A. Ambrosetti, C. Zelati, V. Arnold, and V. I. , Periodic Solutions of Singular Lagrangian Systems. Birkhäuser, 1979.

V. Benci, Periodic solutions of Lagrangian systems on a compact manifold, Journal of Differential Equations, vol.63, issue.2, pp.135-161, 1986.
DOI : 10.1016/0022-0396(86)90045-8

P. Bona, Extended quantum mechanics, Acta Physica Slovaca, vol.50, issue.1, pp.1-198, 2000.

N. Bourbaki, Lie Groups and Lie Algebras. Chapters 1?3, 1989.

. Cendra, Variational principles for Lie-Poisson and Hamilton-Poincaré equations, Moskow Math. Journ, vol.3, issue.3, pp.833-867, 2003.

M. Dellnitz and I. Melbourne, The equivariant Darboux Theorem, Lectures in Appl. Math, vol.29, pp.163-169, 1993.

P. G. Drjo89-]-drazin and R. S. Johnson, Solitons: An Introduction, 1989.

B. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry I, II, III, Volumes 93 of Graduate Texts in Mathematics, p.124, 1995.

D. G. Ebin and J. E. Marsden, Groups of Diffeomorphisms and the Motion of an Incompressible Fluid, The Annals of Mathematics, vol.92, issue.1, pp.102-163, 1970.
DOI : 10.2307/1970699

V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, 1984.

D. D. Holm, J. E. Marsden, and T. S. Ratiu, The Euler???Poincar?? Equations and Semidirect Products with Applications to Continuum Theories, Advances in Mathematics, vol.137, issue.1, pp.1-81, 1998.
DOI : 10.1006/aima.1998.1721

J. V. José and E. J. Saletan, Classical Dynamics : A Contemporary Approach, 1998.
DOI : 10.1017/CBO9780511803772

J. Jost, D. Kazhdan, B. Kostant, and S. Sternberg, Riemannian Geometry and Geometric Analysis University Text, Hamiltonian group actions and dynamical systems of Calogero type, pp.481-508, 1978.

B. Khesin and G. Misiolek, Euler equations on homogeneous spaces and Virasoro orbits, Euler equations on homogeneous spaces and Virasoro orbits, pp.116-144, 2003.
DOI : 10.1016/S0001-8708(02)00063-4

S. Lang, Fundamentals of Differential Geometry Volume 191 of Graduate Texts in Mathematics Symplectic manifolds, dynamical groups, and Hamiltonian mechanics, Differential Geometry and Relativity, pp.249-269, 1976.

. Marsden, Hamiltonian Reduction by Stages, Lecture Notes in Mathematics, 2004.

J. E. Mamora90-]-marsden, R. Montgomery, and T. S. Ratiu, Reduction, symmetry, and phases in mechanics, Memoirs Amer, Math. Soc, vol.88, issue.436, pp.1-110, 1984.

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol.75, 1994.

J. E. Mara95-]-marsden and T. S. Ratiu, Geometric Fluid Dynamics, 2003.

J. E. Marsden, T. S. Ratiu, J. E. Marsden, T. S. Ratiu, and A. Weinstein, Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, vol.281, issue.1, pp.147-177, 1984.
DOI : 10.1090/S0002-9947-1984-0719663-1

J. E. Marawe84b-]-marsden, T. S. Ratiu, and A. Weinstein, Reduction and V Bibliography Hamiltonian structures on duals of semidirect product Lie algebras, Contemporary Math, pp.55-100, 1984.

J. E. Mawei74-]-marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Reports on Mathematical Physics, vol.5, issue.1, pp.121-130, 1983.
DOI : 10.1016/0034-4877(74)90021-4

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, vol.7, issue.1-3, pp.305-323, 1983.
DOI : 10.1016/0167-2789(83)90134-3

J. Mawwil989-]-mawhin, M. Willem, D. Mcduff, and D. Salamon, Critical Point Theory and Hamiltonin Systems, Introduction to Symplectic Topology, 1989.

I. Melbourne and M. Dellnitz, Normal forms for linear Hamiltonian vector fields commuting with the action of a compact Lie group, Proc. Camb, pp.235-268, 1993.
DOI : 10.1016/0022-0396(84)90094-9

. Milnor, J. Milnor, and G. Misiolek, Classical solutions of the periodic Camassa-Holm equation, Morse Theory, pp.1080-1104, 1963.

A. Odzijewicz and T. S. Ratiu, Banach Lie-Poisson Spaces and Reduction, Communications in Mathematical Physics, vol.243, issue.1, pp.1-54, 2003.
DOI : 10.1007/s00220-003-0948-8

A. Odzijewicz and T. S. Ratiu, Extensions of Banach Lie???Poisson spaces, Journal of Functional Analysis, vol.217, issue.1, pp.103-125, 2004.
DOI : 10.1016/j.jfa.2004.02.012

J. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, 2004.
DOI : 10.1007/978-1-4757-3811-7

V. Y. Ovsienko and B. A. Khesin, Korteweg-de Vries superequation as an Euler equation, Functional Analysis and Its Applications, vol.98, issue.5?6, pp.329-331, 1987.
DOI : 10.1007/BF01077813

R. Palais68-]-palais, Foundations of Global Non-Linear Analysis, 1968.

J. Serre, Lie Algebras and Lie Groups, Lecture Notes in Mathematics, vol.1500, 1992.

M. Spivak, Differential Geometry, Volume I. New printing with corrections . Publish or Perish, 1979.

I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, vol.118, 1996.
DOI : 10.1007/978-3-0348-8495-2

F. W. Warner, Foundation of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, vol.94, 1983.
DOI : 10.1007/978-1-4757-1799-0

A. Weinstein, The local structure of Poisson manifolds, Journal of Differential Geometry, vol.18, issue.3, pp.523-557, 1983.
DOI : 10.4310/jdg/1214437787