M. Aizenman, Geometric analysis of ?4 fields and Ising models. Parts I and II, Communications in Mathematical Physics, vol.17, issue.1, pp.1-48, 1982.
DOI : 10.1007/BF01205659

M. Aizenman and D. J. Barsky, Sharpness of the phase transition in percolation models, Communications in Mathematical Physics, vol.11, issue.3, pp.489-526, 1987.
DOI : 10.1007/BF01212322

M. Aizenman, D. J. Barsky, and R. Fernández, The phase transition in a general class of Ising-type models is sharp, Journal of Statistical Physics, vol.83, issue.FS9, pp.3-4343, 1987.
DOI : 10.1007/BF01007515

M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional Ising models, Journal of Statistical Physics, vol.33, issue.FS4, pp.3-4393, 1986.
DOI : 10.1007/BF01011304

A. Bakchich, A. Benyoussef, and L. Laanait, Phase diagram of the Potts model in an external magnetic field, Ann. Inst. H. Poincaré Phys. Théor, vol.50, issue.1, pp.17-35, 1989.

T. Bodineau, Translation invariant Gibbs states for the Ising model. Probab. Theory Related Fields, pp.153-168, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00003038

B. Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol.184, 1998.
DOI : 10.1007/978-1-4612-0619-4

M. Campanino, D. Ioffe, and Y. Velenik, Ornstein-Zernike theory for finite range Ising models above T c, Probability Theory and Related Fields, vol.125, issue.3, pp.305-349, 2003.
DOI : 10.1007/s00440-002-0229-z

J. B. Conway, Functions of one complex variable, Graduate Texts in Mathematics, vol.11, 1978.

R. L. Dobrushin, Gibbs State Describing Coexistence of Phases for a Three-Dimensional Ising Model, Theory of Probability & Its Applications, vol.17, issue.4, pp.582-600, 1972.
DOI : 10.1137/1117073

R. L. Dobrushin and S. B. Shlosman, Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics, Communications in Mathematical Physics, vol.15, issue.1, pp.31-40, 1975.
DOI : 10.1007/BF01609432

F. Dunlop, Zeros of partition functions via correlation inequalities, Journal of Statistical Physics, vol.15, issue.4, pp.215-228, 1977.
DOI : 10.1007/BF01040103

R. G. Edwards and A. D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Physical Review D, vol.38, issue.6, pp.2009-2012, 1988.
DOI : 10.1103/PhysRevD.38.2009

M. E. Fisher, On the Dimer Solution of Planar Ising Models, Journal of Mathematical Physics, vol.7, issue.10, pp.1776-1781, 1966.
DOI : 10.1063/1.1704825

C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, pp.536-564, 1972.

C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets, 18] S. Friedli and C.-´ E. Pfister. On the singularity of the free energy at a first order phase transition, pp.89-103, 1971.
DOI : 10.1007/BF01651330

URL : http://projecteuclid.org/download/pdf_1/euclid.cmp/1103857443

H. Georgii, Gibbs measures and phase transitions, 1988.
DOI : 10.1515/9783110850147

H. Georgii, O. Häggström, and C. Maes, The random geometry of equilibrium phases, Phase transitions and critical phenomena, pp.1-142, 2001.
DOI : 10.1016/S1062-7901(01)80008-2

R. B. Griffiths, Correlations in Ising Ferromagnets. I, Journal of Mathematical Physics, vol.8, issue.3, pp.478-489, 1967.
DOI : 10.1063/1.1705219

R. B. Griffiths, C. A. Hurst, and S. Sherman, Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field, Journal of Mathematical Physics, vol.11, issue.3, pp.790-795, 1970.
DOI : 10.1063/1.1665211

G. Grimmett, Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1999.

G. Grimmett, The random-cluster model, 2006.

Y. Higuchi, On the absence of non-translation invariant Gibbs states for the two-dimensional Ising model, Random fields, pp.517-534, 1979.

M. Huber, A bounding chain for Swendsen-Wang. Random Structures Algorithms, pp.43-59, 2003.
DOI : 10.1002/rsa.10071

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Ioffe, S. Shlosman, and Y. Velenik, 2D Models of Statistical Physics with Continuous Symmetry: The Case of Singular Interactions, Communications in Mathematical Physics, vol.226, issue.2, pp.433-454, 2002.
DOI : 10.1007/s002200200627

S. N. Isakov, Nonanalytic features of the first order phase transition in the Ising model, Communications in Mathematical Physics, vol.39, issue.2, pp.427-443, 1984.
DOI : 10.1007/BF01210832

E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift f??r Physik, vol.6, issue.4, pp.253-258, 1925.
DOI : 10.1007/BF02980577

R. B. Israel and N. J. , Convexity in the theory of lattice gases, Princeton Series in Physics, 1979.
DOI : 10.1515/9781400868421

P. W. Kasteleyn, The statistics of dimers on a lattice : I. the number of dimer arrangements on a quadratic lattice, pp.1209-1225, 1961.

D. G. Kelly and S. Sherman, General Griffiths' Inequalities on Correlations in Ising Ferromagnets, Journal of Mathematical Physics, vol.9, issue.3, pp.466-484, 1968.
DOI : 10.1063/1.1664600

R. Kindermann and J. L. Snell, Markov random fields and their applications, volume 1 of Contemporary Mathematics, 1980.

R. Koteck´ykoteck´y and S. B. Shlosman, First-order phase transitions in large entropy lattice models, Communications in Mathematical Physics, vol.22, issue.4, pp.493-515, 1982.
DOI : 10.1007/BF01208713

L. Laanait, A. Messager, S. Miracle-solé, J. Ruiz, and S. Shlosman, Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation, Communications in Mathematical Physics, vol.II, issue.3, pp.81-91, 1991.
DOI : 10.1007/BF02099291

T. D. Lee and C. N. Yang, Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model, Physical Review, vol.87, issue.3, pp.410-419, 1952.
DOI : 10.1103/PhysRev.87.410

H. Elliott and . Lieb, A refinement of Simon's correlation inequality, Comm. Math. Phys, vol.77, issue.2, pp.127-135, 1980.

A. Oliver, J. Mcbryan, and . Rosen, Existence of the critical point in ? 4 field theory, Comm. Math. Phys, vol.51, issue.2, pp.97-105, 1976.

B. Mccoy and T. T. Wu, The Two-Dimensional Ising Model, 1973.

L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Physical Review, vol.65, issue.3-4, pp.117-149, 1944.
DOI : 10.1103/PhysRev.65.117

R. E. Peierls, On Ising's ferromagnet model, Proc. Camb, pp.477-481, 1936.

C. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta, vol.64, issue.7, pp.953-1054, 1991.

C. Pfister and Y. Velenik, Large deviations and continuum limit in the 2D Ising model. Probab. Theory Related Fields, pp.435-506, 1997.

C. Pfister and Y. Velenik, Interface, Surface Tension and Reentrant Pinning Transition in the 2D Ising Model, Communications in Mathematical Physics, vol.204, issue.2, pp.269-312, 1999.
DOI : 10.1007/s002200050646

C. ´. Pfister, On the symmetry of the Gibbs states in two dimensional lattice systems, Communications in Mathematical Physics, vol.43, issue.2, pp.181-188, 1981.
DOI : 10.1007/BF01942060

S. A. Pirogov and Y. G. , Sina? ?. Phase diagrams of classical lattice systems, Teoret. Mat. Fiz, vol.25, issue.3, pp.358-369, 1975.

J. G. Propp and D. B. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Proceedings of the Seventh International Conference on Random Structures and Algorithms, pp.223-252, 1995.

W. Rudin, Real and complex analysis, 1987.

D. Ruelle, Statistical mechanics, NJ, 1999.
DOI : 10.1142/4090

URL : https://hal.archives-ouvertes.fr/hal-00126389

B. Simon, Correlation inequalities and the decay of correlations in ferromagnets, Communications in Mathematical Physics, vol.24, issue.2, pp.111-126, 1980.
DOI : 10.1007/BF01982711

B. Simon, The statistical mechanics of lattice gases. Vol. I. Princeton Series in Physics, 1993.

Y. G. Sina?-i, Theory of phase transitions : rigorous results, volume 108 of International Series in Natural Philosophy Translated from the Russian by, 1982.

C. N. Yang, The Spontaneous Magnetization of a Two-Dimensional Ising Model, Physical Review, vol.85, issue.5, pp.808-816, 1952.
DOI : 10.1103/PhysRev.85.808

M. Zahradník, An alternate version of Pirogov-Sinai theory, Communications in Mathematical Physics, vol.78, issue.4, pp.559-581, 1984.
DOI : 10.1007/BF01212295