 2ik \frac{\partial \psi_2}{\partial z} = 0 \)

Same second order linear differential equations for loss-less media

\(\varepsilon (r) \in \mathbb{R} \Rightarrow [\psi_2 (z = 0) = a.\overline{\psi_1 (z = 0)} \iff \forall z, \psi_2 (z) = a.\overline{\psi_1 (z)}] \)
Distortion correction theorem

If a backward traveling wave is phase conjugate *somewhere* then it is *everywhere*

Take a paraxial forward propagating wave

- Expressed as: \(E_1 (r, t) = \psi_1 (r) e^{i(\omega t - kz)} \)
- Obeys the wave equation: \(\Delta E_1 + \omega^2 \mu_0 \varepsilon (r) E_1 = 0 \)
- In the paraxial limit: \(\Delta \psi_1 + \left[\omega^2 \mu_0 \varepsilon (r) - k^2 \right] \psi_1 - 2ik \frac{\partial \psi_1}{\partial z} = 0 \)
- Conjugate equation: \(\Delta \overline{\psi_1} + \left[\omega^2 \mu_0 \varepsilon (r) - k^2 \right] \overline{\psi_1} + 2ik \frac{\partial \overline{\psi_1}}{\partial z} = 0 \)

Had we taken a backward propagating wave

- Expressed as: \(E_2 (r, t) = \psi_2 (r) e^{i(\omega t + kz)} \)
- Paraxial equation \((z \rightarrow -z)\): \(\Delta \psi_2 + \left[\omega^2 \mu_0 \varepsilon (r) - k^2 \right] \psi_2 + 2ik \frac{\partial \psi_2}{\partial z} = 0 \)

Same second order linear differential equations for loss-less media

\(\varepsilon (r) \in \mathbb{R} \Rightarrow \psi_2 (z = 0) = a.\overline{\psi_1 (z = 0)} \Leftrightarrow \forall z, \psi_2 (z) = a.\overline{\psi_1 (z)} \)
Principle and application of phase conjugation

Generation of phase conjugate waves

Self Pumping and Holography

Distortion correction theorem

The distortion correction theorem

If a backward traveling wave is phase conjugate *somewhere* then it is *everywhere*

Take a paraxial forward propagating wave

- Expressed as: \(E_1(r, t) = \psi_1(r) e^{i(\omega t - k z)} \)
- Obeys the wave equation: \(\Delta E_1 + \omega^2 \mu_0 \varepsilon(r) E_1 = 0 \)
- In the paraxial limit: \(\Delta \psi_1 + \left[\omega^2 \mu_0 \varepsilon(r) - k^2 \right] \psi_1 - 2ik \frac{\partial \psi_1}{\partial z} = 0 \)
- Conjugate equation: \(\Delta \overline{\psi_1} + \left[\omega^2 \mu_0 \overline{\varepsilon(r)} - k^2 \right] \overline{\psi_1} + 2ik \frac{\overline{\partial \psi_1}}{\partial z} = 0 \)

Had we taken a backward propagating wave

- Expressed as: \(E_2(r, t) = \psi_2(r) e^{i(\omega t + k z)} \)
- Paraxial equation (\(z \rightarrow -z \)): \(\Delta \psi_2 + \left[\omega^2 \mu_0 \varepsilon(r) - k^2 \right] \psi_2 + 2ik \frac{\partial \psi_2}{\partial z} = 0 \)

Same second order linear differential equations for loss-less media

\(\varepsilon(r) \in \mathbb{R} \Rightarrow \left[\psi_2(z = 0) = a.\psi_1(z = 0) \right] \Leftrightarrow \forall z, \psi_2(z) = a.\overline{\psi_1(z)} \)
The distortion correction theorem
If a backward traveling wave is phase conjugate *somewhere* then it is *everywhere*

<table>
<thead>
<tr>
<th>Take a paraxial forward propagating wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressed as: (E_1 (r, t) = \psi_1 (r) e^{i(\omega t - k z)})</td>
</tr>
<tr>
<td>Obey the wave equation: (\Delta E_1 + \omega^2 \mu_0 \varepsilon (r) E_1 = 0)</td>
</tr>
<tr>
<td>In the paraxial limit: (\Delta \psi_1 + \left[\omega^2 \mu_0 \varepsilon (r) - k^2 \right] \psi_1 - 2ik \frac{\partial \psi_1}{\partial z} = 0)</td>
</tr>
<tr>
<td>Conjugate equation: (\Delta \overline{\psi_1} + \left[\omega^2 \mu_0 \overline{\varepsilon (r)} - k^2 \right] \overline{\psi_1} + 2ik \frac{\partial \overline{\psi_1}}{\partial z} = 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Had we taken a backward propagating wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressed as: (E_2 (r, t) = \psi_2 (r) e^{i(\omega t + k z)})</td>
</tr>
<tr>
<td>Paraxial equation ((z \rightarrow -z)): (\Delta \psi_2 + \left[\omega^2 \mu_0 \varepsilon (r) - k^2 \right] \psi_2 + 2ik \frac{\partial \psi_2}{\partial z} = 0)</td>
</tr>
</tbody>
</table>

Same second order linear differential equations for loss-less media

\[\varepsilon (r) \in \mathbb{R} \Rightarrow \left[\psi_2 (z = 0) = a.\psi_1 (z = 0) \iff \forall z, \psi_2 (z) = a.\psi_1 (z) \right] \]
Distortion correction theorem

If a backward traveling wave is phase conjugate somewhere then it is everywhere.

Take a paraxial forward propagating wave

- Expressed as: $E_1(r, t) = \psi_1(r) e^{i(\omega t - kz)}$
- Obeys the wave equation: $\Delta E_1 + \omega^2 \mu_0 \varepsilon(r) E_1 = 0$
- In the paraxial limit: $\Delta \psi_1 + \left[\omega^2 \mu_0 \varepsilon(r) - k^2 \right] \psi_1 - 2ik \frac{\partial \psi_1}{\partial z} = 0$
- Conjugate equation: $\Delta \overline{\psi_1} + \left[\omega^2 \mu_0 \varepsilon(r) - k^2 \right] \overline{\psi_1} + 2ik \frac{\partial \overline{\psi_1}}{\partial z} = 0$

Had we taken a backward propagating wave

- Expressed as: $E_2(r, t) = \psi_2(r) e^{i(\omega t + kz)}$
- Paraxial equation ($z \rightarrow -z$): $\Delta \psi_2 + \left[\omega^2 \mu_0 \varepsilon(r) - k^2 \right] \psi_2 + 2ik \frac{\partial \psi_2}{\partial z} = 0$

Same second order linear differential equations for loss-less media

$$\varepsilon(r) \in \mathbb{R} \Rightarrow \left[\psi_2(z = 0) = a \overline{\psi_1(z = 0)} \Leftrightarrow \forall z, \psi_2(z) = a \overline{\psi_1(z)} \right]$$
1. Principle and application of phase conjugation
 - Experiment
 - Distortion correction theorem

2. Generation of phase conjugate waves
 - Non Linear Polarization Development
 - Four wave mixing coupled mode formulation
 - Conjugate wave amplitude

3. Self Pumped Phase Conjugation and Holography
 - Four Wave Mixing from a holographic point of view
 - Phase Conjugation without pumping
Four wave mixing
Third Order Non Linear Optics

Flashback : Second Order
- Relies on $\chi_2 : P_{NL} \propto E^2$
- Two waves mix to generate a third one
 $\omega_1 \pm \omega_2 \rightarrow \omega_3$
- Second Harmonic Generation, Optical Parametric Amplification, Optical Parametric Oscillation...

Third order
- Relies on $\chi_3 : P_{NL} \propto E^3$
- Three waves mix to generate a fourth one
 $\omega_1 \pm \omega_2 \pm \omega_3 \rightarrow \omega_4$
- Phase conjugation for $\omega_4 = \omega_1 + \omega_2 - \omega_3$? Let’s see...
Principle and application of phase conjugation

Generation of phase conjugate waves

Self Pumping and Holography

Non Linear Polarization Development

Four wave mixing
Third Order Non Linear Optics

Flashback : Second Order

- Relies on $\chi_2 : P_{NL} \propto E^2$
- Two waves mix to generate a third one
- $\omega_1 \pm \omega_2 \rightarrow \omega_3$
- Second Harmonic Generation, Optical Parametric Amplification, Optical Parametric Oscillation. . .

Third order

- Relies on $\chi_3 : P_{NL} \propto E^3$
- **Three** waves mix to generate a **fourth** one
- $\omega_1 \pm \omega_2 \pm \omega_3 \rightarrow \omega_4$
- Phase conjugation for $\omega_4 = \omega_1 + \omega_2 - \omega_3$? Let’s see. . .
Non Linear Polarization Development

Non Linear Polarization P_{NL}

General polarization development

$$[P]_i = \varepsilon_0 [\chi]_{ij} [E]_j + 2[d]_{ijk} [E]_j [E]_k + 4[\chi]_{ijkl} [E]_j [E]_k [E]_l$$

Third order non linear development\(^1\) around $\omega_4 = \omega_1 + \omega_2 - \omega_3$

$$[P_{NL}]_i (\omega_4) = 6[\chi]_{ijkl} [E]_j (\omega_1) [E]_k (\omega_2) [E]_l (\omega_3) e^{i(\omega t + k_4 r)}$$

Degenerate Four wave mixing: $\omega = \omega + \omega - \omega$

$$[P_{NL}]_i (\omega) = 6[\chi]_{ijkl} [E]_j (\omega) [E]_k (\omega) [E]_l (\omega) e^{i(\omega t + kr)}$$

\(^1\)As an exercise, you can multiply, sum-up and keep only ω_4 related terms... and find k_4
Non Linear Polarization Development

Non Linear Polarization P_{NL}

<table>
<thead>
<tr>
<th>General polarization development</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[P]i = \varepsilon_0 [\chi]{ij} [E]j + 2 [d]{ijk} [E]_j [E]k + 4 [\chi]{ijkl} [E]_j [E]_k [E]_l$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third order non linear development1 around $\omega_4 = \omega_1 + \omega_2 - \omega_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[P_{NL}]i (\omega_4) = 6 [\chi]{ijkl} [E]_j (\omega_1) [E]_k (\omega_2) \overline{[E]_l (\omega_3)} e^{i(\omega_4 t + k_4 r)}$</td>
</tr>
</tbody>
</table>

Degenerate Four wave mixing: $\omega = \omega + \omega - \omega$

| $[P_{NL}]_i (\omega) = 6 [\chi]_{ijkl} [E]_j (\omega) [E]_k (\omega) \overline{[E]_l (\omega)} e^{i(\omega t + k r)}$ |

1As an exercise, you can multiply, sum-up and keep only ω_4 related terms... and find k_4
Non Linear Polarization Development

Non Linear Polarization P_{NL}

General polarization development

\[[P]_i = \varepsilon_0 [\chi]_{ij} [E]_j + 2 [d]_{ijk} [E]_j [E]_k + 4 [\chi]_{ijkl} [E]_j [E]_k [E]_l \]

Third order non linear development\(^1\) around $\omega_4 = \omega_1 + \omega_2 - \omega_3$

\[[P_{NL}]_i (\omega_4) = 6 [\chi]_{ijkl} [E]_j (\omega_1) [E]_k (\omega_2) \overline{[E]_l (\omega_3)} e^{i(\omega_4 t + k_4 r)} \]

Degenerate Four wave mixing:

\[[P_{NL}]_i (\omega) = 6 [\chi]_{ijkl} [E]_j (\omega) [E]_k (\omega) \overline{[E]_l (\omega)} e^{i(\omega t + k r)} \]

\(^1\)As an exercise, you can multiply, sum-up and keep only ω_4 related terms... and find k_4
1. Principle and application of phase conjugation
 - Experiment
 - Distortion correction theorem

2. Generation of phase conjugate waves
 - Non Linear Polarization Development
 - Four wave mixing coupled mode formulation
 - Conjugate wave amplitude

3. Self Pumped Phase Conjugation and Holography
 - Four Wave Mixing from a holographic point of view
 - Phase Conjugation without pumping
Degenerate Four Wave mixing configuration

- $A_1 = A_2$ intense plane pumps
- A_3 is the signal
- We seek A_4

In a Non Linear Medium, for $z = 0$ to $z = L$:

$A_1 A_2 A_3 A_4$
Signal wave equation

Let us start with the standard non linear wave equation

$$\Delta E - \mu_0 \varepsilon \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2}$$

Signal A_3 propagation

- Each wave has its own direction and polarization
- They can be treated separately

$$\text{Signal Equation:} \quad \mu_0 \varepsilon \frac{\partial^2 A_3}{\partial t^2} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2}$$
Signal wave equation

Let us start with the standard non linear wave equation

$$\Delta E - \mu_0 \varepsilon \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2}$$

Signal A_3 propagation

- Each wave has its own direction and polarization
- They can be treated separately
- With $\Delta E_3 = \Re e \left[\left(-k^2 A_3 - 2i k \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right]$
- $\Re e \left[\left(\left(\omega^2 \mu_0 \varepsilon - k^2 \right) A_3 - 2i k \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right] = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2}$
Let us start with the standard non linear wave equation

$$\Delta E - \mu_0 \varepsilon \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2}$$

Signal A_3 propagation

- Each wave has its own direction and polarization
- They can be treated separately

With \(\Delta E_3 = \text{Re} \left[\left(-k^2 A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right] \)

\[\text{Re} \left[\left(\left(\omega^2 \mu_0 \varepsilon - k^2 \right) A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right] = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2} \]
Let us start with the standard non linear wave equation

\[\Delta E - \mu_0 \varepsilon \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2} \]

Signal \(A_3 \) propagation

- Each wave has its own direction and polarization
- They can be treated separately
- With \(\Delta E_3 = \Re \left[\left(-k^2 A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right] \)
- \(\Re \left[\left(\omega^2 \mu_0 \varepsilon - k^2 \right) A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \] =

\[\mu_0 \frac{\partial^2 P_{NL}}{\partial t^2} \]
Let us start with the standard non linear wave equation

$$\Delta E - \mu_0 \varepsilon \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2}$$

Signal A_3 propagation

- Each wave has its own direction and polarization
- They can be treated separately
- With $\Delta E_3 = \mathcal{R}e \left[\left(-k^2 A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right]$
- $\mathcal{R}e \left[\left(\left(\omega^2 \mu_0 \varepsilon - k^2 \right) A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right] = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2}$
Let us start with the standard non linear wave equation

\[\Delta E - \mu_0 \varepsilon \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2} \]

Signal \(A_3 \) propagation

- Each wave has its own direction and polarization
- They can be treated separately
- With \(\Delta E_3 = \Re \left[\left(-k^2 A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right] \)
- \(\Re \left[\left(\omega^2 \mu_0 \varepsilon - k^2 \right) A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \] = \(\mu_0 \frac{\partial^2 P_{NL}}{\partial t^2} \)

Dispersion equation

\[\omega^2 \mu_0 \varepsilon = k^2 \]
Let us start with the standard non linear wave equation

\[\Delta E - \mu_0 \varepsilon \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2} \]

Signal \ A_3 \ propagation

- Each wave has its own direction and polarization
- They can be treated separately
- With \(\Delta E_3 = R\text{e} \left[\left(-k^2 A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right] \)

\[R\text{e} \left[\left(-2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right] = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2} \]

Assumption

Slow varying assumed: \(\| k \frac{\partial A_3}{\partial z} \| \gg \| \frac{\partial^2 A_3}{\partial z^2} \| \)
Signal wave equation

Let us start with the standard non linear wave equation

\[\Delta E - \mu_0 \varepsilon \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2} \]

Signal \(A_3 \) propagation

- Each wave has its own direction and polarization
- They can be treated separately
- With \(\Delta E_3 = \text{Re} \left[\left(-k^2 A_3 - 2ik \frac{\partial A_3}{\partial z} + \frac{\partial^2 A_3}{\partial z^2} \right) e^{i(\omega t - kz)} \right] \)
- \(\text{Re} \left[\left(-2ik \frac{\partial A_3}{\partial z} \right) e^{i(\omega t - kz)} \right] = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2} \)

Evaluation of the non linear polarization \(P_{NL} \)

Let us take a look at the terms which involve \(e^{i(\omega t \pm kz)} \)
Stripping the non linear polarization to useful terms

Keeping only the relevant terms which contain $e^{i(\omega t \pm kz)}$

Expansion of third order non linear polarization

$$[P_{NL}]_i = \mathcal{R}e \left[6 \left(\begin{array}{cccc} [\chi]_{ijkl} & [A_1]_j & [A_2]_k & [A_4]_l \\ + & [\chi]_{ijji} & [A_1]_j & [A_1]_j \\ + & [\chi]_{ikk} & [A_2]_k & [A_2]_k \\ + & [\chi]_{iiii} & [A_3]_i & [A_3]_i \\ + & [\chi]_{illi} & [A_4]_l & [A_4]_l \end{array} \right) e^{i(\omega t - kz)} \right]$$

Simplifying assumptions

- Intense pump beam terms are dominant
- Polarizations are
 - either all the same, only $[\chi]_{iiii}$ involved
 - or $(A_1/A_2) \perp (A_3/A_4)$, only $[\chi]_{ijji}, i \neq j$ involved
Principle and application of phase conjugation

Generation of phase conjugate waves

Self Pumping and Holography

Four wave mixing coupled mode formulation

Stripping the non linear polarization to useful terms

Keeping only the relevant terms which contain $e^{i(\omega t \pm kz)}$

Expansion of third order non linear polarization

$$ [P_{NL}]_i = \Re e \left[6 \left(\begin{array}{cccc} [\chi]_{ijkl} & [A_1]_j & [A_2]_k & [A_4]_l \\ + [\chi]_{jjji} & [A_1]_j & [A_1]_j & [A_3]_i \\ + [\chi]_{kkki} & [A_2]_k & [A_2]_k & [A_3]_i \\ + [\chi]_{iiii} & [A_3]_i & [A_3]_i & [A_3]_i \\ + [\chi]_{iiii} & [A_4]_i & [A_4]_i & [A_3]_i \end{array} \right) \right] e^{i(\omega t - kz)} $$

Simplifying assumptions

- Intense pump beam terms are dominant
- Polarizations are
 - either all the same, only $[\chi]_{iiii}$ involved
 - or $(A_1/A_2) \perp (A_3/A_4)$, only $[\chi]_{jjji}, i \neq j$ involved

$$ [P_{NL}]_i = \chi^{(3)} \left[(\|A_1\|^2 + \|A_2\|^2) A_3 + A_1 A_2 A_3 \right] e^{i(\omega t - kz)} $$

$$ \chi^{(3)} = 6 [\chi]_{iiii} \text{ or } \chi^{(3)} = 6 [\chi]_{jjji} $$
Stripping the non linear polarization to useful terms
Keeping only the relevant terms which contain $e^{i(\omega t \pm kz)}$

Expansion of third order non linear polarization

$$[P_{NL}]_i = \mathcal{R}e \left[6 \left(\begin{array}{c} [\chi]_{ijkl} [A_1]_j [A_2]_k [A_4]_l \\ + [\chi]_{ijji} [A_1]_j [A_1]_j [A_3]_i \\ + [\chi]_{ikki} [A_2]_k [A_2]_k [A_3]_i \end{array} \right) e^{i(\omega t - kz)} \right]$$

Simplifying assumptions

- Intense pump beam terms are dominant
- Polarizations are
 - either all the same, only $[\chi]_{iii}$ involved
 - or $(A_1/A_2) \perp (A_3/A_4)$, only $[\chi]_{iji}$, $i \neq j$ involved

$$[P_{NL}]_i = \chi^{(3)} \left(\|A_1\|^2 + \|A_2\|^2 \right) A_3 + A_1 A_2 A_4 e^{i(\omega t - kz)}$$

$$\chi^{(3)} = 6[\chi]_{iii} \text{ or } \chi^{(3)} = 6[\chi]_{iji}$$
Stripping the non linear polarization to useful terms
Keeping only the relevant terms which contain $e^{i(\omega t \pm k z)}$

Expansion of third order non linear polarization

\[
[P_{NL}]_i = \Re \left[6 \left([\chi]_{ijkl} [A_1]_j [A_2]_k [A_4]_l + [\chi]_{ijji} [A_1]_j [A_1]_j [A_3]_i + [\chi]_{ikki} [A_2]_k [A_2]_k [A_3]_i \right) e^{i(\omega t - k z)} \right]
\]

Simplifying assumptions

- Intense pump beam terms are dominant
- Polarizations are
 - either all the same, only $[\chi]_{iii}$ involved
 - or $(A_1/A_2) \perp (A_3/A_4)$, only $[\chi]_{ijji}$, $i \neq j$ involved

\[
[P_{NL}]_i = \chi^{(3)} \left[(\|A_1\|^2 + \|A_2\|^2) A_3 + A_1 A_2 A_4 \right] e^{i(\omega t - k z)}
\]

\[
\chi^{(3)} = 6[\chi]_{iii} \quad \text{or} \quad \chi^{(3)} = 6[\chi]_{ijji}
\]
Principle and application of phase conjugation

Generation of phase conjugate waves

Self Pumping and Holography

Four wave mixing coupled mode formulation

Resulting coupled wave propagation equation

Coupled wave equation resulting of P_{NL}

$$-2ik \frac{\partial A_3}{\partial z} e^{i(\omega t - kz)} = \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2}$$

Further simplification

- Homogeneous refraction index modulation: Kerr effect
- Simple phase factor change
- Remove it from equation $A'_1 = A_1 e^{-ikz} \sqrt{\|A_1\|^2 + \|A_3\|^2}$

Simplified coupling equations

$$\frac{\partial A'_3}{\partial z} = \kappa A'_4$$
$$\frac{\partial A'_4}{\partial z} = \kappa A'_3$$

obtained through the same kind of derivation
Resulting coupled wave propagation equation

Coupled wave equation resulting of P_{NL}

\[
\frac{\partial A_3}{\partial z} = -i \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} \left[(\|A_1\|^2 + \|A_2\|^2) A_3 + A_1 A_2 A_4 \right]
\]

Further simplification

- Homogeneous refraction index modulation : Kerr effect
- Simple phase factor change
- Remove it from equation $A_i' = A_i e^{-i/2 \sqrt{\mu_0/\varepsilon} \chi^{(3)}(\|A_1\|^2 + \|A_2\|^2) z}$

Set $\kappa = \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} A_1 A_2$

Simplified coupling equations

\[
\begin{align*}
\frac{\partial A_3'}{\partial z} &= i \kappa A_4' \\
\frac{\partial A_4'}{\partial z} &= i \kappa A_3'
\end{align*}
\]

obtained through the same kind of derivation.
Resulting coupled wave propagation equation

Coupled wave equation resulting of P_{NL}

\[
\frac{\partial A_3}{\partial z} = -i \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} \left[(\|A_1\|^2 + \|A_2\|^2) A_3 + A_1 A_2 \overline{A_4} \right]
\]

Further simplification

- Homogeneous refraction index modulation: Kerr effect
 - Simple phase factor change
 - Remove it from equation $A'_i = A_i e^{-i \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} (\|A_1\|^2 + \|A_2\|^2) z}$

Set $\kappa = \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} A_1 A_2$

Simplified coupling equations

- $\frac{\partial A'_3}{\partial z} = i\kappa A'_4$
- $\frac{\partial A'_4}{\partial z} = i\kappa A'_3$
Principle and application of phase conjugation

Generation of phase conjugate waves

Self Pumping and Holography

Four wave mixing coupled mode formulation

Resulting coupled wave propagation equation

Coupled wave equation resulting of \(P_{NL} \)

\[
\frac{\partial A_3}{\partial z} = -i \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} \left[(|A_1|^2 + |A_2|^2) A_3 + A_1 A_2 \overline{A_4} \right]
\]

Further simplification

- Homogeneous refraction index modulation: Kerr effect
 - Simple phase factor change
 - Remove it from equation \(A'_i = A_i e^{-i \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} (|A_1|^2+|A_2|^2)} z \)
- Set \(\kappa = \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} A_1 A_2 \)

Simplified coupling equations

- \(\frac{\partial A_4}{\partial z} = i \kappa A_4 \)
- \(\frac{\partial A_3}{\partial z} = i \kappa A_3 \)

obtained through the same kind of derivation.
Resulting coupled wave propagation equation

Coupled wave equation resulting of P_{NL}

$$\frac{\partial A_3}{\partial z} = -i \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} \left[(\|A_1\|^2 + \|A_2\|^2) A_3 + A_1 A_2 \overline{A_4} \right]$$

Further simplification

- Homogeneous refraction index modulation: Kerr effect
 - Simple phase factor change
 - Remove it from equation $A'_i = A_i e^{-i \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} (\|A_1\|^2 + \|A_2\|^2) z}$
- Set $\kappa = \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} A_1 A_2$

Simplified coupling equations

$$\frac{\partial A'_3}{\partial z} = i \kappa A'_4$$
$$\frac{\partial A'_4}{\partial z} = i \kappa A'_3$$

obtained through the same kind of derivation
Resulting coupled wave propagation equation

Coupled wave equation resulting of \(P_{NL} \)

\[
\frac{\partial A_3}{\partial z} = -i \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} \left[\left(\|A_1\|^2 + \|A_2\|^2 \right) A_3 + A_1 A_2 \overline{A_4} \right]
\]

Further simplification

- Homogeneous refraction index modulation: Kerr effect
 - Simple phase factor change
 - Remove it from equation \(A'_i = A_i e^{i \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} \left(\|A_1\|^2 + \|A_2\|^2 \right) z} \)

- Set \(\kappa = \frac{\omega}{2} \sqrt{\frac{\mu_0}{\varepsilon}} \chi^{(3)} A_1 A_2 \)

Simplified coupling equations

\[
\frac{\partial A'_3}{\partial z} = i \kappa A'_4
\]

\[
\frac{\partial A'_4}{\partial z} = i \kappa \overline{A'_3}
\]
1. Principle and application of phase conjugation
 - Experiment
 - Distortion correction theorem

2. Generation of phase conjugate waves
 - Non Linear Polarization Development
 - Four wave mixing coupled mode formulation
 - Conjugate wave amplitude

3. Self Pumped Phase Conjugation and Holography
 - Four Wave Mixing from a holographic point of view
 - Phase Conjugation without pumping
Conjugate wave amplitude

General solution

Boundary conditions at $z = 0$ and $z = L$

\[A_3 \text{ is forward propagating} \]
\[A'_3 (z) = -i \frac{|\kappa| \sin (|k| z)}{\kappa \cos (|k| L)} A'_4 (L) + \frac{\cos (|k| (z - L))}{\cos (|k| L)} A'_3 (0) \]

\[A'_4 (z) = \frac{\cos (|k| z)}{\cos (|k| L)} A'_4 (L) + i \frac{|\kappa| \sin (|k| (z - L))}{|k| \cos (|k| L)} A'_3 (0) \]

One beam experiment

\[A'_4 (L) = 0 \]

\[A'_3 (L) = \frac{A'_3 (0)}{\cos (|k| L)} \]

Coherent amplifier
Conjugate wave amplitude

General solution

Boundary conditions at \(z = 0 \) and \(z = L \)

\(A_3 \) is forward propagating

\[
A_3' (z) = -i \frac{\kappa |k| z}{\kappa \cos(|k| L)} A_4'(L) + \frac{\cos(|k|(z - L))}{\cos(|k| L)} A_3'(0)
\]

\[
A_4' (z) = \frac{\cos(|k| z)}{\cos(|k| L)} A_4'(L) + i \frac{\kappa}{|k| \cos(|k| L)} \sin(|k|(z - L)) A_3'(0)
\]

One beam experiment

\(A_4'(L) = 0 \)

\[
A_3'(L) = \frac{A_3'(0)}{\cos(|k| L)}
\]

\[
A_4'(0) = -i \frac{\kappa}{|k| \tan(|k| L)} A_3'(0)
\]

Coherent amplifier

Reflectivity can exceed 1
Conjugate wave amplitude

General solution

Boundary conditions at $z = 0$ **and** $z = L$

<table>
<thead>
<tr>
<th>A_3 is forward propagating</th>
<th>A_4 is backward propagating</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A'_3(z) = -i \frac{\kappa</td>
<td>k</td>
</tr>
</tbody>
</table>

One beam experiment

$A'_4(L) = 0$

- $A'_3(L) = \frac{A'_3(0)}{\cos(|k|L)}$
- $A'_4(0) = -i \frac{\kappa}{|\kappa|} \tan(|\kappa|L) \overline{A'_3(0)}$

Coherent amplifier

Reflectivity can exceed 1
General solution

Boundary conditions at $z = 0$ and $z = L$

<table>
<thead>
<tr>
<th>A_3 is forward propagating</th>
<th>A_4 is backward propagating</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A'_3 (z) = -i \frac{</td>
<td>\kappa</td>
</tr>
</tbody>
</table>

One beam experiment

<table>
<thead>
<tr>
<th>$A'_4 (L) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A'_3 (L) = \frac{A'_3 (0)}{\cos (</td>
</tr>
<tr>
<td>$A'_4 (0) = -i \frac{</td>
</tr>
</tbody>
</table>
What if \(\cos(|k|L) = 0 \)?

- Infinite gain
- \(A_3 \) and \(A_4 \) start from noise
- Spontaneous oscillations
One Beam experiment and phase factor

One beam experiment

- $A'_3(L) = \frac{A'_3(0)}{\cos(|k|L)}$
- $A'_4(0) = -i \frac{\kappa}{|\kappa|} \tan(|\kappa|L) A'_3(0)$

What if $\cos(|k|L) = 0$?

- Infinite gain
- A_3 and A_4 start from noise
- Spontaneous oscillations
Conjugate wave amplitude

One Beam experiment and phase factor

One beam experiment

- $A'_3 (L) = \frac{A'_3(0)}{\cos(|k|L)}$
- $A'_4 (0) = -i \frac{\kappa}{|\kappa|} \tan (|\kappa|L) A'_3(0)$

Coherent amplifier
Reflectivity can exceed 1

What if $\cos (|k|L) = 0$?

- Infinite gain
- A_3 and A_4 start from noise
- Spontaneous oscillations
1 Principle and application of phase conjugation
 - Experiment
 - Distortion correction theorem

2 Generation of phase conjugate waves
 - Non Linear Polarization Development
 - Four wave mixing coupled mode formulation
 - Conjugate wave amplitude

3 Self Pumped Phase Conjugation and Holography
 - Four Wave Mixing from a holographic point of view
 - Phase Conjugation without pumping
Four Wave Mixing from a holographic point of view

Four Wave Mixing is Real Time Holography

Write Hologram

\[T \propto \|A_1 + A_3\|^2 = \|A_1\|^2 + \|A_3\|^2 + A_1A_3 + A_3A_1 \]

Read Hologram with \(A_2 = \overline{A_1} \)

\[A_4 \propto TA_2 = (\|A_1\|^2 + \|A_3\|^2)A_2 + A_2A_1\overline{A_3} + A_2A_3\overline{A_1} \]
Four Wave Mixing from a holographic point of view

Four Wave Mixing is Real Time Holography

Write Hologram

\[
T \propto \|A_1 + A_3\|^2 = \|A_1\|^2 + \|A_3\|^2 + A_1 A_3 + A_3 A_1
\]

Read Hologram with \(A_2 = \overline{A_1}\)

\[
A_4 \propto T \overline{A_2} = (\|A_1\|^2 + \|A_3\|^2) \overline{A_2} + A_2 A_1 \overline{A_3} + A_2 A_3 \overline{A_1}
\]
1. Principle and application of phase conjugation
 - Experiment
 - Distortion correction theorem

2. Generation of phase conjugate waves
 - Non Linear Polarization Development
 - Four wave mixing coupled mode formulation
 - Conjugate wave amplitude

3. Self Pumped Phase Conjugation and Holography
 - Four Wave Mixing from a holographic point of view
 - Phase Conjugation without pumping
CAT Conjugator using Beam Fanning

Use Mirrors
CAT Conjugator using Beam Fanning

Figure: Beam fanning in photorefractive Baryum Titanate
CAT Conjugator using Beam Fanning

Figure: Beam fanning in photorefractive Baryum Titanate