UE SPM-PHO-S09-112
Photorefractivity

N. Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes
Unité de Recherche commune à l’Université Paul Verlaine Metz et à Supélec

Download this document:
http://moodle.univ-metz.fr/
Photorefractive effect
History began in 1966 as *Optical Damage*

Optical Damage in LiNbO₃

- Shine a light on LiNbO₃
- Remove it
- Shine another: damaged crystal

Semi-permanent effect

- Leave it in the dark: still damaged
- Leave it under uniform light: sometimes repaired

Today

- Photorefractivity can prove useful
- Some people still call it *optical damage*:
 - Bad for linear optics (electro-optic modulators…)
 - Bad for *instant* Non Linear Optics (SHG, OPA…)

Photorefractivity
Version 1.2
frame 2

N. Fressengeas

Band Transport
Harmonic illumination
Two Wave Mixing
Photorefractive effect
History began in 1966 as Optical Damage

Optical Damage in LiNbO\(_3\)
- Shine a light on LiNbO\(_3\)
- Remove it
- Shine another: damaged crystal

Semi-permanent effect
- Leave it in the dark: still damaged
- Leave it under uniform light: sometimes repaired

Today
- Photorefractivity can prove useful
- Some people still call it optical damage:
 - Bad for linear optics (electro-optic modulators…)
 - Bad for instant Non Linear Optics (SHG, OPA…)

Photorefractivity
Version 1.2
frame 2
N. Fressengeas
Band Transport
Harmonic illumination
Two Wave Mixing
Photorefractive effect
History began in 1966 as *Optical Damage*

Optical Damage in LiNbO$_3$
- Shine a light on LiNbO$_3$
- Remove it
- Shine another: *damaged crystal*

Semi-permanent effect
- Leave it in the dark: still damaged
- Leave it under uniform light: sometimes repaired

Today
- Photorefractivity can prove useful
- Some people still call it *optical damage*:
 - Bad for linear optics (electro-optic modulators...)
 - Bad for *instant* Non Linear Optics (SHG, OPA...)

Photorefractivity
Version 1.2
frame 2
N. Fressengeas

Band Transport
Harmonic illumination
Two Wave Mixing
Photorefractive effect
History began in 1966 as *Optical Damage*

<table>
<thead>
<tr>
<th>Optical Damage in LiNbO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Shine a light on LiNbO₃</td>
</tr>
<tr>
<td>■ Remove it</td>
</tr>
<tr>
<td>■ Shine another: damaged crystal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semi-permanent effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Leave it in the dark: still damaged</td>
</tr>
<tr>
<td>■ Leave it under uniform light: sometimes repaired</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Photorefractivity can prove useful</td>
</tr>
<tr>
<td>■ Some people still call it optical damage:</td>
</tr>
<tr>
<td>■ Bad for linear optics (electro-optic modulators...)</td>
</tr>
<tr>
<td>■ Bad for instant Non Linear Optics (SHG, OPA...)</td>
</tr>
</tbody>
</table>
Photorefractive effect
History began in 1966 as *Optical Damage*

Optical Damage in LiNbO₃
- Shine a light on LiNbO₃
- Remove it
- Shine another: *damaged crystal*

Semi-permanent effect
- Leave it in the dark: still damaged
- Leave it under uniform light: sometimes repaired

Today
- Photorefractivity can prove useful
- Some people still call it *optical damage*:
 - Bad for linear optics (electro-optic modulators...)
 - Bad for *instant* Non Linear Optics (SHG, OPA...)
Photorefractivity is attractive
Non linear optics at low optical power

Non Linear Optics

- Dynamic Holography
- Phase conjugation
- All optical computing
- ...
- At milliwatts and below power levels

Observed in many non linear crystals

- Sillenites: Bi$_{12}$SiO$_{20}$, Bi$_{12}$TiO$_{20}$, Bi$_{12}$GeO$_{20}$
- Tungsten-Bronze: Sr$_x$Ba$_{1-x}$Nb$_2$O$_6$
- Ferroelectrics: LiNbO$_3$, BaTiO$_3$
- Semiconductors: InP:Fe, AsGa
Photorefractivity is attractive
Non linear optics at low optical power

Non Linear Optics
- Dynamic Holography
- Phase conjugation
- All optical computing
- ...
- At milliwatts and below power levels

Observed in many non linear crystals
- Sillenites: $\text{Bi}_{12}\text{SiO}_{20}$, $\text{Bi}_{12}\text{TiO}_{20}$, $\text{Bi}_{12}\text{GeO}_{20}$
- Tungsten-Bronze: $\text{Sr}_x\text{Ba}_{1-x}\text{Nb}_2\text{O}_6$
- Ferroelectrics: LiNbO_3, BaTiO_3
- Semiconductors: $\text{InP}:\text{Fe}$, AsGa
Photorefractivity is attractive
Non linear optics at low optical power

- Dynamic Holography
- Phase conjugation
- All optical computing
- …
- At milliwatts and below power levels

Observed in many non linear crystals
- Sillenites: Bi$_{12}$SiO$_{20}$, Bi$_{12}$TiO$_{20}$, Bi$_{12}$GeO$_{20}$
- Tungsten-Bronze: Sr$_x$Ba$_{1-x}$Nb$_2$O$_6$
- Ferroelectrics: LiNbO$_3$, BaTiO$_3$
- Semiconductors: InP:Fe, AsGa
Usefull reading...

[Yeh93, GH88, GH89]

P. Günter and J. P. Huignard.
Photorefractive materials and their applications I, volume 61 of *Topics in Applied Physics*.

P. Günter and J. P. Huignard.
Photorefractive materials and their applications II, volume 62 of *Topics in Applied Physics*.

P. Yeh.
Introduction to photorefractive nonlinear optics.
Contents

1 Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2 Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3 Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
1 Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2 Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3 Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
Photorefractive charge transport and trapping

Linear Index Modulation

Space charge electric field generates refractive index variation through electro-optic effect
Photorefractive charge transport and trapping

Linear Index Modulation

Space charge electric field generates refractive index variation through electro-optic effect
Periodic illumination of a photorefractive material

- Optical Intensity
- Charge density
- Electric Field
- Refractive Index Change
1. Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2. Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3. Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
Donors wanted
Carriers are generated by donors: no donors, no carriers

Nominally pure crystals

- No in-band-gap level
 - No donor nor acceptor
 - No photorefractive effect
- Structural defects often present
- As well as pollutants
- They create in-band-gap levels
- Photorefractivity can arise from them

More efficient: doping

- Introduce in-band-gap species
- LiNbO$_3$:Fe, InP:Fe...
Donors wanted
Carriers are generated by donors: no donors, no carriers

Nominally pure crystals

- No in-band-gap level
 - No donor nor acceptor
 - No photorefractive effect
- Structural defects often present
- As well as pollutants
 - They create in-band-gap levels
 - Photorefractivity can arise from them

More efficient: doping

- Introduce in-band-gap species
 - LiNbO$_3$:Fe, InP:Fe...
Donors wanted
Carriers are generated by donors: no donors, no carriers

Nominally pure crystals
- No in-band-gap level
 - No donor nor acceptor
 - No photorefractive effect
- Structural defects often present
- As well as pollutants
- They create in-band-gap levels
- Photorefractivity can arise from them

More efficient: doping
- Introduce in-band-gap species
- LiNbO$_3$:Fe, InP:Fe...
Donors wanted
Carriers are generated by donors: no donors, no carriers

<table>
<thead>
<tr>
<th>Nominally pure crystals</th>
</tr>
</thead>
<tbody>
<tr>
<td>- No in-band-gap level</td>
</tr>
<tr>
<td>- No donor nor acceptor</td>
</tr>
<tr>
<td>- No photorefractive effect</td>
</tr>
<tr>
<td>- Structural defects often present</td>
</tr>
<tr>
<td>- As well as pollutants</td>
</tr>
<tr>
<td>- They create in-band-gap levels</td>
</tr>
<tr>
<td>- Photorefractivity can arise from them</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>More efficient: doping</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Introduce in-band-gap species</td>
</tr>
<tr>
<td>- LiNbO$_3$:Fe, InP:Fe...</td>
</tr>
</tbody>
</table>
Introducing Donors and Acceptors

Introduce Donors of electrons N_D
- Energy level close to conduction band
- They easily **give electrons** to conduction band

Introducing Acceptors $N_A \ll N_D$
- Photorefractivity needs traps
- Ionized donors are traps
- Introduce Acceptors close to the valence band
- They catch Donors electrons
- Donors are partially ionized $N_D^+ = N_A$
Introducing Donors and Acceptors

<table>
<thead>
<tr>
<th>Introduce Donors of electrons</th>
<th>N_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Energy level close to conduction band</td>
<td></td>
</tr>
<tr>
<td>- They easily give electrons to conduction band</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Introducing Acceptors</th>
<th>$N_A \ll N_D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Photorefractivity needs traps</td>
<td></td>
</tr>
<tr>
<td>- Ionized donors are traps</td>
<td></td>
</tr>
<tr>
<td>- Introduce Acceptors close to the valence band</td>
<td></td>
</tr>
<tr>
<td>- They catch Donors electrons</td>
<td></td>
</tr>
<tr>
<td>- Donors are partially ionized $N_D^+ = N_A$</td>
<td></td>
</tr>
</tbody>
</table>
Introducing Donors and Acceptors

Introduce Donors of electrons

- Energy level close to conduction band
- They easily give electrons to conduction band

Introducing Acceptors

- Photorefractivity needs traps
- Ionized donors are traps
 - Introduce Acceptors close to the valence band
 - They catch Donors electrons
 - Donors are partially ionized $N_D^+ = N_A$
Introducing Donors and Acceptors

Introduce Donors of electrons N_D
- Energy level close to conduction band
- They easily give electrons to conduction band

Introducing Acceptors $N_A \ll N_D$
- Photorefractivity needs traps
- Ionized donors are traps
- Introduce Acceptors close to the valence band
 - They catch Donors electrons
 - Donors are partially ionized $N_D^+ = N_A$
Introducing Donors and Acceptors

Introduce Donors of electrons N_D
- Energy level close to conduction band
- They easily give electrons to conduction band

Introducing Acceptors $N_A \ll N_D$
- Photorefractivity needs traps
- Ionized donors are traps
- Introduce Acceptors close to the valence band
- They catch Donors electrons
- Donors are partially ionized $N_D^+ = N_A$
Thermal carrier generation

We assume here that the only carriers are electrons... what if not?

Comes from temperature induced Brownian motion

- Temperature induced
- Electrons are **kicked** into conduction band

Rate proportional to donors-left-to-ionize density

\[
\frac{\partial n_e}{\partial t} = \beta (N_D - N_D^+)
\]

One generated electron leaves one ionized donor

\[
\frac{\partial n_e}{\partial t} = \frac{\partial N_D^+}{\partial t} = \beta (N_D - N_D^+)
\]
Thermal carrier generation

We assume here that the only carriers are electrons... what if not?

- Temperature induced
- Electrons are kicked into conduction band

Rate proportional to donors-left-to-ionize density

\[
\frac{\partial n_e}{\partial t} = \beta (N_D - N_D^+)
\]

One generated electron leaves one ionized donor

\[
\frac{\partial n_e}{\partial t} = \frac{\partial N_D^+}{\partial t} = \beta (N_D - N_D^+)
\]
Thermal carrier generation
We assume here that the only carriers are electrons... what if not?

Comes from temperature induced Brownian motion
- Temperature induced
- Electrons are kicked into conduction band

Rate proportional to donors-left-to-ionize density

\[
\frac{\partial n_e}{\partial t} = \beta (N_D - N_D^+)
\]

One generated electron leaves one ionized donor

\[
\frac{\partial n_e}{\partial t} = \frac{\partial N_D^+}{\partial t} = \beta (N_D - N_D^+)
\]
Photo-excitation of carriers

The photoelectric effect at work

- Photon **energy sufficient** to reach conduction band
- Rate proportional to light intensity I
- And to left-to-ionize donors

Photo-excitation rate

$$\frac{\partial n_e}{\partial t} = \frac{\partial N_D^+}{\partial t} = \sigma I (N_D - N_D^+)$$

The photo-ionization cross section σ

- Has the dimensions of a surface
- If I is given as a number of photon per surface units and time
- Sometimes the case, sometimes not...
Photo-excitation of carriers
The photoelectric effect at work

Photoelectric effect

- Photon energy sufficient to reach conduction band
- Rate proportional to light intensity \mathcal{I}
- And to left-to-ionize donors

Photo-excitation rate

$$\frac{\partial n_e}{\partial t} = \frac{\partial N^+_D}{\partial t} = \sigma \mathcal{I} (N_D - N^+_D)$$

The photo-ionization cross section σ

- Has the dimensions of a surface
- If \mathcal{I} is given as a number of photon per surface units and time
- Sometimes the case, sometimes not...
Photo-excitation of carriers
The photoelectric effect at work

Photoelectric effect
- Photon energy sufficient to reach conduction band
- Rate proportional to light intensity \mathcal{I}
- And to left-to-ionize donors

Photo-excitation rate
\[
\frac{\partial n_\text{e}}{\partial t} = \frac{\partial N_D^+}{\partial t} = \sigma \mathcal{I} (N_D - N_D^+)
\]

The photo-ionization cross section σ
- Has the dimensions of a surface
- If \mathcal{I} is given as a number of photon per surface units and time
- Sometimes the case, sometimes not...
Photo-excitation of carriers
The photoelectric effect at work

Photoelectric effect
- Photon energy sufficient to reach conduction band
- Rate proportional to light intensity \mathcal{I}
- And to left-to-ionize donors

Photo-excitation rate

$$\frac{\partial n_\text{e}}{\partial t} = \frac{\partial N_D^+}{\partial t} = \sigma \mathcal{I} \left(N_D - N_D^+\right)$$

The photo-ionization cross section σ
- Has the dimensions of a surface
- If \mathcal{I} is given as a number of photon per surface units and time
- Sometimes the case, sometimes not...
Photo-excitation of carriers
The photoelectric effect at work

Photoelectric effect
- Photon energy sufficient to reach conduction band
- Rate proportional to light intensity I
- And to left-to-ionize donors

Photo-excitation rate
\[\frac{\partial n_e}{\partial t} = \frac{\partial N_D^+}{\partial t} = \sigma I (N_D - N_D^+) \]

The photo-ionization cross section σ
- Has the dimensions of a surface
- If I is given as a number of photon per surface units and time
- Sometimes the case, sometimes not...
Carrier recombination

Recombination needs luck, electrons and empty traps

- A luck factor \(\xi \)
- Carriers density \(n_\text{e} \)
- Empty trap density \(N_D^+ \)

\[
\frac{\partial n_\text{e}}{\partial t} = \frac{\partial N_D^+}{\partial t} = -\xi n_\text{e} N_D^+
\]
Carrier recombination

Recombination needs luck, electrons and empty traps

- A luck factor ξ
- Carriers density n_e
- Empty trap density N_D^+

$$\frac{\partial n_\text{e}}{\partial t} = \frac{\partial N_D^+}{\partial t} = -\xi n_\text{e} N_D^+$$
Carriers rate equation
A combination of generation and recombination

\[
\frac{\partial N_D^+}{\partial t} = (\beta + \sigma I) (N_D - N_D^+) - \xi n_e N_D^+
\]
1 Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2 Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3 Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
Charge transport in the conduction band
An assumption of the Band Transport Model... sometimes untrue

Diffusion
- Due to Temperature and Brownian motion
- Think of it as *sugar in water* (or coffee)
- Depends on concentration variations

Drift under electric-field
- Needs electric-field
- Externally applied or diffusion generated
- Depends on electric field and mobility

Photovoltaic effect
- Sometimes called *photo-galvanic*
- Non-isotropic effect
- Think of solar cells: light generates current
- Depends on light intensity
Charge transport in the conduction band
An assumption of the Band Transport Model... sometimes untrue

Diffusion
- Due to Temperature and Brownian motion
- Think of it as sugar in water (or coffee)
- Depends on concentration variations

Drift under electric-field
- Needs electric-field
- Externally applied or diffusion generated
- Depends on electric field and mobility

Photovoltaic effect
- Sometimes called *photo-galvanic*
- Non-isotropic effect
- Think of solar cells: light generates current
- Depends on light intensity
Charge transport in the conduction band
An assumption of the Band Transport Model... sometimes untrue

Diffusion
- Due to Temperature and Brownian motion
- Think of it as sugar in water (or coffee)
- Depends on concentration variations

Drift under electric-field
- Needs electric-field
- Externally applied or diffusion generated
- Depends on electric field and mobility

Photovoltaic effect
- Sometimes called *photo-galvanic*
- Non-isotropic effect
- Think of solar cells: light generates current
- Depends on light intensity
Charge transport in the conduction band
An assumption of the Band Transport Model... sometimes untrue

Diffusion
- Due to Temperature and Brownian motion
- Think of it as sugar in water (or coffee)
- Depends on concentration variations

Drift under electric-field
- Needs electric-field
- Externally applied or diffusion generated
- Depends on *electric field* and *mobility*

Photovoltaic effect
- Sometimes called *photo-galvanic*
- Non-isotropic effect
- Think of solar cells: light generates current
- Depends on light intensity
Charge transport in the conduction band
An assumption of the Band Transport Model... sometimes untrue

Diffusion
- Due to Temperature and Brownian motion
- Think of it as sugar in water (or coffee)
- Depends on concentration variations

Drift under electric-field
- Needs electric-field
- Externally applied or diffusion generated
- Depends on electric field and mobility

Photovoltaic effect
- Sometimes called *photo-galvanic*
- Non-isotropic effect
- Think of solar cells: light generates current
- Depends on light intensity
Charge transport in the conduction band
An assumption of the Band Transport Model... sometimes untrue

Diffusion
- Due to Temperature and Brownian motion
- Think of it as sugar in water (or coffee)
- Depends on concentration variations

Drift under electric-field
- Needs electric-field
- Externally applied or diffusion generated
- Depends on electric field and mobility

Photovoltaic effect
- Sometimes called *photo-galvanic*
- Non-isotropic effect
- Think of solar cells: *light generates current*
- Depends on light intensity
Diffusion transport
Diffusion current from Fick’s first law linked to Einstein relation

Fick’s first law

\[\mathbf{J}_p = -D \nabla p \]

Einstein relation

- Links diffusion, absolute temperature \(T \) and Brownian motion through mobility
- Mobility \(\mu \) is the velocity to electric field ratio
 \[D = \mu_e k_B T / e \]

Diffusion Current

\[\mathbf{J} = -e \mathbf{J}_e \]
Diffusion transport

Diffusion current from Fick’s first law linked to Einstein relation

Fick’s first law

\[\mathbf{J}_p = -D \nabla p \]

Einstein relation

- Links diffusion, absolute temperature \(T \) and Brownian motion through mobility
- Mobility \(\mu \) is the velocity to electric field ratio

\[D = \mu \varepsilon k_B T / e \]

Diffusion Current

\[\mathbf{J} = -e \mathbf{J}_\varepsilon \]
Diffusion transport
Diffusion current from Fick’s first law linked to Einstein relation

<table>
<thead>
<tr>
<th>Fick’s first law</th>
<th>Particle flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{J}_p = -D \nabla p$</td>
<td></td>
</tr>
</tbody>
</table>

Einstein relation
- Links diffusion, absolute temperature T and Brownian motion through mobility
- Mobility μ is the velocity to electric field ratio

$$D = \mu \bar{e} k_B T / e$$

Diffusion Current

$$\mathbf{J} = -e \mathbf{J}_\bar{e}$$
Diffusion transport

Diffusion current from Fick’s first law linked to Einstein relation

<table>
<thead>
<tr>
<th>Fick’s first law</th>
<th>Particle flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\vec{J}_p = -D \text{grad}(p)]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einstein relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Links diffusion, absolute temperature T and Brownian motion through mobility</td>
</tr>
<tr>
<td>- Mobility μ is the velocity to electric field ratio</td>
</tr>
<tr>
<td>$D = \mu \varepsilon k_B T / e$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diffusion Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\vec{J} = +\mu \varepsilon k_B T \text{grad}(n_\varepsilon)]</td>
</tr>
</tbody>
</table>
Drift
A charged particle in an electric field...

Electric Field

- Externally applied
- Due to charged carrier diffusion

Drift current

- Electrons velocity: \(\mathbf{v} = -\mu_e \mathbf{E} \)
- Drift Current: \(\mathbf{J} = -e \times \mathbf{v} \)
 \[\mathbf{J} = en \mu_e \mathbf{E} \]
Drift
A charged particle in an electric field...

Electric Field
- Externally applied
- Due to charged carrier diffusion

Drift current
- Electrons velocity: \(\vec{v} = -\mu e \vec{E} \)
- Drift Current: \(\vec{J} = -e \times \vec{v} \)

\[\vec{J} = en_0 \mu e \vec{E} \]
Drift
A charged particle in an electric field...

Electric Field
- Externally applied
- Due to charged carrier diffusion

Drift current
- Electrons velocity: \(\vec{v} = -\mu \varepsilon \vec{E} \)
- Drift Current: \(\vec{J} = -e \times \vec{v} \)
 \[\vec{J} = en\varepsilon \mu \varepsilon \vec{E} \]
Photovoltaic current
An non isotropic effect stemming from crystal asymmetry

Origins
- Non centro-symmetric crystal e.g. LiNbO₃
- Anisotropic photo-electric effect
- Depends on light polarization

Photovoltaic tensor
- Rank 2
- Main component along polar axis
- Often reduced to a scalar

Photovoltaic Current
\[
\mathbf{J}_i = (N_D - N_D^+) \sum_{j,k} \beta^{ph}_{j,k} \mathbf{E}_j \mathbf{E}_k \mathbf{u}_i
\]
\[
\mathbf{J} \approx \beta^{ph} \mathbf{I} (N_D - N_D^+) \mathbf{c}
\]
Photovoltaic current
An non isotropic effect stemming from crystal asymmetry

Origins
- Non centro-symmetric crystal
 e.g. LiNbO$_3$
- Anisotropic photo-electric effect
- Depends on light polarization

Photovoltaic tensor
- Rank 2
- Main component along polar axis
- Often reduced to a scalar

Photovoltaic Current
\[
\vec{J}_i = (N_D - N_D^+) \sum_{j,k} [\beta^{ph}]_{j,k} \vec{E}_j \vec{E}_k \vec{u}_i
\]
\[
\vec{J} \approx \beta^{ph} I (N_D - N_D^+) \vec{c}
\]
Photovoltaic current
An non isotropic effect stemming from crystal asymmetry

Origins
- Non centro-symmetric crystal \(\text{e.g. LiNbO}_3 \)
- Anisotropic photo-electric effect
- Depends on light polarization

Photovoltaic tensor
- Rank 2
- Main component along polar axis
- Often reduced to a scalar

Photovoltaic Current
\[
\begin{align*}
\mathbf{J}_i &= (N_D - N_D^+) \sum_{j,k} \beta^{ph}_{j,k} \mathbf{E}_j \mathbf{E}_k \mathbf{u}_i \\
\mathbf{J} &\approx \beta^{ph} I (N_D - N_D^+) \mathbf{c}
\end{align*}
\]
Photovoltaic current
An non isotropic effect stemming from crystal asymmetry

Origins
- Non centro-symmetric crystal
 - e.g. LiNbO$_3$
- Anisotropic photo-electric effect
- Depends on light polarization

Photovoltaic tensor
- Rank 2
- Main component along polar axis
- Often reduced to a scalar

Photovoltaic Current

\[
\left[\vec{J} \right]_i = (N_D - N_D^+) \sum_{j,k} [\beta^{ph}]_{j,k} \left[\vec{E} \right]_j \left[\vec{E} \right]_k \vec{u}_i
\]

\[
\vec{J} \approx \beta^{ph} I (N_D - N_D^+) \vec{c}
\]
Band Transport Model
Also known as Kukhtarev model
Published in 1979

Ionized donors rate equation

\[\frac{\partial N_D^+}{\partial t} = (\beta + \sigma \mathcal{I}) (N_D - N_D^+) - \xi n_\theta N_D^+ \]

Current density expression

\[\mathbf{J} = \mu_0 k_B T \text{grad} (n_\theta) + en_\theta \mu_0 \mathbf{E} + \beta \varphi \mathcal{I} (N_D - N_D^+) \mathbf{c} \]

Quasi-static Maxwell model

- Continuity: \(\text{div} \left(\mathbf{J} \right) + \frac{\partial \rho}{\partial t} = 0 \)
- Charge: \(\rho = e (N_D^+ - N_A^- - n_\theta) \)
- Maxwell-Gauss: \(\text{div} \left(\mathbf{D} \right) = \rho \), with \(\mathbf{D} = \varepsilon \mathbf{E} \)
Ionized donors rate equation

\[
\frac{\partial N_D^+}{\partial t} = (\beta + \sigma I) (N_D - N_D^+) - \xi n_e N_D^+
\]

Current density expression

\[
\vec{J} = \mu_e k_B T \text{grad} (n_e) + e n_e \mu_e \vec{E} + \beta^{ph} I (N_D - N_D^+) \vec{c}
\]

Quasi-static Maxwell model

- Continuity: \(\text{div} (\vec{J}) + \frac{\partial \rho}{\partial t} = 0 \)
- Charge: \(\rho = e (N_D^+ - N_A^- - n_e) \)
- Maxwell-Gauss: \(\text{div} (\vec{D}) = \rho \), with \(\vec{D} = \hat{\varepsilon} \vec{E} \)
Band Transport Model
Also known as Kukhtarev model

Published in 1979

Ionized donors rate equation

$$\frac{\partial N_D^+}{\partial t} = (\beta + \sigma I) (N_D - N_D^+) - \xi n_e N_D^+$$

Current density expression

$$\vec{J} = \mu_e k_B T \text{grad} (n_e) + en_e \mu_e \vec{E} + \beta^{ph} I (N_D - N_D^+) \vec{c}$$

Quasi-static Maxwell model

- Continuity: $$\text{div}(\vec{J}) + \frac{\partial \rho}{\partial t} = 0$$
- Charge: $$\rho = e (N_D^+ - N_A^- - n_e)$$
- Maxwell-Gauss: $$\text{div}(\vec{D}) = \rho$$, with $$\vec{D} = \hat{\varepsilon} \vec{E}$$
1 **Band Transport Model**
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2 **Harmonic illumination**
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3 **Two Wave Mixing**
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
Refractive index modulation through electro-optics
Space-charge electric field induces refractive index variations

This is not an electro-optics lesson
Please refer to the electro-optics lesson

Anyhow...

- Light generated electric field: the space charge field \vec{E}
- In electro-optic materials: creates index modulation

$$[\Delta \frac{1}{n^2}]_{i,j} = \sum_k [r]_{ijk} \left[\vec{E} \right]_k$$

- Local modulation of refractive index
- Local modification of refractive index ellipsoid
Refractive index modulation through electro-optics
Space-charge electric field induces refractive index variations

This is not an electro-optics lesson
Please refer to the electro-optics lesson

Anyhow...

- Light generated electric field: the space charge field \vec{E}
- In electro-optic materials: creates index modulation

\[\Delta \frac{1}{n^2} \]_{i,j} = \sum_k [\hat{r}]_{ijk} [\vec{E}]_k

- Local modulation of refractive index
- Local modification of refractive index ellipsoid
Refractive index modulation through electro-optics
Space-charge electric field induces refractive index variations

This is not an electro-optics lesson
Please refer to the electro-optics lesson

Anyhow...

- Light generated electric field: the space charge field \vec{E}
- In electro-optic materials: creates index modulation
 \[
 \left[\Delta \frac{1}{n^2} \right]_{ij} = \sum_k [\hat{r}]_{ijk} \left[\vec{E} \right]_k
 \]
- Local modulation of refractive index
- Local modification of refractive index ellipsoid
1 Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2 Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3 Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
Periodic illumination from plane waves interference

Two plane waves interfering

- Same wavelength and coherent
- non collinear wave vectors \mathbf{k}_1 and \mathbf{k}_2: $\mathbf{K} = \mathbf{k}_2 - \mathbf{k}_1$
- Interference pattern: $I_{(0)}(1 + m \cos (\mathbf{K} \cdot \mathbf{r}))$
 - $I_{(0)} = I_1 + I_2$
 - $m = 2 \frac{\sqrt{I_1 I_2}}{I_1 + I_2}$

Harmonic assumptions

- $m \ll 1$: intensities are very different
- All unknowns are sum of
 - A large uniform background: order 0
 - A small harmonic modulation: order 1
- Linearity: orders can be uncoupled
 - Uniform intensity analysis
 - Followed by small signal analysis
Periodic illumination from plane waves interference

Two plane waves interfering

- **Same wavelength and coherent**
- **non collinear wave vectors** \vec{k}_1 and \vec{k}_2: $\vec{K} = \vec{k}_2 - \vec{k}_1$
- **Interference pattern**: $I_{(0)} \left(1 + m \cos \left(\vec{K} \cdot \vec{r} \right) \right)$
 - $I_{(0)} = I_1 + I_2$
 - $m = 2 \sqrt{\frac{I_1 I_2}{I_1 + I_2}}$

Harmonic assumptions

- $m \ll 1$: intensities are very different
- **All unknowns** are sum of
 - A large uniform background: order 0
 - A small harmonic modulation: order 1
- **Linearity**: orders can be uncoupled
 - Uniform intensity analysis
 - Followed by small signal analysis
Periodic illumination from plane waves interference

Two plane waves interfering

- Same wavelength and coherent
- Non collinear wave vectors \vec{k}_1 and \vec{k}_2: $\vec{K} = \vec{k}_2 - \vec{k}_1$
- Interference pattern: $I_{(0)} \left(1 + m \cos \left(\vec{K} \cdot \vec{r} \right) \right)$
 - $I_{(0)} = I_1 + I_2$
 - $m = 2 \sqrt{\frac{I_1 I_2}{I_1 + I_2}}$

Harmonic assumptions

- $m \ll 1$: intensities are very different
- All unknowns are sum of
 - A large uniform background: order 0
 - A small harmonic modulation: order 1
- Linearity: orders can be uncoupled
 - Uniform intensity analysis
 - Followed by small signal analysis
Simplifying assumptions

One dimension problem 1D
- Plane waves interference
- All phenomena are collinear to \vec{K}

Drift-diffusion transport only assumed
Photovoltaic effect assumed negligible
Photo-generation only assumed
Large intensities: thermal generation can be neglected
Steady state study
All temporal derivatives assumed zero
Simplifying assumptions

One dimension problem 1D
- Plane waves interference
- All phenomena are collinear to \mathbf{K}

Drift-diffusion transport only assumed
Photovoltaic effect assumed negligible

Photo-generation only assumed
Large intensities: thermal generation can be neglected

Steady state study
All temporal derivatives assumed zero
Simplifying assumptions

<table>
<thead>
<tr>
<th>One dimension problem 1D</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Plane waves interference</td>
</tr>
<tr>
<td>- All phenomena are collinear to \vec{K}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drift-diffusion transport only assumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photovoltaic effect assumed negligible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photo-generation only assumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large intensities: thermal generation can be neglected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steady state study</th>
</tr>
</thead>
<tbody>
<tr>
<td>All temporal derivatives assumed zero</td>
</tr>
</tbody>
</table>
Simplifying assumptions

One dimension problem (1D)
- Plane waves interference
- All phenomena are collinear to \vec{K}

Drift-diffusion transport only assumed

Photo-voltaic effect assumed negligible

Photo-generation only assumed
- Large intensities: thermal generation can be neglected

Steady state study
- All temporal derivatives assumed zero
1 Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2 Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3 Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
Carrier generation–recombination equilibrium

Steady state equilibrium

\[\frac{\partial N_D^+}{\partial t} = \sigma I (N_D - N_D^+) - \xi n_e N_D^+ \]

Uniform electric field

- \(\overrightarrow{D}(0) \) is homogeneous

small illumination

- \(n_e \ll N_A \)
- \(\sigma I \ll \xi N_A \)

Equilibrium homogeneous densities

- \(N_D^+(0) = N_A + n_e \)
- \(n_e(0) = \frac{N_D^+(0) - N_D}{\sigma I} \)
Carrier generation–recombination equilibrium

Steady state equilibrium

\[\sigma I (N_D - N^+_D) = \xi n_e N^+_D \]

Uniform electric field

- \(\overrightarrow{D}(0) \) is homogeneous
- \(\text{div}(\overrightarrow{D}(0)) = \rho(0) = 0 \)

Small illumination

- \(n_e \ll N_A \)
- \(\sigma I \ll \xi N_A \)

Equilibrium homogeneous densities

- \(N^+_D(0) = N_A + n_e(0) \)
- \(n_e(0) = \frac{N_A + N^+_D(0) - N_D(0)}{\sigma I} \)
Carrier generation–recombination equilibrium

Steady state equilibrium

\[\sigma \mathcal{I} (N_D - N_D^+) = \xi n_\text{e} N_D^+ \]

Uniform electric field

- \(\overrightarrow{D}^{(0)} \) is homogeneous
- \(\text{div} \left(\overrightarrow{D}^{(0)} \right) = \rho^{(0)} = 0 \)
- \(\frac{\rho^{(0)}}{e} = N_D^{+}(0) - N_A^- - n_\text{e}(0) = 0 \)

Small illumination

- \(n_\text{e} \ll N_A \)
- \(\sigma \mathcal{I} \ll \xi N_A \)

Equilibrium homogeneous densities

- \(N_D^{+}(0) = N_A + n_\text{e}(0) \)
- \(n_\text{e}(0) = \frac{N_D - N_A}{\xi N_A} \sigma \mathcal{I}(0) \)
Carrier generation–recombination equilibrium

Steady state equilibrium

\[\sigma \mathcal{I} \left(N_D - N_D^+ \right) = \xi n_\text{e} N_D^+ \]

Uniform electric field

- \(\overrightarrow{D}(0) \) is homogeneous
- \(\text{div} \left(\overrightarrow{D}(0) \right) = \rho(0) = 0 \)
 - \(\frac{\rho(0)}{e} = \frac{e}{N_D^+(0) - N_A^- - n_\text{e}(0)} = 0 \)

Small illumination

- \(n_\text{e} \ll N_A \)
- \(\sigma \mathcal{I} \ll \xi N_A \)

Equilibrium homogeneous densities

- \(N_D^+(0) = N_A + n_\text{e}(0) \)
- \(n_\text{e}(0) = \frac{N_D - N_A}{\xi N_A} \sigma \mathcal{I}(0) \)
Carrier generation–recombination equilibrium

Steady state equilibrium

\[\sigma I \left(N_D - N_D^+ \right) = \xi n_\varepsilon N_D^+ \]

Uniform electric field

- \(\overrightarrow{D}_0 \) is homogeneous
- \(\text{div}\left(\overrightarrow{D}_0 \right) = \rho(0) = 0 \)
- \(\rho(0) = \frac{\varepsilon}{N_D^+(0) - N_A^- - n_\varepsilon(0)} = 0 \)

Small illumination

- \(n_\varepsilon \ll N_A \)
- \(\sigma I \ll \xi N_A \)

Equilibrium homogeneous densities

- \(N_D^+(0) = N_A + n_\varepsilon(0) \)
- \(n_\varepsilon(0) = \frac{N_D - N_A}{\xi N_A} \sigma I(0) \)
Carrier generation–recombination equilibrium

Steady state equilibrium

\[\sigma I \left(N_D - N_D^+ \right) = \xi n_0 N_D^+ \]

Uniform electric field

- \(\overrightarrow{D}_{(0)} \) is homogeneous
- \(\text{div} \left(\overrightarrow{D}_{(0)} \right) = \rho_{(0)} = 0 \)
- \(N_D^+_{(0)} - N_A^- - n_0{(0)} = 0 \)

Small illumination

- \(n_0 \ll N_A \)
- \(\sigma I \ll \xi N_A \)

Equilibrium homogeneous densities

- \(N_D^+_{(0)} = N_A + n_0{(0)} \)
- \(n_0{(0)} = \frac{N_D - N_A}{\xi N_A} \sigma I_{(0)} \)
Carrier generation–recombination equilibrium

\[\sigma I \left(N_D - N_D^+ \right) = \xi n_\text{e} N_D^+ \]

Steady state equilibrium

Uniform electric field

- \(\vec{D}_0 \) is homogeneous
- \(\text{div}(\vec{D}_0) = \rho(0) = 0 \)
- \(N_D^+ (0) - N_A - n_\text{e}(0) = 0 \)

Small illumination

- \(n_\text{e} \ll N_A \)
- \(\sigma I \ll \xi N_A \)

Equilibrium homogeneous densities

- \(N_D^+(0) = N_A + n_\text{e}(0) \)
- \(n_\text{e}(0) = \frac{N_D - N_A}{\xi N_A} \sigma I(0) \)
1 Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2 Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3 Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
Order 1 framework
Basic multi-scale modeling

All quantities are assumed periodic

\[
\text{div}(\vec{X}) = i\vec{K} \cdot \vec{X}
\]

...

Order 0 assumed known
Order 1 assumed small

- \(\forall \vec{X}, \, X_{(1)} \ll X_{(0)} \)
- \((\vec{X} \times \vec{Y})_{(1)} = X_{(0)} Y_{(0)} + X_{(0)} Y_{(1)} + X_{(1)} Y_{(0)} + X_{(1)} Y_{(1)}\)
- Order 0 is independently found
- Order 1 products is Order 2 assumed negligible
All quantities are assumed periodic

- \(\text{div} \left(\vec{X} \right) = i \vec{K} \cdot \vec{X} \)
- ...

Order 0 assumed known
Order 1 assumed small

- \(\forall X, X_{(1)} \ll X_{(0)} \)
- \((X \times Y)_{(1)} = X_{(0)} Y_{(0)} + X_{(0)} Y_{(1)} + X_{(1)} Y_{(0)} + X_{(1)} Y_{(1)} \)
- Order 0 is independently found
- Order 1 products is Order 2 : assumed negligible
Order 1 framework
Basic multi-scale modeling

All quantities are assumed periodic

- \(\text{div}(\vec{X}) = i\vec{K} \cdot \vec{X} \)
- \(\ldots \)

Order 0 assumed known Order 1 assumed small

- \(\forall X, X_{(1)} \ll X_{(0)} \)
- \((X \times Y)_{(1)} = X_{(0)} Y_{(0)} + X_{(0)} Y_{(1)} + X_{(1)} Y_{(0)} + X_{(1)} Y_{(1)} \)
- Order 0 is independently found

- Order 1 products is Order 2: assumed negligible
Order 1 framework
Basic multi-scale modeling

All quantities are assumed periodic
- \(\text{div}(\vec{X}) = i\vec{K} \cdot \vec{X} \)
- ...

Order 0 assumed known Order 1 assumed small
- \(\forall X, X(1) \ll X(0) \)
- \((X \times Y)(1) = X(0)Y(1) + X(1)Y(0) + X(1)Y(1) \)
- Order 0 is independently found
- Order 1 products is Order 2: assumed negligible

\[\text{div}(\vec{X}) = i\vec{K} \cdot \vec{X} \]
All quantities are assumed periodic

- \(\text{div} \left(\overrightarrow{X} \right) = i \overrightarrow{K} \cdot \overrightarrow{X} \)
- \(\ldots \)

Order 0 assumed known \hspace{1cm} Order 1 assumed small

- \(\forall X, X_{(1)} \ll X_{(0)} \)
- \((X \times Y)_{(1)} = X_{(0)} Y_{(1)} + X_{(1)} Y_{(0)} \)
- Order 0 is independently found
- Order 1 products is Order 2 : assumed negligible
Order one charge and current equilibrium

Steady state equilibrium

- \(\sigma I \left(N_D - N_D^+ \right) = \xi n_\varepsilon N_D^+ \)

- \(\sigma I_{(1)} \left(N_D - N_D^{+(0)} \right) + \sigma I_{(0)} \left(-N_D^{+(1)} \right) = \xi n_\varepsilon^{(0)} N_D^{+(1)} + \xi n_\varepsilon^{(1)} N_D^{+(0)} \)

Harmonic Current density

\[\vec{J}_{(1)} = \mu_\varepsilon k_B T \text{grad} (n_\varepsilon)_{(1)} + e \mu_\varepsilon n_\varepsilon^{(1)} \vec{E}_{(1)} \]

Harmonic Current density divergence is null

\[i \vec{K} \cdot \vec{J} = 0 \]

\[i \vec{K} \cdot \left(\mu_\varepsilon k_B T n_\varepsilon^{(1)} \vec{K} + e \mu_\varepsilon n_\varepsilon^{(1)} \vec{E}_{(1)} \right) = 0 \]

Harmonic Poisson

\[\text{div} \left(\vec{D}_{(1)} \right) = \rho_{(1)} \]
Order one charge and current equilibrium

Steady state equilibrium

\[\sigma I \left(N_D - N_D^+ \right) = \xi n_\epsilon N_D^+ \]
\[\sigma I_{(1)} \left(N_D - N_{D(0)}^+ \right) + \sigma I_{(0)} \left(-N_{D(1)}^+ \right) = \]
\[\xi n_\epsilon(0) N_{D(1)}^+ + \xi n_\epsilon(1) N_{D(0)}^+ \]

Harmonic Current density

\[\overrightarrow{J}_{(1)} = \mu_\epsilon k_B T \text{grad} \left(n_\epsilon \right)_{(1)} + e\mu_\epsilon n_\epsilon(1) \overrightarrow{E}_{(1)} \]

Harmonic Current density divergence is null

\[i \overrightarrow{K} \cdot \overrightarrow{J} = 0 \]
\[i \overrightarrow{K} \cdot \left(\mu_\epsilon k_B T n_\epsilon(1) \overrightarrow{K} + e\mu_\epsilon n_\epsilon(1) \overrightarrow{E}_{(1)} \right) = 0 \]

Harmonic Poisson

\[\text{div} \left(\overrightarrow{D}_{(1)} \right) = \rho_{(1)} \]
Order one charge and current equilibrium

Steady state equilibrium

- \(\sigma I \left(N_D - N_D^+ \right) = \xi n_\text{e} N_D^+ \)
- \(\sigma I_1 \left(N_D - N_D^+(0) \right) + \sigma I_0 \left(-N_D^+(1) \right) = \)
 \[\xi n_\text{e}(0) N_D^+(1) + \xi n_\text{e}(1) N_D^+(0) \]

Harmonic Current density

\(\vec{J}_1 \) = \(\mu_\text{e} k_B T \text{grad} \left(n_\text{e} \right)_1 + e \mu_\text{e} n_\text{e}(1) \vec{E}_1 \)

Harmonic Current density divergence is null

\(i \vec{K} \cdot \vec{J} = 0 \)

\(i \vec{K} \cdot \left(\mu_\text{e} k_B T n_\text{e}(1) \vec{K} + e \mu_\text{e} n_\text{e}(1) \vec{E}_1 \right) = 0 \)

Harmonic Poisson

\(\text{div} \left(\vec{D}_1 \right) = \rho_1 \)
Order one charge and current equilibrium

Steady state equilibrium

- \(\sigma I \left(N_D - N_D^+ \right) = \xi n_\text{e} N_D^+ \)
- \(\sigma I_\text{(1)} \left(N_D - N_D^\text{(0)} \right) + \sigma I_\text{(0)} \left(-N_D^+ \right) = \xi n_\text{e}(0) N_D^\text{(1)} + \xi n_\text{e}(1) N_D^\text{(0)} \)

Harmonic Current density

\[\vec{J}_\text{(1)} = \mu_\text{e} k_B T i n_\text{e}(1) \vec{K} + e \mu_\text{e} n_\text{e}(1) \vec{E}_\text{(1)} \]

Harmonic Current density divergence is null

\[i \vec{K} \cdot \vec{J} = 0 \]

\[i \vec{K} \cdot \left(\mu_\text{e} k_B T i n_\text{e}(1) \vec{K} + e \mu_\text{e} n_\text{e}(1) \vec{E}_\text{(1)} \right) = 0 \]

Harmonic Poisson

\[\text{div} \left(\vec{D}_\text{(1)} \right) = \rho_\text{(1)} \]
Order one charge and current equilibrium

Steady state equilibrium

- \(\sigma I_N (N_D - N_D^+) = \xi n_e N_D^+ \)
- \(\sigma I_{(1)} (N_D - N_D^{(0)}) + \sigma I_{(0)} (-N_D^{(1)}) = \)
 \(\xi n_e(0) N_D^{(1)} + \xi n_e(1) N_D^{(0)} \)

Harmonic Current density

\[\vec{J}_{(1)} = \mu_e k_B T n_e(1) \vec{K} + e \mu_e n_e(1) \vec{E}_{(1)} \]

Harmonic Current density divergence is null

\[i \vec{K} \cdot \vec{J} = 0 \]

\[i \vec{K} \cdot \left(\mu_e k_B T n_e(1) \vec{K} + e \mu_e n_e(1) \vec{E}_{(1)} \right) = 0 \]

Harmonic Poisson

\[\text{div} \left(\vec{D}_{(1)} \right) = \rho_{(1)} \]
Order one charge and current equilibrium

Steady state equilibrium

- $\sigma I \left(N_D - N_D^+ \right) = \xi n_\varepsilon N_D^+$
- $\sigma I_{(1)} \left(N_D - N_D^{+\, (0)} \right) + \sigma I_{(0)} \left(-N_D^{+\, (1)} \right) = \xi n_\varepsilon^{(0)} N_D^{+\, (1)} + \xi n_\varepsilon^{(1)} N_D^{+\, (0)}$

Harmonic Current density

$$\vec{J}_{(1)} = \mu_\varepsilon k_B T i n_\varepsilon^{(1)} \vec{K} + e\mu_\varepsilon n_\varepsilon^{(1)} \vec{E}_{(1)}$$

Harmonic Current density divergence is null

$$i \vec{K} \cdot \vec{J} = 0$$

$$i \vec{K} \cdot \left(\mu_\varepsilon k_B T i n_\varepsilon^{(1)} \vec{K} + e\mu_\varepsilon n_\varepsilon^{(1)} \vec{E}_{(1)} \right) = 0$$

Harmonic Poisson

$$\text{div} \left(\vec{D}_{(1)} \right) = \rho_{(1)}$$
Order one charge and current equilibrium

Steady state equilibrium

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma I \left(N_D - N_D^+ \right) = \xi n_\varepsilon N_D^+$</td>
<td></td>
</tr>
<tr>
<td>$\sigma I_{(1)} \left(N_D - N_D^{(0)} \right) + \sigma I_{(0)} \left(-N_D^{(1)} \right) = \xi n_\varepsilon^{(0)} N_D^{(1)} + \xi n_\varepsilon^{(1)} N_D^{(0)}$</td>
<td></td>
</tr>
</tbody>
</table>

Harmonic Current density

$$ \overrightarrow{J}_{(1)} = \mu_\varepsilon k_B T \dot{n}_\varepsilon{(1)} \overrightarrow{K} + e \mu_\varepsilon n_\varepsilon{(1)} \overrightarrow{E}_{(1)} $$

Harmonic Current density divergence is null

$$ i \overrightarrow{K} \cdot \overrightarrow{J} = 0 $$

$$ i \overrightarrow{K} \cdot \left(\mu_\varepsilon k_B T \dot{n}_\varepsilon{(1)} \overrightarrow{K} + e \mu_\varepsilon n_\varepsilon{(1)} \overrightarrow{E}_{(1)} \right) = 0 $$

Harmonic Poisson

$$ i \overrightarrow{K} \cdot \left(\hat{\varepsilon} \cdot \overrightarrow{E}_{(1)} \right) = e \left(N_D^{(1)} - n_\varepsilon{(1)} \right) $$
Order One Space Charge Field

General Expression

\[
\vec{E}^{(1)} = \frac{\hat{K} \frac{k_B T}{e} - \hat{K} \cdot \mu E^{(0)} \langle \mu \rangle}{1 + \frac{\|\hat{K}\|^2}{k_D^2} + i \frac{E^{(0)} \cdot \hat{K} \cdot \mu \langle \mu \rangle}{k_D^2 \langle \mu \rangle}} \frac{I^{(1)}}{I^{(0)}}
\]

Effective permittivity

\[
\langle \varepsilon \rangle = \frac{\hat{K} \cdot \varepsilon \hat{K}}{\|\hat{K}\|^2}
\]

Effective permeability

\[
\langle \mu \rangle = \frac{\hat{K} \cdot \mu \hat{K}}{\|\hat{K}\|^2}
\]

Debye vector

\[
k_D^2 = \frac{e}{\langle \varepsilon \rangle} \frac{e}{k_B T} \frac{N_D}{N_A} (N_D - N_A)
\]

\[
k_D = \frac{2\pi}{\lambda_D}
\]
1. Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2. Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3. Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
Let’s simplify this complex expression

General Expression

\[
\vec{E}_1 = \frac{i \vec{K} \frac{k_B T}{e} - \frac{\vec{K} \cdot \mu E_0}{\vec{K} <\mu>} \frac{I_1}{I_0}}{1 + \frac{||\vec{K}||^2}{k_D^2} + i \frac{e}{k_B T} \frac{\vec{K} \cdot \mu E_0}{k_D^2 <\mu>} \frac{I_1}{I_0}}
\]

Simplifying assumptions

- Very often \(\vec{E}_1 \parallel \vec{K} \)
- When no field is applied : \(\vec{E}_0 = 0 \)
- Quarter period phase shift between Intensity and Space-Charge Field gratings
Let’s simplify this complex expression

General Expression

\[
\vec{E}(1) = \frac{i\vec{K} \frac{k_B T}{e} - \frac{\vec{K} \cdot E(0)}{k} I(1)}{1 + \left\| \vec{K} \right\|^2} + \frac{e k_B I(0)}{k^2} \frac{\vec{K} \cdot E(0)}{k^2} \frac{I(1)}{I(0)}
\]

Simplifying assumptions

- Very often \(\vec{E}(1) \parallel \vec{K} \)
- When no field is applied: \(\vec{E}(0) = 0 \)
- Quarter period phase shift between Intensity and Space-Charge Field gratings
Let’s simplify this complex expression

General Expression

\[
\vec{E}^{(1)} = \frac{i \vec{K} \frac{k_B T}{e} I^{(1)}}{1 + \frac{\|\vec{K}\|^2}{k_D^2} I^{(0)}}
\]

Simplifying assumptions

- Very often \(\vec{E}^{(1)} \parallel \vec{K} \)
- When no field is applied: \(\vec{E}^{(0)} = 0 \)
- Quarter period phase shift between Intensity and Space-Charge Field gratings
Space charge field vs. grating spacing
\[\Lambda = \frac{2\pi}{\| K \|} \]

Large grating spacing

- Small \(\vec{K} \)

 \[\vec{E} (1) = i \vec{K} \frac{k_B T}{e} \frac{I(1)}{I(0)} \]

- Diffusion field: \(\vec{E}_d = \vec{K} \frac{k_B T}{e} \)

Small grating spacing

- Large \(\vec{K} \)

 \[\vec{E} (1) = i \vec{K} \frac{k_B T}{e} \frac{k_D^2}{\| K \|^2} \frac{I(1)}{I(0)} \]

- Saturation Field: \(\vec{E}_q = \vec{K} \frac{k_B T}{e} \frac{k_D^2}{\| K \|^2} \)
Space charge field vs. grating spacing

\[\Lambda = 2\pi / \| \mathbf{K} \| \]

Large grating spacing

- Small \(\mathbf{K} \)
- \(\mathbf{E} (1) = i \mathbf{K} \frac{k_B T}{e} \frac{I(1)}{I(0)} \)
- Diffusion field: \(\mathbf{E}_d = \mathbf{K} \frac{k_B T}{e} \)

Small grating spacing

- Large \(\mathbf{K} \)
- \(\mathbf{E} (1) = i \mathbf{K} \frac{k_B T}{e} \frac{k_D^2}{\| \mathbf{K} \|^2} \frac{I(1)}{I(0)} \)
- Saturation Field: \(\mathbf{E}_q = \mathbf{K} \frac{k_B T}{e} \frac{k_D^2}{\| \mathbf{K} \|^2} \)
Space charge field as a function of grating spacing
Space charge field with externally applied field

No applied field

\[\vec{E}_{(1)} = i \frac{\vec{E}_d}{1 + \frac{E_d}{E_q}} \frac{\mathcal{I}_{(1)}}{\mathcal{I}_{(0)}} \]

Applied field \(\vec{E}_a \)

\[\vec{E}_{(1)} = i \frac{\vec{E}_d}{1 + \frac{E_d}{E_q}} \left[1 + i \frac{E_a}{E_d + E_q} \right] \frac{\mathcal{I}_{(1)}}{\mathcal{I}_{(0)}} \]
Space charge field with externally applied field

No applied field

\[\vec{E}(1) = i \frac{\vec{E}_d}{1 + \frac{E_d}{E_q}} \frac{I(1)}{I(0)} \]

Applied field \(\vec{E}_a \)

\[\vec{E}(1) = i \frac{\vec{E}_d}{1 + \frac{E_d}{E_q}} \left[1 + i \frac{E_a}{E_d} \right] \frac{1 + i \frac{E_a}{E_d}}{1 + i \frac{E_a}{E_d + E_q}} \frac{I(1)}{I(0)} \]
Applied field effect

Standard approximations

- For most gratings and materials: $E_d \ll E_q$
- Applied field in the middle: $E_d \ll E_a \ll E_q$

In phase\(^1\) illumination and space charge gratings

$$\vec{E}^{(1)} = i \frac{\vec{E}_d}{1 + \frac{E_d}{E_q} \left[i \frac{E_a}{E_d} \right]} \frac{\mathcal{I}^{(1)}}{\mathcal{I}^{(0)}}$$

\(^1\)Actually, they are π phase shifted. A possible negative sign on the electro-optic coefficient renders in-phase index and illumination gratings.
Applied field effect

Standard approximations

- For most gratings and materials: $E_d \ll E_q$
- Applied field in the middle: $E_d \ll E_a \ll E_q$

In phase\(^1\) illumination and space charge gratings

$$\vec{E}(1) = i \frac{\vec{E}_d}{1 + \frac{E_d}{E_q}} \left[i \frac{E_a}{E_d} \frac{\mathcal{I}(1)}{\mathcal{I}(0)} \right]$$

\(^1\)Actually, they are π phase shifted. A possible negative sign on the electro-optic coefficient renders in-phase index and illumination gratings.
Standard approximations

- For most gratings and materials: \(E_d \ll E_q \)
- Applied field in the middle: \(E_d \ll E_a \ll E_q \)

In phase\(^1\) illumination and space charge gratings

\[
\overrightarrow{E}_1^{(1)} = - \frac{\overrightarrow{E}_a}{1 + \frac{E_d}{E_q} \mathcal{I}(0)} \mathcal{I}(1)
\]

\(^1\)Actually, they are \(\pi \) phase shifted. A possible negative sign on the electro-optic coefficient renders in-phase index and illumination gratings.
1 Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2 Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3 Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
In phase intensity and index gratings
Beam interference is destructive, owing to reflection sign reversal
Quarter period shifted gratings
Beam interference is constructive
1 Band Transport Model
- Schematics
- Carrier Generation
- Charge Transport
- Electro-optic effect

2 Harmonic illumination
- Harmonic framework
- Uniform background: order 0
- Periodic modulation: order 1
- Implications, Simplifications, Diffusion and Saturation

3 Two Wave Mixing
- Gratings graphical view
- Coupled waves
- Two Beam Coupling
Two waves and a grating

Two waves make an intensity grating

- Waves are coherent and same wavelength
- Wave vectors are \vec{k}_1 and \vec{k}_2
- Intensity grating vector is $\vec{K} = \vec{k}_2 - \vec{k}_1$
- Waves amplitudes are $A_i = \sqrt{I_i} e^{-i\psi_i}$

Index Grating

- Assume $E_d \ll E_a \ll E_q$
- Index grating $\propto \Phi$ shifted illumination grating

$$n = n(0) + R e \left[n(1) e^{i\Phi} A_1 A_2 \frac{e^{\vec{K} \cdot \vec{r}}}{I(0)} \right]$$

- $\Phi = \pi/2$ if no applied field and $\Phi = 0$ if field applied
Two waves and a grating

Two waves make an intensity grating

- Waves are coherent and same wavelength
- Wave vectors are \vec{k}_1 and \vec{k}_2
- Intensity grating vector is $\vec{K} = \vec{k}_2 - \vec{k}_1$
- Waves amplitudes are $A_i = \sqrt{I_i} e^{-i\psi_i}$

Index Grating

- Assume $E_d \ll E_a \ll E_q$
- Index grating $\propto \Phi$ shifted illumination grating

$$n = n(0) + \text{Re} \left[n(1)e^{i\Phi}\frac{A_1A_2}{I(0)}e^{\vec{K}\cdot \vec{r}} \right]$$

- $\Phi = \pi/2$ if no applied field and $\Phi = 0$ if field applied
Assumption framework

- Propagation equation: \(\Delta A + \frac{\omega^2}{c^2} n^2 A = 0 \)
- SVA: \(\| \frac{\partial^2 A}{\partial z^2} \| \ll \| \beta \frac{\partial A}{\partial z} \| \)
- \(\beta \) such as \(\beta z = \vec{k} \cdot \vec{r} \)
1 Band Transport Model
 - Schematics
 - Carrier Generation
 - Charge Transport
 - Electro-optic effect

2 Harmonic illumination
 - Harmonic framework
 - Uniform background: order 0
 - Periodic modulation: order 1
 - Implications, Simplifications, Diffusion and Saturation

3 Two Wave Mixing
 - Gratings graphical view
 - Coupled waves
 - Two Beam Coupling
Co-propagative coupling $\beta_1 \beta_2 > 0$

Conventions

- $z = 0$: entrance in the photorefractive material
- Symmetric coupling: $\beta_1 = \beta_2 = \| \vec{k} \| \cos(\theta)$
 - θ is the half angle between input beams

After Coupled Mode calculations\(^2\)

- $\frac{\partial A_1}{\partial z} = -\frac{1}{2I(0)} \Gamma \| A_2 \|^2 A_1 - \alpha A_1$
- $\frac{\partial A_2}{\partial z} = -\frac{1}{2I(0)} \Gamma \| A_1 \|^2 A_2 - \alpha A_2$
- $\Gamma = i \frac{2\pi n(1)}{\lambda \cos(\theta)} e^{-i\Phi}$
- α is absorption

\(^2\)See lessons on Second Harmonic Generation and Optical Phase Conjugation for details.
Co-propagative coupling \(\beta_1 \beta_2 > 0 \)

Conventions

- \(z = 0 \): entrance in the photorefractive material
- Symmetric coupling: \(\beta_1 = \beta_2 = ||\vec{k}|| \cos(\theta) \)
 \(\theta \) is the half angle between input beams

After Coupled Mode calculations\(^2\)

- \(\frac{\partial A_1}{\partial z} = -\frac{1}{2I(0)} \Gamma ||A_2||^2 A_1 - \alpha A_1 \)
- \(\frac{\partial A_2}{\partial z} = -\frac{1}{2I(0)} \bar{\Gamma} ||A_1||^2 A_2 - \alpha A_2 \)
- \(\Gamma = i \frac{2\pi n(1)}{\lambda \cos(\theta)} e^{-i\Phi} \)
- \(\alpha \) is absorption

\(^2\)See lessons on Second Harmonic Generation and Optical Phase Conjugation for details.
Intensity and phase coupling

Diffusion induces intensity coupling

Drift induces phase coupling

Separate Diffusion and Drift influences

\[\Gamma = \gamma + 2i\zeta \]

\[\gamma = \frac{2\pi n(1)}{\lambda \cos(\theta)} \sin (\Phi) \]

\[\zeta = \frac{\pi n(1)}{\lambda \cos(\theta)} \cos (\Phi) \]

Intensity coupling

\[
\begin{align*}
\frac{\partial I_1}{\partial z} &= -\gamma \frac{I_1 I_2}{I_1 + I_2} - \alpha I_1 \\
\frac{\partial I_2}{\partial z} &= +\gamma \frac{I_1 I_2}{I_1 + I_2} - \alpha I_2
\end{align*}
\]

Phase coupling

\[
\begin{align*}
\frac{\partial \psi_1}{\partial z} &= \zeta \frac{I_2}{I_1 + I_2} \\
\frac{\partial \psi_2}{\partial z} &= \zeta \frac{I_1}{I_1 + I_2}
\end{align*}
\]

Energy transfer

- For small absorption \(\alpha \), energy is transferred from one beam to the other.
- Transfer direction is given by sign of \(\gamma \).
Intensity and phase coupling
Diffusion induces intensity coupling
Drift induces phase coupling

Separate Diffusion and Drift influences
\[\Gamma = \gamma + 2i\zeta \]
\[\gamma = \frac{2\pi n(1)}{\lambda \cos(\theta)} \sin(\Phi) \]
\[\zeta = \frac{\pi n(1)}{\lambda \cos(\theta)} \cos(\Phi) \]

Intensity coupling
\[\frac{\partial I_1}{\partial z} = -\gamma \frac{I_1 I_2}{I_1 + I_2} - \alpha I_1 \]
\[\frac{\partial I_2}{\partial z} = +\gamma \frac{I_1 I_2}{I_1 + I_2} - \alpha I_2 \]

Phase coupling
\[\frac{\partial \psi_1}{\partial z} = \zeta \frac{I_2}{I_1 + I_2} \]
\[\frac{\partial \psi_2}{\partial z} = \zeta \frac{I_1}{I_1 + I_2} \]

Energy transfer
- For small absorption \(\alpha \), energy is transferred from one beam to the other
- Transfer direction is given by sign of \(\gamma \)
Intensity and phase coupling

Diffusion induces intensity coupling

Drift induces phase coupling

Separate Diffusion and Drift influences

\[\Gamma = \gamma + 2i\zeta \]

\[\gamma = \frac{2\pi n(1)}{\lambda \cos(\theta)} \sin (\Phi) \]

\[\zeta = \frac{\pi n(1)}{\lambda \cos(\theta)} \cos (\Phi) \]

Intensity coupling

\[\frac{\partial I_1}{\partial z} = -\gamma \frac{I_1 I_2}{I_1 + I_2} - \alpha I_1 \]

\[\frac{\partial I_2}{\partial z} = +\gamma \frac{I_1 I_2}{I_1 + I_2} - \alpha I_2 \]

Phase coupling

\[\frac{\partial \psi_1}{\partial z} = \zeta \frac{I_2}{I_1 + I_2} \]

\[\frac{\partial \psi_2}{\partial z} = \zeta \frac{I_1}{I_1 + I_2} \]

Energy transfer

- For small absorption \(\alpha \), energy is transferred from one beam to the other
- Transfer direction is given by sign of \(\gamma \)
Intensity and phase coupling
Diffusion induces intensity coupling

γ = \frac{2\pi n^{(1)}}{\lambda \cos(\theta)} \sin(\Phi)
ζ = \frac{\pi n^{(1)}}{\lambda \cos(\theta)} \cos(\Phi)

\Gamma = \gamma + 2i\zeta

Intensity coupling
\frac{\partial I_1}{\partial z} = -\gamma \frac{I_1 I_2}{I_1 + I_2} - \alpha I_1
\frac{\partial I_2}{\partial z} = +\gamma \frac{I_1 I_2}{I_1 + I_2} - \alpha I_2

Phase coupling
\frac{\partial \psi_1}{\partial z} = \zeta \frac{I_2}{I_1 + I_2}
\frac{\partial \psi_2}{\partial z} = \zeta \frac{I_1}{I_1 + I_2}

Energy transfer
- For small absorption \(\alpha \), energy is transferred from one beam to the other
- Transfer direction is given by sign of \(\gamma \)
Photorefractive Two Wave Mixing

Coupled Modes Solution

- Let \(m = \frac{\mathcal{I}_1 (0)}{\mathcal{I}_2 (0)} \)

- \(\mathcal{I}_1 (z) = \mathcal{I}_1 (0) \frac{1 + m^{-1}}{1 + m^{-1} e^{\gamma z}} e^{-\alpha z} \)

- \(\mathcal{I}_2 (z) = \mathcal{I}_2 (0) \frac{1 + m}{1 + m e^{-\gamma z}} e^{-\alpha z} \)
Two Wave Mixing Intensity Coupling
Two Wave Mixing Intensity Coupling with Absorption