The classification of subgroups of quantum SU(N)

Adrian Ocneanu

To cite this version:

HAL Id: cel-00374414
https://cel.archives-ouvertes.fr/cel-00374414

Submitted on 8 Apr 2009
I. The classification and structure of subgroups of quantum groups

The classification of subgroups of quantum groups
1.3. The Classification and Structure of Galois Subgroups of $SL(3)$

$SL(4)$ and $SL(5)$ respectively.

$SL(3)$ and $SL(4)$ respectively. Botz's conjectures for the classification correspond to $SL(3)$ and $SL(4)$, respectively.

The second problem is the problem of classifying the higher rank of the principal correspondence between $SL(3)$ and $SL(4)$. This problem is more complex than the problem of classifying the principal correspondence between $SL(2)$ and $SL(3)$.

4. A Problem of the $SL(3)$ Characteristic Splitting

The problem of the $SL(3)$ characteristic splitting is related to the problem of classifying the principal correspondence between $SL(2)$ and $SL(3)$.

Over $SL(n)$-groups, there are more efficient algorithms due to the fact that the character of $SL(n)$-groups is more manageable than the character of $SL(n+1)$-groups.

The second problem is the problem of classifying the higher rank of the principal correspondence between $SL(3)$ and $SL(4)$.

The second problem is the problem of classifying the principal correspondence between $SL(2)$ and $SL(3)$. This problem is more complex than the problem of classifying the principal correspondence between $SL(2)$ and $SL(3)$.

There are more efficient algorithms due to the fact that the character of $SL(n)$-groups is more manageable than the character of $SL(n+1)$-groups.

The second problem is the problem of classifying the higher rank of the principal correspondence between $SL(3)$ and $SL(4)$. This problem is more complex than the problem of classifying the principal correspondence between $SL(2)$ and $SL(3)$.
The classification of simple groups of quasirelatively projective type, and of those of quasirelatively projective type, is not yet known.

For simplicity, let \(G = \mathbb{Z}_p \times \mathbb{Z}_q \) and let \(\mathbb{Z} = \mathbb{Z}_p \times \mathbb{Z}_q \times \mathbb{Z}_r \) be the direct product of cyclic groups of prime power order. Then, for any\(\mathbb{Z} \)-element \(x \), we have\(\mathbb{Z} = \mathbb{Z}_p \times \mathbb{Z}_q \times \mathbb{Z}_r \).

We define the following sequence of \(\mathbb{Z} \) elements:

\[
\mathbb{Z} = \sum_{x \in \mathbb{Z}} x.
\]

Decomposing as a product,

\[
\mathbb{Z} = \prod_{x \in \mathbb{Z}} x.
\]

We have developed methods for an exhaustive description of all possible subgroups of \(\mathbb{Z} \) generated by elements.

The connection has been adopted previously by the physics community, where we call a cell.

Together, these elements form a graph. In fact, we can call the graph of these elements, called the \emph{interaction graph} of the \emph{interaction group} of \(\mathbb{Z} \), which we call a \emph{cell}.

The intersection of a subgraph of \(\mathbb{Z} \) is called the core of the graph.

The problem here is that any connection with another graph of \(\mathbb{Z} \) is completely determined by its core.
I. The Jordan normal form of A.

According to the Jordan normal form of A, the number of exceptional subspaces of \mathcal{S} appears to disappear as we pass to \mathcal{S}. This follows from the fact that, if \mathcal{S} is the set of all subspaces of V, then $\mathcal{S} = \{0\}$, where the subscript L denotes the linear transformation associated with \mathcal{S}.

In particular, for $\mathcal{S} = \{0\}$, we have $\mathcal{S} = \{0\}$, and in this case, \mathcal{S} is the Jordan normal form of A. Thus, the Jordan normal form of A is the direct sum of the Jordan blocks associated with the eigenvalues of A, and the multiplicity of each eigenvalue is given by the number of Jordan blocks associated with that eigenvalue.
For a prime number \(p \) and integer \(d \), the set of all \(d \)-th roots of \(p \) is a group under multiplication.

Fundamental Inequality:

The module splitting identity gives a sharp bound on the gap, the following:

\[\text{For the splitting of } \mathbb{R}_+ \text{, the gaps of the module splitting identity is } \chi_0 \text{ and the sum of gaps is } \chi_0 + X. \]

To deduce a contradiction of the case, let \(\mathbb{R}_+ \), of course, of \(\mathbb{R}_+ \), the latter case corresponds to the cases in which all non-zero entries in the first row of the module is non-zero. The only exception is for the case in which all non-zero entries in the first row of the module is non-zero. The gap is non-zero only in the case where \(\chi_0 \) is non-zero, and show that this contradiction arises in the case where \(\chi_0 \) is non-zero.

We start from the module splitting identity, which is non-zero, and show that this contradiction arises in the case where \(\chi_0 \) is non-zero.

We can now show that any given rank \(\chi_0 \) has a contradiction that \(\mathbb{R}_+ \) is any given rank \(\chi_0 \) and \(\chi_0 \) has a contradiction.

The meaning of the prime symbol of modules is same. This later result is

Proposition

For any prime symbol of modules there are infinitely many possibilities for a symmetric group of modules. We have described a particular module for which

I. Regular effective bounds and construction algorithms for symmetric group of modules.
The problem, solved by Vagner Jones, was to find a closed formula for the

expression of each monomial term in the expansion of the symmetric.

In general, a closed expression of the weighted homogeneous form can be

\[1 = d \]

And

From this,

\[1 = d \]

Hence we have provided the recurrence relation.

\[(z+\eta, \zeta) = \lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the index of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]

of the monomial.

\[i \]

And thus, the expression of the symmetric function is

\[\lambda \frac{1}{1} \]

where the index \(i \) is

\[i \]
The classification of structures of Gravitational

\[\cdot \left(\sum_{m} \left| \mathcal{D} \right|^m \omega \right) \frac{1}{1-w} \cdot \prod_{t=0}^{\infty} \left(\prod_{s=t}^{\infty} \left(1-s \right) \right) = \omega \left(1 \right) \]
The deformation quantization method is very interesting, in general, and the study of quantum systems is a major topic in theoretical physics. In this paper, we focus on the relationship between quantum systems and classical systems.

In a coordinate base, we have obtained a very elegant and general formulation for quantum systems. This formulation allows us to extend the classical mechanics to the quantum realm. In this way, we can describe the behavior of quantum systems in a more intuitive way.

The key idea is to define a quantum Hamiltonian, which is a function that describes the energy of a quantum system. This function is related to the classical Hamiltonian through a deformation parameter, which we call \(\theta \).

We have shown that the quantum Hamiltonian is given by the classical Hamiltonian plus a perturbation term, which is proportional to \(\theta \). This perturbation term is introduced to account for the quantum effects.

In the limit \(\theta \to 0 \), we recover the classical Hamiltonian. This indicates that the quantum system reduces to the classical system when the quantum effects are negligible.

The above formulation is very powerful because it allows us to study the transition from the classical to the quantum realm in a systematic way. It also provides a bridge between the classical and quantum worlds, which is essential for understanding the behavior of quantum systems.

In conclusion, the deformation quantization method is a powerful tool for studying quantum systems. It allows us to extend the classical mechanics to the quantum realm and provides a way to describe the behavior of quantum systems in a more intuitive way. This method has found many applications in theoretical physics and has been used to study a wide range of phenomena, from atomic systems to cosmic structures.
According to we

\[H(\mathbb{R}) = \{ x \in \mathbb{R} \mid x = \sum_{i=1}^{n} a_i b_i \} \]

The classification of groups of quaternion algebra.
\[
\sum_{n=0}^{\infty} (e^x)^n = \frac{1}{1-e^x}
\]

In representation theory, an appropriate choice of bases for a given representation of a group \(G \) yields the tensor product of the representations of each group element. The notion of tensor product is crucial in the study of representations of Lie groups, as it allows for the construction of new representations from old ones.

The tensor product of two representations \(V \) and \(W \) of a group \(G \) is denoted \(V \otimes W \) and is defined as the vector space \(V \times W \) with the group action given by \(g(v \otimes w) = (gv) \otimes (gw) \) for all \(g \in G \), \(v \in V \), and \(w \in W \). The tensor product of representations is associative and commutative up to isomorphism.

The tensor product of representations is used extensively in the representation theory of Lie groups, where it plays a central role in the study of the structure of representations and their decompositions. For example, the tensor product of the trivial representation of \(G \) with itself is isomorphic to the direct sum of all irreducible representations of \(G \).
\[\sum_{i=0}^{\infty} a_i b_i \]
The 2. New Directions of Research

The introduction of the quantization of fundamental forces.

A recent discovery that should be mentioned in the current context is the construction of the quantization of fundamental forces. This idea, initially proposed by the renowned physicist S. (2), has been developed over the last few years and has led to a profound understanding of the nature of these forces.

We have described in a very simple and natural way the construction of the quantization of fundamental forces.
In order to better understand the concept, let us first define what we mean by 'quantum states' and 'quantum superpositions'.

Quantum states are described by vectors in a complex vector space, and quantum superpositions are linear combinations of these vectors. The set of all quantum states is a Hilbert space, which is a mathematical structure that allows us to perform operations on quantum states such as superposition, entanglement, and measurement.

The classification of structures of quantum systems is now a significant area of research, and it is our goal to understand and describe the properties of these systems. The study of simple algebraic structures is now a significant area of research, and it is our goal to understand and describe the properties of these systems.
THE MODULAR INTERVAL.

The modular interval is a mathematical concept in mathematics, particularly in the field of algebra. It is a region on a number line defined by two integers, where each integer is associated with a particular point. The modular interval is used to describe the relationship between two numbers, where the difference between them is a multiple of a certain number, known as the modulus.

For example, if we have a modular interval defined by the integers 5 and 3, and a modulus of 4, then the modular interval would be the set of all numbers that differ by 4 from 5 or 3. This means that any number that is 1 more or 1 less than a multiple of 4, such as 2, 6, 10, or 14, would be included in the modular interval.

In this context, the modular interval is used to describe the relationship between two numbers, where the difference between them is a multiple of a certain number, known as the modulus. The modular interval is a useful concept in various fields of mathematics, including number theory, algebra, and geometry.
References

not all exceptional graphs come from conformal inclusions

modular invariants and the exceptional $\frac{\text{SL}(4)}{\Gamma}$ classification showed that

$\frac{\text{SL}(3)}{\Gamma}$ classification showed the different graphs can share the same

connections between graphs and modular invariants was an open problem. The

A subset of the exceptional graphs, namely the exceptional graphs, were covered by

$\frac{\text{SL}(3)}{\Gamma}$ modular invariants were classified by Goodman, the graphs for $\frac{\text{SL}(3)}{\Gamma}$

The graphs for $\frac{\text{SL}(3)}{\Gamma}$ were classified by Kaplansky, Isipov, and Zhuke.

The best that the corresponding $\frac{\text{SL}(3)}{\Gamma}$ and Γ are defined on the lines.
SU(2)_k

Orbifold series

\[
\begin{array}{cccccccc}
A_2 & A_3 & A_4 & A_5 & D_4 & D_5 & D_6 & D_7 \\
(A_1)(A_2) & (A_3) & (A_4) & (A_4/2) & (A_6/2) & (A_8/2) & (A_{10}/2) & \ldots
\end{array}
\]

Exceptionals

\[
\begin{array}{ccc}
E_6 & E_7 & E_8 \\
(E_{10}) & ((A_{16}/2)^t) & (E_{28})
\end{array}
\]

Figure 1. Classification of modules and subgroups of quantum $SU(2)$.

SU(3)_{k}

Orbifold series

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>...</th>
</tr>
</thead>
</table>

Conjugate orbifold series

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>...</th>
</tr>
</thead>
</table>

Exceptionals

| E_5 | $E_5/3 = (E_5)^c$ | E_9 | $E_9/3 = (E_9)^c$ | $(A_3)^t$ | $(A_3)^t_c$ | E_{21} |

Figure 2. Classification of modules and subgroups of quantum SU(3).
SU(4)_k

Orbifold series

Conjugate orbifold series

\[
\begin{align*}
\text{Orbifold series} & : \quad A_1 \quad A_2 \quad A_3 \quad A_4 \quad \ldots \\
\text{Conjugate orbifold series} & : \quad A_1/2 \quad A_2^c \quad A_3^c \quad A_4^c \quad \ldots \\
\text{Orbifold series} & : \quad A_1/2 \quad A_2/2 \quad A_3/2 \quad A_4/2 \quad \ldots \\
\text{Conjugate orbifold series} & : \quad A_1 \quad A_2/2 \quad 2A_3^c \quad 2A_4^c \quad \ldots
\end{align*}
\]

Figure 3
Figure 4. Classification of modules and subgroups of quantum $SU(4)$.
Figure 2. Modules of Exceptionals.

\begin{align*}
\mathcal{E}_8^8 & = E_8^8 \\
\mathcal{E}_8^9 & = E_8^9 \\
\mathcal{E}_6^6 & = E_6^6 \\
\mathcal{E}_5^5 & = E_5^5 \\
\mathcal{E}_6^9 & = E_6^9
\end{align*}

Modules of Exceptionals
Figure 6. Exceptionally twisted modules of orbifolds.
Figure 7. Modular ladder for the D_5 graph.
Figure 8. Modular ladder for the E_6 graph.
\[E_7 \]

\[\begin{array}{cccccccccc}
\text{0} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & (0,0) & \bullet & \ldots & \ldots & \ldots & 1 & 1 & \ldots & \ldots \\
2 & (1,0) & \bullet & \ldots & \ldots & 1 & 1 & \ldots & \ldots & \ldots & \ldots & 1 & 1 & \ldots & 1 \\
3 & (0,1) & \bullet & \ldots & \ldots & 1 & 1 & 1 & \ldots & \ldots & \ldots & \ldots & 1 & 1 & 1 & \ldots \\
4 & (2,0) & \bullet & \ldots & \ldots & 1 & 1 & 1 & \ldots & \ldots & \ldots & \ldots & 1 & 1 & 1 & \ldots \\
5 & (1,1) & \bullet & \ldots & \ldots & 1 & 1 & 1 & 1 & \ldots & \ldots & \ldots & \ldots & 1 & 1 & 1 & \ldots \\
6 & (0,2) & \bullet & \ldots & \ldots & 1 & 1 & 1 & 1 & 1 & \ldots & \ldots & \ldots & \ldots & 1 & 1 & 1 & \ldots \\
7 & (2,1) & \bullet & \ldots & \ldots & 1 & 1 & 1 & 1 & 1 & 1 & \ldots & \ldots & \ldots & \ldots & 1 & 1 & \ldots & \ldots \\
8 & (1,2) & \bullet & \ldots & \ldots & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
9 & (2,2) & \bullet & \ldots & \ldots & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
10 & (2,1) & \bullet & \ldots \\
11 & (1,2) & \bullet & \ldots \\
12 & (2,2) & \bullet & \ldots \\
\end{array} \]

Figure 9. Modular ladder for the E_7 graph.
<table>
<thead>
<tr>
<th></th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.0</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>2</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>3</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>4</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>5</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>6</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>7</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>8</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>9</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>10</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>11</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>12</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>13</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>14</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>15</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>16</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>17</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>18</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>19</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>20</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>21</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Figure 11. Modular ladder for the E_8 graph.