The classification of subgroups of quantum SU(N)
Adrian Ocneanu

To cite this version:

HAL Id: cel-00374414
https://cel.archives-ouvertes.fr/cel-00374414
Submitted on 8 Apr 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
is a matrix \(\mathbf{A} \) with entries \(\mathbf{A} = \{ \ldots, z_{ij} \} \) \(\in \mathbb{R} \) and \(\mathbf{A} \) is not a square.

In several different types of the theory, a nonmodular property for the group \(\mathcal{G}_1 \) is not unique. Each module is characterized, unlike the conventional \(\mathcal{G}_1 \) group.

The Classification and Structure of Subgroups of Quantum Groups

1. The Classification and Structure of Subgroups of Quantum Groups
1.3. The classification and structure of quantum subgroups of $S^2(\mathbf{Z})$.

$S^2(\mathbf{Z})$ and $S^2(\mathbf{C})$, respectively.

The quantum subgroups of $S^2(\mathbf{Z})$ correspond to the equivalence classes of the standard qubits. The $S^2(\mathbf{Z})$ is the quantum subgroup corresponding to $S^2(\mathbf{Z})$, and the $S^2(\mathbf{C})$ is the quantum subgroup corresponding to $S^2(\mathbf{C})$.

A quantum subgroup is a group that is a subgroup of $S^2(\mathbf{Z})$. The quantum subgroup $S^2(\mathbf{Z})$ is a quantum subgroup of $S^2(\mathbf{Z})$.

The quantum subgroup $S^2(\mathbf{C})$ is a quantum subgroup of $S^2(\mathbf{C})$.

Over a field of characteristic zero, $S^2(\mathbf{Z})$ is a quantum subgroup of $S^2(\mathbf{Z})$. A quantum subgroup is a quantum subgroup of $S^2(\mathbf{Z})$.

The quantum subgroup $S^2(\mathbf{Z})$ is a quantum subgroup of $S^2(\mathbf{C})$.

The quantum subgroup $S^2(\mathbf{C})$ is a quantum subgroup of $S^2(\mathbf{C})$.

The quantum subgroup $S^2(\mathbf{Z})$ is a quantum subgroup of $S^2(\mathbf{Z})$. A quantum subgroup is a quantum subgroup of $S^2(\mathbf{Z})$.

The quantum subgroup $S^2(\mathbf{C})$ is a quantum subgroup of $S^2(\mathbf{C})$. A quantum subgroup is a quantum subgroup of $S^2(\mathbf{C})$.

The quantum subgroup $S^2(\mathbf{Z})$ is a quantum subgroup of $S^2(\mathbf{Z})$. A quantum subgroup is a quantum subgroup of $S^2(\mathbf{Z})$.

The quantum subgroup $S^2(\mathbf{C})$ is a quantum subgroup of $S^2(\mathbf{C})$. A quantum subgroup is a quantum subgroup of $S^2(\mathbf{C})$.
The classification of structures of Grubner str. (n)
The exceptional module \mathcal{S} of $SL_2(\mathbb{R})$ is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

\[
\mathcal{S} = \begin{pmatrix}
\varphi & 1 + \varphi \\
1 + \varphi & \varphi
\end{pmatrix}
\]

This is the exceptional module, and it is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.

The quaternion module \mathcal{H} is the only exceptional module that appears to decrease from $G_2(1+\varphi)$.
For a prime p and $f(p) = \sum_{j=1}^{\phi(p)} a_j \beta_j$, we have

$$M \geq \sum_{j=1}^{\phi(p)} a_j \beta_j \alpha_j$$

by Proposition 1.5.12, where $\alpha_j = x_j^2 + y_j^2 z_j^2$ for some $x_j, y_j, z_j \in \mathbb{Z}$. This implies that M is a sum of squares.

Fundamental Remarks:

The fundamental splitting index δ is defined as the sum of the squares of all elements in $\mathbb{Z}[\alpha]$ where $\alpha = x + y\sqrt{p}$ for some integers x, y. The index δ is given by

$$\delta = \sum_{j=1}^{\phi(p)} a_j \beta_j$$

where a_j are the coefficients of the polynomial $f(p)$.

Effective Bounds and Construction Algorithms:

For any finite set $S = \{\alpha_1, \ldots, \alpha_n\}$ of elements in $\mathbb{Z}[\alpha]$, there are effective bounds on the number of elements in S that are simultaneously representable modulo M. These bounds depend on the algebraic properties of the field $\mathbb{Q}(\sqrt{p})$.

1. The classification of quadratic fields $\mathbb{Q}(\sqrt{m})$ depends on the discriminant $\Delta = \frac{m^2}{4}$.
2. For any given field, there are finitely many possible discriminants.
3. The number of possible discriminants is finite. This finite result is due to the finiteness of the set $S = \{\delta\}$.

Subgroups of \mathbb{Z}:

We have constructed a function $f(p)$ for each p. The function $f(p)$ is a sum of squares, and the resulting subgroup is a lattice in $\mathbb{Z}[\alpha]$.

Proof:

We have shown that for any given field $\mathbb{Q}(\sqrt{m})$, there are finitely many possible discriminants, and the number of possible discriminants is finite. This finite result is due to the finiteness of the set $S = \{\delta\}$.

Acknowledgments:

This work is supported by grants from the National Science Foundation.
The problem arises when you try to find a choice formula for the quantum symmetry group.

The expression of each monomial term in the expression of the symmetric group.

\[\lambda = 1 - n \quad \text{and} \quad \lambda = 1 \quad \text{if} \quad \lambda \neq 1 \]

From this.

\[\lambda = 1 - n \quad \text{if} \quad \lambda \neq 1 \]

Hence, we first prove the recurrence relation.

\[(z + i)/w = \lambda \quad \text{if} \quad \lambda \neq 1 \]

The invariants of the index is a natural number \(n \), where \(\lambda = n \).

\[\lambda = n \quad \text{for} \quad \lambda > 1 \]

\[\lambda = n \quad \text{for} \quad \lambda > 1 \]

The invariants \(\lambda \) are the homogeneous polynomials with each term multiplicity \(\lambda \) a whole of \(\lambda \).

The problem is solved by finding the recurrence relation in the symmetric group.

Together with the expression above, the above is a natural number.

\[\lambda = n \quad \text{for} \quad \lambda > 1 \]

The invariants \(\lambda \) are the homogeneous polynomials with each term multiplicity \(\lambda \) a whole of \(\lambda \).

\[\lambda = n \quad \text{for} \quad \lambda > 1 \]

The invariants \(\lambda \) are the homogeneous polynomials with each term multiplicity \(\lambda \) a whole of \(\lambda \).

\[\lambda = n \quad \text{for} \quad \lambda > 1 \]
The classification of groups of quantum is a novel approach to quantum mechanics which is based on the concept of quantum groups. These groups are defined as a deformation of the usual group structure, and they are used to describe the symmetries of quantum systems. In particular, quantum groups are used to describe the symmetries of quantum fields, which are important in the study of quantum gravity and string theory. The classification of quantum groups is important for understanding the structure of quantum systems and for developing new methods for solving quantum mechanical problems.
of a canonical basis in the sense of [1] even for \mathcal{D}_N. This equation

An examination of the above formula shows that

For the symbolic representation of \mathcal{D}_N, the above formula is

The formula given above for the coefficient θ is additive in the sense that all

We have found the natural link between the suppliers of quantum states and

The deformation quantization of a regular lattice and the Westergen anomalies have been

17. The deformation quantization of quantum subspaces: a construction of

Below are links to three different quantum algebras, connected to the quantum operators of \mathcal{D}_N.

In the case of \mathcal{D}_N, the above formula is

We express all variables in terms of canonical coordinates, with

The above formula is additive in the sense that all

In the momentary

We have examined the formula given above for the coefficients of \mathcal{D}_N.

The above formula is additive in the sense that all

The formula given above for the coefficient θ is additive in the sense that all
Accordingly we continue computing the intersection of the module corresponding to the module structure of the vector \mathbf{G} is

$$[\vec{F} \otimes \vec{G}] = \left(r^{(\vec{r})_u} \right)$$

Then,

$$\mathbf{G} = \left(r^{(\vec{r})_u} \right)$$

where \vec{r} is the essential part of \mathbf{G} such that $\vec{r} \subseteq \mathbf{G}$.

It is clear that \mathbf{G} is the rank of the essential part of \mathbf{G}.

If we view the vertices of \mathbf{G} as introductions of a support of a point S of \mathbf{G}

$$\{1 - u \cdots - 1 = \gamma \} \text{ and for } x \in \mathbf{G}$$

an essential part of \mathbf{G} is a Jordan projection. Define the projection

$$(1 + \gamma)(1 + \gamma) \gamma (1 + \gamma)(1 + \gamma) \gamma \cdots (1) = \gamma$$

in which $$(u) \gamma \cdots (1) = \gamma$$

so that

$$\delta (u) \gamma \cdots (1) = \gamma.$$

contracction operator, defined for a path δ. For the above definition $u > 0$ for γ. Then, there are γ in \mathbf{G} such that $\gamma = \gamma$.

For $\gamma \in \mathbf{G}$, γ is a vertex of \mathbf{G}.

We shall in the next section define the module in the case of an essential part of \mathbf{G}.

The graph \mathbf{G} now has γ vertices, exactly the number of points associated to the module.

The graph \mathbf{G} now has γ vertices, exactly the number of points associated to the module.

The graph \mathbf{G} now has γ vertices, exactly the number of points associated to the module.

The graph \mathbf{G} now has γ vertices, exactly the number of points associated to the module.
The first multilinear form of a tensor corresponds to a multi-linear function of its argument. A
multi-linear function is a function that is linear in each of its arguments, i.e., for any variables m, n,
the function $f(m, n)$ is linear in m and linear in n. The value of a multi-linear function can be
computed by summing the contributions from each of the m arguments and from each of the n arguments.

The multi-linear function can be expressed as:

$$f(m, n) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} m_i n_j$$

where a_{ij} are the coefficients of the multi-linear function. The multi-linear function is a linear
combination of the products of the arguments.

The multi-linear function is a linear function of each of its arguments, and the value of the function can be
computed by summing the contributions from each of the arguments. The value of the function can be
expressed as:

$$f(m, n) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} m_i n_j$$

where a_{ij} are the coefficients of the multi-linear function. The multi-linear function is a linear
combination of the products of the arguments.

The multi-linear function is a linear function of each of its arguments, and the value of the function can be
computed by summing the contributions from each of the arguments. The value of the function can be
expressed as:

$$f(m, n) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} m_i n_j$$

where a_{ij} are the coefficients of the multi-linear function. The multi-linear function is a linear
combination of the products of the arguments.
The classification of structures of quantum algebras.

1.6. Homology and cohomology. In the previous paragraph we have

a consequence of small numbers (or little small Inflation) all the other answers

were good candidates for optimal padding a

and

1.6. Homology and cohomology. In the previous paragraph we have

a consequence of small numbers (or little small Inflation) all the other answers

were good candidates for optimal padding a

and
The development of higher-dimensional QFT models, important for higher-dimensional string theory, requires a deeper understanding of the structure of the simple QFT models. The emergence of a new framework, called the Higher Dimensional String Theory (HDST), offers a promising approach to address these challenges. HDST provides a systematic framework for constructing higher-dimensional QFT models, which are expected to play a crucial role in understanding the fundamental aspects of string theory.

2. New Directions of Research

The main question addressed in this paper is the existence of higher-dimensional QFT models. A key direction that should be investigated further is the construction of new, more general forms of these models. This involves developing a deeper understanding of the mathematical structures underlying higher-dimensional QFT models. The HDST framework provides a promising avenue for this research, as it offers a systematic way to construct and analyze these models.

In conclusion, the development of higher-dimensional QFT models is a key area of research that holds significant promise for advancing our understanding of string theory. The HDST framework provides a promising approach to address these challenges, offering a systematic way to construct and analyze these models. Further research in this area is essential for making progress in this exciting field.
3. Conclusions

The classification of structures of quantum states is now a significant area of study. Given the importance of quantum information, we have explored the limitations and possibilities of quantum structures. We have found that quantum structures, unlike classical structures, are not always unique. The study of quantum structures involves understanding the properties of quantum systems and their interactions.

In conclusion, the study of quantum structures is crucial for the advancement of quantum technology. Further research in this area will help us develop better quantum systems and applications.
THE MODULE HIERARCHY is a manifestation of the power of the hierarchy, which is a prime example of the power of the hierarchy. Each module produces a module hierarchy, which is a prime example of the power of the hierarchy. Finally, the power of the hierarchy is a manifestation of the power of the hierarchy.
References

not all exceptional graphs come from connected
modular invariants, and the exceptionality of the graph is not.

Theorem 4. Theorem 5 of Chapter 12, which is not

2-dimensional, and 2-dimensional surface theory for 2-dimensional

a connected graph, the connected graph is not

natural to the graph in question of the graphs is not on one

connection between graphs and modular invariants was an open problem.

a subset of the best proposed exclusively by d'Incanese and Zuber the precise

are not the exceptions, but the exceptions are classified by Cameron. The graphs for ST

modular invariants were classified by Cameron. The graphs for ST

are the best that the correspondence of ST and CF! are defined on the locus. The

THE CLASSIFICATION OF SUBGROUPS OF GL(N, C)
SU(2)k

Orbifold series

\[\begin{array}{cccccccc}
A_2 & A_3 & A_4 & A_5 & D_4 & D_5 & D_6 & D_7 \\
(A_1)(A_2) & (A_3) & (A_4) & (A_4/2) & (A_6/2) & (A_8/2) & (A_{10}/2) & \cdots
\end{array} \]

Exceptionals

\[\begin{array}{ccc}
E_6 & E_7 & E_8 \\
(E_{10}) & ((A_{16}/2)') & (E_{28})
\end{array} \]

Figure 1. Classification of modules and subgroups of quantum \(SU(2) \).
Figure 2. Classification of modules and subgroups of quantum $SU(3)$.

SU(3)$_k$

Orbifold series

![Orbifold series diagram](image)

Conjugate orbifold series

![Conjugate orbifold series diagram](image)

Exceptionals

![Exceptionals diagram](image)
SU(4)_k

Orbifold series

\[\begin{array}{cccc}
A_1 & A_2 & A_3 & A_4 \\
A_1/2 & A_2/2 & A_3/2 & A_4/2 \\
\end{array}\]

Conjugate orbifold series

\[\begin{array}{cccc}
A_{1/2} & A_2^c & A_3^c & A_4^c \\
[2A_{1/2}] & [2A_2^c] & 2A_3^c & 2A_4^c \\
\end{array}\]

Figure 3
Figure 4. Classification of modules and subgroups of quantum $SU(4)$.

Exceptionals

$A_2/4 \quad A_6/4 \quad A_8/4 \quad \ldots \quad \frac{A_2}{2(A_2^5/2)} \quad 2(A_6^5/2) \quad 2(A_8^5/2) \quad \ldots$
Figure 5. Modules of exceptionals.
FIGURE 6. Exceptionally twisted modules of orbifolds.

\[
\begin{align*}
\text{SU}(4)_{8/4}^t, & \quad \text{SU}(4)_{8/4}^{tc}, \\
\text{SU}(3)_{9/3}^t, & \quad \text{SU}(3)_{9/3}^{tc}, \\
\text{SU}(2)_{16/2}^t. & \quad (=E_7)(=D_{10})
\end{align*}
\]
\textbf{Figure 7.} Modular ladder for the \(D_5 \) graph.
Figure 8. Modular ladder for the E_6 graph.
Figure 9. Modular ladder for the E_7^* graph.
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0.0)</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>(1.0)</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>(0.1)</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>(2.0)</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>(1.1)</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>(0.2)</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>(3.0)</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>(2.1)</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>(1.2)</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>(0.3)</td>
<td>.</td>
</tr>
<tr>
<td>11</td>
<td>(1.4)</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>(1.5)</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>(0.6)</td>
<td>.</td>
</tr>
<tr>
<td>14</td>
<td>(1.7)</td>
<td>.</td>
</tr>
<tr>
<td>15</td>
<td>(1.8)</td>
<td>.</td>
</tr>
<tr>
<td>16</td>
<td>(1.9)</td>
<td>.</td>
</tr>
<tr>
<td>17</td>
<td>(1.10)</td>
<td>.</td>
</tr>
<tr>
<td>18</td>
<td>(1.11)</td>
<td>.</td>
</tr>
<tr>
<td>19</td>
<td>(2.0)</td>
<td>.</td>
</tr>
<tr>
<td>20</td>
<td>(0.1)</td>
<td>.</td>
</tr>
<tr>
<td>21</td>
<td>(1.2)</td>
<td>.</td>
</tr>
<tr>
<td>22</td>
<td>(0.3)</td>
<td>.</td>
</tr>
<tr>
<td>23</td>
<td>(1.4)</td>
<td>.</td>
</tr>
<tr>
<td>24</td>
<td>(0.5)</td>
<td>.</td>
</tr>
</tbody>
</table>

Figure 10

THE CLASSIFICATION OF SUBGROUPS OF QUANTUM SU(N)