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Quantum Memory for Light∗Jean-Louis Le GouëtLaboratoire Aimé Cotton, CNRS UPR3321, Univ Paris Sudbâtiment 505, ampus universitaire, 91405 Orsay edexjean-louis.legouet�la.u-psud.frAbstratWe ouline two strategies for storage and reovery of quantum lightin an ensemble of atoms. This series of letures has been devised as anelementary introdution. Hene disussion is essentially on�ned to asemi-lassial piture. We �rst onsider eletromagnetially induedtranspareny (EIT) and stopped light. The roles of homogeneous andinhomogeneous broadening are examined. We propose both time- andfrequeny-domain desriptions. Then we disuss the total reall of asignal after apture by an absorbing material. Rephasing proessesare brie�y reviewed. We refer to various reent experimental works,espeially those onduted in solid state media. The ourse is intendedto be self ontained and inludes reminders on some quantum physiselements suh as the density operator and the Bloh vetor.Contents1 Introdution 32 Two ways of reovering light 52.1 Eletromagnetially indued transparenyand stopped light . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Reovery from an absorbing medium . . . . . . . . . . . . . . 7
∗This series of letures was delivered at Eole Prédotorale des Houhes, session XXIV,Quantum Optis, September 10-21, 2007. The session was direted by Niolas Treps andIsabelle Robert-Philip. 1
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1 IntrodutionTransport of quantum information is ideally aomplished by light but, atsome stage, a material system is needed for proessing and/or storage. Manygroups around the world strive to build a quantum memory that should storethe non-lassial properties of a light signal, then to restore the original signal.If long distane quantum ryptography is ommonly invoked to justify theseresearhes[1℄, above all this is a fasinating quantum physis problem, givinga new insight in light-matter interation.Quantum information is related to noise. When the �utuations of alassial light soure are redued to the quantum limit, noise is equally dis-tributed over a pair of onjugated observables suh as photon number andphase, Stokes vetor omponents or �eld quadratures. A light beam ar-ries quantum information if the noise a�eting one observable is squeezedunder the standard quantum limit orresponding to equipartition of noise.Of ourse noise redution on one observable entails inreased noise on theonjugate quantity. Naively speaking, a quantum memory should be able torestore a signal in the tiniest details, beyond the quantum limit.Resonant exitation of an atomi transition provides appropriate strongoupling between light and matter. However, interation with a single atomis not enough to trap the inident photon with absolute ertainty. One aninrease the oupling by plaing the atom inside a high �nesse avity. Instead,in the present ourse, we only onsider trapping of light by a maroopiensemble of atoms.We also need interrogate the memory at will, ontrolling the momentwhen the signal is restored. This an be ahieved through an auxilliaryoptial transition, oupled to the quantum �eld apture transition. Severalprotools rely on the Lambda three-level system. A ommon upper levellinks the two transitions that are onneted to two sub-levels of the eletroniground state.The quantum-properties preserving storage of one photon is an unitaryproess. Initially, the single exitation light state is ombined with the ma-terial medium ground state. The ompound system undergoes an unitarytransform towards a state where the unique exitation has been transposed tomatter. The stored information is retrieved with the help of the reverse uni-tary transform. What makes the proess so di�ult is preisely the unitarytransform that involves a marosopi ensemble of atoms. One an ertainlyonvert one photon into an exitation of a strongly absorbing medium. This3



is not enough to make a quantum memory. A single photon pulse is har-aterized by a spatial mode and a spetro-temporal distribution. Generallyan inident photon only transfers its energy to the absorbing medium. Thephoton will be reemitted eventually, after multiple reabsorption and satter-ing, in a spatial and spetro-temporal state devoid of any onnetion withthe initial state.The reason why energy alone is transferred to the medium is not so ob-vious. When exposed to optial exitation, a two-state atom, initially in theground level, is promoted to a quantum superposition state. Quantum infor-mation thus �ows from light to the atom. Provided that atoms are numerousenough one thus expets that all the inident light ould be onverted intoquantum atomi exitation. However one is faed with several issues. First,in general, the medium does not return to initial state after readout, a on-dition to be ful�lled for total reovery of the quantum state of light. Thereovered �eld, propagating along the same wavevetor as the initial signal,grows from zero in the input side. Therefore the atoms lose to the input sideof the absorbing medium are the most strongly exited by the inoming lightsignal, but also undergo the smallest feedbak from the restored �eld thatfails to take them bak to the ground state. The atomi state and retrieved�eld mismath results in partial absorption and inomplete extration of thestored information. In addition to this propagation issue, one should mentionrandom redistribution of light by spontaneous emission and quantum statedestrution by oherene relaxation. However, in many systems oherenelifetime remains ompatible with the demonstration of quantum storage forlight.In this series of letures we shall essentially examine two ways of e�-iently restoring the signal �eld, that is to say two ways of addressing thepropagation problem. One approah is known as Eletromagnetially In-dued Transpareny. This is a radial way to deal with absorption. Thestorage medium is made transparent to the inoming signal, operating as atrap that loses one the quantum �eld is inside. The other approah takesadvantage of rephasing proedures to optimize the signal reonstrution. Weshall essentially restrit the disussion to semilassial theory, assuming that,within the limits of linear onditions, an e�ient reovery proedure generallyapplies to a quantum �eld if it works with a lassial �eld.
4
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Figure 1: Priniple of EIT. All atoms are initially prepared in state |a〉. Theoupling �eld, resonant with the b → c empty transition, opens a trans-pareny window on the a → b transition. The absorption pro�le distortiongoes along with modi�ed dispersion of the index of refration. This is re-�eted in group veloity redution within the transpareny window.2 Two ways of reovering light2.1 Eletromagnetially indued transparenyand stopped lightAs notied above, the reonstruted signal tends to be reabsorbed duringpropagation through the storage medium. This problem is addressed in aradial way by Eletromagnetially Indued Transpareny (EIT), sine themedium is made transparent at the signal input and output [2, 3℄. With thehelp of an external ontrol, the material opaity is swithed on and o� atwill.To ontrol the opaity one resorts to an auxilliary optial transition thatshares an atomi level with the storage transition. Hene, instead of two-levelatoms, we have to onsider an ensemble of three-level Λ-systems. Initially5



all the atoms are in |a〉, whih makes the medium absorbing on the a → btransition. Let us remind that absorption results from the oupling of theinident �eld with the reation of the medium, represented by the maro-sopi polarization density. EIT preisely proeeds through the annihilationof the polarization on the a→ b transition. This is aomplished by a ontrol�eld that resonantly exites the b → c auxilliary transition. When swithedon, the ontrol �eld onverts the a → b optial polarization into the Ramanoherene of states |a〉 and |c〉. The optial polarization vanishing rendersthe medium transparent on a→ b (see Fig. 1). Sine b → c onnets emptylevels, the medium is transparent on b → c too, so that all the atoms ex-periene the same ontrol �eld strength, wherever they are loated in theabsorbing medium.The ontrol �eld does not just open a transpareny window. In aor-dane with Kramers Krönig relations, the distorsion of absorption pro�le isassoiated with a disturbane of the index of refration, whih results in theredution of the group veloity v. In terms of dispersion of the refrationindex n(ω), the group veloity v an be expressed as:
v

c
=

1n(ω) + ω
dn(ω)dω (1)The �eld amplitude is ontinuous at the vauum-medium interfae. How-ever the spatial extension of a signal pulse is ompressed along the diretionof propagation beause of the veloity group redution. The �eld envelopeundergoes a v/c shrinking. The energy arried by the pulse is redued by thesame ratio, dropping lose to zero when v << c. Atually energy transferfrom the signal pulse to the ontrol �eld omes along with the optial po-larization onversion into Raman oherene. It is rather intriguing that thesignal energy is taken away by the ontrol �eld, while the spatial and spetro-temporal signal properties keep stored in the medium. Reverse transforma-tion takes plae at the ative medium exit. The signal �eld then reovers itsinitial energy together with its spatial and spetro-temporal properties.The EIT proess has been demonstrated with lassial light in variousmaterials ranging from gas to ondensed matter. Light speed redution to17 metres per seond was observed in an ultraold atomi gas [4℄. Then itwas realized that light ould not only be slowed down but even "stopped" ina Λ-system. Indeed, if the ontrol �eld is swithed o� while the signal pulseis entirely ontained within the ative medium, the remaining properties6



arried by the signal �eld are absorbed and lost, but most of them have beensaved in the Raman oherene. If the ontrol �eld is restored before theRaman oherene relaxes, the signal �eld is rebuilt, resumes its progressionthrough the medium and �nally exits, having preserved most of its initialharateristis [5, 6℄.In the next setions we analytially derive the various operating ondi-tions of the memory. Right now we an list most of them. We already notiedthat information transfer to the Raman oherene is subjet to the ondition
v << c. In order to be entirely ontained within the L-thik material at themoment of the ontrol �eld swithing o�, the signal pulse must exhibit a du-ration T smaller than L/v. Besides the signal bandwidth ∆ must be smallerthan the width of the transpareny window. Finally those onditions mustbe onsistent with the time and frequeny Fourier onjugation, aording towhih ∆T > 1.It should be stressed that the ontrol �eld, interating with a transitionbetween empty levels, does not exite any atoms on its own. As a onse-quene this �eld does not generate any noise. The signal �eld alone onveysexitation to the atomi ensemble.Finally it should be notied that EIT on�guration imposes that the weaksignal �eld should be isolated from the intense ontrol �eld. This ould be amajor drawbak.2.2 Reovery from an absorbing mediumInstead of resorting to the radial solution of induing transpareny, one antry to retrieve the signal despite of medium absorption. We already notiedthat the reovered �eld shall be weaker at the input side of the medium,preisely in the region where the inoming �eld is stronger. As a onsequenethe reovered �eld is unable to turn the atoms bak into their initial state,whih hampers orret information retrieval. In order to evade this obstale,one an try to make the restored �eld to propagate in the opposite diretionof the inoming signal �eld. This way, building up from the output side, therestored �eld gains strength all along the storage medium and is expetedto reah its maximum intensity at the input side and to be intense enoughthere to turn the atoms bak to the ground state.Bak sattering of the signal �eld reminds of phase onjugation in non-linear optis. Three beams may be appropriate to reverse the diretion ofpropagation. Again this an be ombined with a three-level Λ-system. The7
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Figure 2: Signal reovery with reversed diretion of propagation. Coun-terpropagating π-pulses are used to onvert optial exitation into Ramanoherene, then bak to optial exitation. Therefore the restored signalpropagates bakward with respet to the inoming one.
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signal to be stored propagating along ~k1 exites the a→ b transition. Then alight pulse propagating along ~k2, resonant with the b→ c transition, onvertsthe optial exitation of a → b into the Raman oherene of states |a〉 and
|c〉. A π-pulse an e�iently ahieve suh a onversion. The notion of pulsearea will be de�ned later. Information is stored in the Raman oherene untilanother π-pulse, propagating along ~k3 onverts bak the Raman ohereneinto optial exitation of a→ b. In aordane with general phase mathingonditions, the signal an be reonstruted in the diretion ~k3 +~k2 −~k1, thatis to say in diretion −~k1 provided ~k3 = −~k2 (see Fig. 2).If atoms are initially prepared in state |a〉, the medium is transparent tothe onversion pulses. In addition, those pulses do not indue any exitationnoise sine the inoming signal �eld alone an onvey exitation to the atomiensemble.Unfortunately it does not work so easily. The proess relies on the timeseparation of the di�erent steps, namely the apture of the inoming signal,the onversion to Raman oherene, the bak onversion to optial exita-tion and the reovered signal emission. In order to be stored, the data pulsemust be shorter than the |a〉 and |b〉 superposition state lifetime. Equiv-alently, the data pulse bandwidth must exeed the homogeneous linewidth.Yet, in an homogeneously broadened medium, where all atoms have the sametransition frequeny, the storage bandwidth is preisely limited by the ho-mogeneous width, given by the inverse duration of the superposition state.Therefore one is faed with ontraditory onstraints, sine the inomingpulse must simultaneously be narrower than the absorption pro�le, in orderto be aptured, and shorter than the superposition state lifetime, in orderto be stored. In an e�ort to overome the ontradition, let us onsider aninhomogeneously broadened medium, where atoms exhibit di�erent transi-tion frequenies. The memory bandwidth is no longer limited by the inversesuperposition state lifetime and muh shorter signal pulses an be onsid-ered. Then one meets another obstale. The superposition states that arebuilt in di�erent atoms evolve at di�erent rates, whih entails relative phaseshift. The above desribed pulse sequene is unable to rephase the atoms,a neessary ondition for signal reovery. We shall see how to solve thisproblem.After the general presentation of the two memory arhitetures to beonsidered, we now proeed to the detailed analysis of the underlying physis.9



3 Semi-lassial desription of light-matter in-teration3.1 Atom exitation by lightThe sample is illuminated by travelling plane waves. The eletromagneti�eld is regarded as a lassial quantity. The omplex amplitude of the eletri�eld is given by:
E(~r, t) =

1

2
(E(~r, t) + E∗(~r, t)) =

1

2
(A(~r, t)eiωLt−i~k.~r + c.c.) (2)The main time and spae variation is olleted in the phase fator eiωLt−i~k.~rthat haraterizes a wave with entral frequeny ωL, propagating along awave vetor ~k. The envelope A(~r, t) little varies on the time and spaesales of optial period and wavelength. The wave vetor length is de�nedas ωL = kc.The terms E(~r, t) and E∗(~r, t) respetively stand for the positive and nega-tive frequeny omponents of the �eld. Indeed the time-to-frequeny Fouriertransform of E(~r, t), E(~r, ω) = F[E(~r, t)], entered at optial frequeny ωL, islose to 0 at −ωL.Interation to the atomi system is desribed in eletri dipole approxi-mation by the hamiltonian:

HI = −q ~R. ~E (3)where q is the (negative) eletron harge. Thus q = −e, where e representsthe elementary harge. The transition dipole matrix element between states
|i〉 and |j〉:

~µij = 〈i|e~R|j〉 (4)is de�ned with appropriate phase hoie so that this element is real.The atom density matrix equation reads as:










i~ρ̇ = [H, ρ] +
dρ

dt

∣

∣

∣

∣relaxation
H = H0 − q ~R · ~E = H0 + e~R · ~E

(5)This equation ombines the unitary evolution, driven by the eletromagneti�eld, and the non-unitary evolution aused by oupling with environment.The latter is desribed by the phenomenologial relaxation term.10



In order to be more spei�, let us �rst onsider the interation of a two-level atom with the inoming �eld. Expanding the density matrix equationon the set of eigenstates |a〉, |b〉 one obtains:






ρ̇aa = i(ρab − ρba)(ΩeiωLt−i~k.~r + c.c.) + γbρbb

ρ̇bb = −ρ̇aa

ρ̇ab = i(ρaa − ρbb)(ΩeiωLt−i~k.~r + c.c.) + (iωab − γab)ρab

(6)where the Rabi frequeny is de�ned as:
Ω(~r, t) =

µabA(~r, t)

2~
(7)If A(~r, t) is omplex, the Rabi frequeny is omplex too. In order to separatethe fast osillation at optial frequeny, one substitutes ρab with:

ρab = ρ̃abe
iωLt−i~k.~r (8)This is not a swith to interation piture. In interation representationone de�nes the operator ρI = exp(− i

~
H0t)ρ exp( i

~
H0t) that involves a fator

exp(−iωabt), spei� to eah frequeny lass. Instead, swithing to the frame"rotating" at laser frequeny, one applies the same tranform to all frequenylasses. This di�erene will prove important in inhomogeneously broadenedmedia where atoms osillate at various frequenies.Then, negleting all the terms osillating at harmoni overtones of ωL, oneobtains the Rotating Wave Approximation of the density matrix equation:






ρ̇aa = i(ρ̃abΩ
∗ − ρ̃baΩ) + γbρbb

ρ̇bb = −ρ̇aa

˙̃ρab = i(ρaa − ρbb)Ω + (i∆ − γab)ρ̃ab

(9)where ∆ = ωab − ωL. One may formally integrate these equations. One �rstintegrates the homogeneous equations. Then one takes the non-homogeneousterm into aount by the method of variation of the parameters. One obtains:














nab(t) = 1 + (nab(t0) − 1)e−γb(t−t0) + 2i

∫ t

t0

dt′(ρ̃abΩ
∗ − ρ̃baΩ)e−γb(t−t′)

ρ̃ab(t) = ρ̃ab(t0)e
(i∆−γab)(t−t0) + i

∫ t

t0

dt′Ωnabe
(i∆−γab)(t−t′) (10)Whether in di�erential or integral forms, these equations are known as optialBloh equations. They rely on the following assumptions:11



• interation with the lassial �eld is desribed in eletri dipole approx-imation
• transition frequenies are onstant parameters
• relaxation proesses are desribed by phenomenologial deay ratesThe density matrix of a two-level atom is omprised of 4 omponents, 2 ofwhih are omplex. The trae onservation and the symmetry property ρab =

ρ∗ba redue the number of independent parameters to 3, namely the populationdi�erene and the real and imaginary omponents of the oherene. Blohequations are nothing but the three linear di�erential equations that ouplethese three quantities.3.2 Radiative responseWhen prepared in a superposition of two states linked by an optial tran-sition, the atoms behave as osillating dipoles, i.e. as radiating mirosopiantennas. They behave as real soures of Huyghens wavelets (see Fig. 3).In the same way as the virtual soures of Huyghens wavelets, the atomsaquire the spae and time phase of the inoming �eld. As long as phaseproperties are preserved, that is to say as long as the atomi oherene hasnot been erased by homogeneous relaxation or phase-shift by inhomogeneousdetuning, the atoms radiate as the virtual soures of Huyghens di�rationtheory. Spei�ally, the spatial oherene of the soures makes the waveletsonstrutively interfere in the diretion of the inoming wave. Elaboratingthe analysis a little further, one an determine the di�ration limited angularaperture of the emitted signal.With this piture in mind, let us proeed to the loal desription of theatomi response, as derived from Maxwell equations. In a dieletri medium,in the absene of eletri harges those equations read as:
rot( ~E) = −∂t

~B Faraday law
rot( ~B) = ∂t

~D Ampère theorem
div( ~D) = 0 Gauss theorem (11)where ~D an be expressed in terms of the marosopi polarization density

~P as:
~D = ǫ0 ~E + ~P (12)12
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Figure 3: The oherent atomi response to optial exitation an be under-stood within the frame of Huyghens di�ration theory. The atomi dipolesbehave as real soures of Huyghens wavelets.These equations ombine into the wave equation with soures:
∆ ~E − µ0ǫ0

∂2 ~E

∂t2
= µ0

∂2 ~P

∂t2
− 1

ǫ0
grad[div(~P )] (13)The atomi response is ontained in the marosopi polarization density ~P .We assume that the transverse variation of ~P is very small on the sale ofthe atomi wavelength. This enables us to drop the seond term on the righthand side of Eq.13.We have now to express the marosopi polarization density in terms ofthe optial Bloh equation solutions. Let us onsider the N atoms sittingwithin an elementary volume V . The size of this volume is small enoughwith respet to the optial wave length so that all the atoms interat withthe same �eld. The total dipole moment is expressed as the sum of the

N individual dipoles. The expetation value of the orresponding quantumobservable reads as:
〈

N
∑

i=1

µi

〉

= Tr

[(

N
∑

i=1

µi)

)

ρ

] (14)13



where ρ represents N-atom density operator. The N -atom state is initiallyfatorizable and is assumed to remain so under semi-lassial exitation.In other words, semi-lassial exitation is expeted not to entangle the Natoms. The density operator then reads as:
ρ = ρ1 ⊗ . . .⊗ ρi ⊗ . . .⊗ ρN (15)In order to express the total dipole in terms of the individual density matries,one uses the relation:

Tr
1···N 6=i

(ρ1 ⊗ . . .⊗ ρi ⊗ . . .⊗ ρN) = ρi (16)Then the total dipole expetation value redues to:
〈

N
∑

i=1

µi

〉

=

N
∑

i=1

Tr
i

[

Tr
1···N 6=i

(µiρ)

]

=

N
∑

i=1

Tr
i

(

µi Tr
1···N 6=i

ρ

)

=

N
∑

i=1

Tr(µiρi)(17)For the time being we ignore inhomogeneous broadening. All the atomshave the same transition frequeny. Then the elementary volume dipolemoment reads as:
N
∑

i=1

Tr(µiρi) = −Nµab [ρab(~r, t) + ρba(~r, t)] (18)where the sum runs over all the atoms within the elementary volume, with
〈a|µ|a〉 = 〈b|µ|b〉 = 0. A minus sign appears beause µab has been de�nedfrom the elementary harge e and not from the eletron harge q = −e.Dividing by the volume V , one �nally gets the marosopi polarizationdensity:

P (~r, t) = −nµab [ρab(~r, t) + ρba(~r, t)] (19)where n denotes the density of ative atoms per unit volume.In the same way as the eletri �eld, the polarization density appears to beomprised of positive and negative frequeny omponents. Those omponentsdo not overlap spetrally, being distant by hundreds of THz, so they satisfyunoupled wave equations. The positive frequeny omponent wave equationreads as:
1

2

(

∆ − 1

c2
∂2

∂t2

)

(

A(~r, t)eiωLt−i~k.~r
)

= −n µab

c2ǫ0

∂2

∂t2

(

ρ̃ab(~r, t)e
iωLt−i~k.~r

) (20)14



Within the frame of the slowly varying envelope approximation, we an ne-glet the ontributions of order ∂tA(~r, t)/[ωLA(~r, t)] and ∇A(~r, t)/[kA(~r, t)].The wave equation then redues to:
(

∂

∂z
+

1

c

∂

∂t

)

A(~r, t) = ink
µab

ǫ0
ρ̃ab(~r, t) (21)Substituting A(~r, t) with Eq.7 one obtains:

(

∂

∂z
+

1

c

∂

∂t

)

Ω(~r, t) = ink
µ2

ab

2~ǫ0
ρ̃ab(~r, t) (22)It is worth expressing this equation of propagation in terms of the resonantabsorption oe�ient α0. To �rst order in Ω(~r, t) the Bloh equation for

ρ̃ab(~r, t) reads as:
ρ̃ab(~r, t) = i

∫ t

−∞

Ω(~r, t′)e−γab(t−t′)dt′ (23)whih redues to ρ̃ab(~r, t) = iΩ(~r, t′)/γab if Ω(~r, t) little varies on γ−1
ab timesale. This ondition simply means that the �eld bandwidth is muh narrowerthan the absorption line, so that the polarization density instantaneouslyadjusts to the �eld variations. Substituting the expression of ρ̃ab(~r, t) inEq.22 one obtains:

(

∂

∂z
+

1

c

∂

∂t

)

Ω(~r, t) = −nk µ2
ab

2~ǫ0γab
Ω(~r, t) = −α0

2
Ω(~r, t) (24)Finally the wave equation reads as:

(

∂

∂z
+

1

c

∂

∂t

)

Ω(~r, t) = i
α0γab

2
ρ̃ab(~r, t) (25)4 Three-level Λ-system, EIT4.1 Optial exitation of the Λ-systemIn a Λ-system an upper state |b〉 is onneted through optial transitions totwo lower states |a〉 and |c〉. The system is illuminated by two driving �elds.The a → b and b → c transitions are respetively driven at frequenies ω115



and ω2 with Rabi frequenies Ω1 and Ω2. Eah driving �eld is assumed toexite a single transition. Angular seletion rules may help to disriminatethe transitions. Indeed ross-polarizing the light beams may be enough toseparately drive the two transitions when suh seletion rules apply. Other-wise, the splitting ωac must be muh larger than the homogeneous widths,the Rabi frequenies and the detunings |ωab−ω1| and |ωbc−ω2|. The adjun-tion of a third state signi�antly ompliates the density matrix formalism.Instead of 3 real independent parameters in a two-level system, one is leftwith 8 real parameters in a three-level atom. Those quantities are oupledby the following di�erential linear equations:






























ρ̇aa = i(ρ̃abΩ
∗
1 − ρ̃baΩ1) + raγbρbb

ρ̇cc = i(ρ̃cbΩ
∗
2 − ρ̃bcΩ2) + rcγbρbb

ρ̇bb = −ρ̇aa − ρ̇cc

˙̃ρab = [i(ωab − ω1) − γab]ρ̃ab + i(ρaa − ρbb)Ω1 + iρ̃acΩ2

˙̃ρcb = [i(ωbc − ω2) − γbc]ρ̃cb + i(ρcc − ρbb)Ω2 + iρ̃caΩ1

˙̃ρac = [i(ωac − ω1 + ω2) − γac]ρ̃ac + i(ρ̃abΩ
∗
2 − ρ̃bcΩ1)

(26)
The system is assumed to be losed. The oe�ients ra and rc = 1 − raaount for the upper level relaxation distribution between the two groundsublevels. As usual in the rotating wave piture, the o�-diagonal matrixelements have been substituted with:

ρab = ρ̃abe
iω1t−i ~k1.~r

ρcb = ρ̃cbe
iω2t−i ~k2.~r

ρac = ρ̃ace
i(ω1−ω2)t−i( ~k1− ~k2).~r

(27)The �rst three lines of Eq.26 express the population evolution. This doesnot di�er from the orresponding two-level system equations. The last threelines of Eq.26, aounting for oherene evolution, are more spei�. Firstone observes that oherene ρac is exited by the light �elds, although nodiret transition onnets states |a〉 and |c〉. Besides, oherenes ρab and
ρbc are oupled not only to level populations, but also to ρac. For instane,oherene ρab is built not only from diret exitation of state |a〉 populationby �eld Ω1, but also from the exitation of oherene ρac by �eld Ω2.The system evolution is generally omplex when both �elds are appliedsimultaneously. One observes phenomena suh as stimulated Raman adia-bati passage (STIRAP) [7℄, dark resonane [8℄, or the EIT proess we areabout to examine more arefully. 16



However, the exitation of ρac, also known as the Raman oherene, givesrise to attrative features even when the �elds Ω1 and Ω2 do not interatsimultaneously with the system. We shall meet suh features within theframe of signal reonstrution in an absorbing medium.4.2 Solving the Bloh equations with EIT onditionsIn this setion we follow the lines of Ref. [9℄. With the following assumptions:
• all the atoms are initially prepared in state |a〉

• Ω2, known as the "oupling" or "ontrol" �eld, is a onstant.
• Ω1, arrying the information to be stored, has a pulse area << 1the density matrix equations get muh simpler. To �rst order in Ω1, the levelpopulation does not vary and the term ρ̃bcΩ1 an be negleted. Thereforethe equations of ρab and ρac turn into:

˙̃ρab = [i(ωab − ω1) − γab]ρ̃ab + iΩ1 + iρ̃acΩ2

˙̃ρac = [i(ωac − ω1 + ω2) − γac]ρ̃ac + iρ̃abΩ
∗
2

(28)In addition we assume the oupling �eld resonantly exites the b → c tran-sition, and the signal pulse entral frequeny ω1 oinides with ωab. Theequations redue to:
˙̃ρab = −γabρ̃ab + i(Ω1 + ρ̃acΩ2) (29)
˙̃ρac = −γacρ̃ac + iρ̃abΩ

∗
2 (30)Substituting Eq. 30 into Eq. 29, one obtains:

ρ̃ac = −Ω1

Ω2
− i

Ω2
(∂t + γab)ρ̃ab = −Ω1

Ω2
− 1

|Ω2|2
(∂t + γab)(∂t + γac)ρ̃ac (31)If ρ̃ac redues to the �rst term on the right hand side of Eq. 31, then thedriving term Ω1 + ρ̃acΩ2 vanishes in Eq. 29. In other words, the Ramanoherene ontribution interferes with single-photon exitation to preventthe buildup of ρab. The absene of atomi response to Ω1 on the a → btransition is re�eted by the absene of Ω1 absorption.17



This ours if the seond term on the right hand side of Eq.31 an benegleted, i.e. if:
(∂t + γab)(∂t + γac)Ω1 << Ω1/|Ω2|2 (32)Then ρ̃ac adiabatially follows the variations of Ω1. Given that ρaa

∼= 1, thesolution ρ̃ac = −Ω1/Ω2 atually orresponds to the dark state:
|D〉 =

Ω2
√

Ω2
1 + Ω2

2

|a〉 − Ω1
√

Ω2
1 + Ω2

2

|c〉 (33)This is an important feature of EIT: interation with the signal �eld Ω1immediately starts in the dark state, unlike what ours in other three-levelproesses suh as Coherent Population Trapping (CPT)[8℄.Substituting ρ̃ac into Eq. 30, one �nally obtains the expression of optialoherene:
ρ̃ab =

i

|Ω2|2
(∂t + γac)Ω1, (34)from whih we an alulate the atomi feedbak on the inoming signal �eld

Ω1.4.3 EIT wave equationSubstituting Eq. 34 into Eq. 25 one obtains:
[

∂

∂z
+

(

1

c
+
α0γab

2|Ω2|2
)

∂

∂t

]

Ω1(~r, t) = −α0

2

γabγac

|Ω2|2
Ω1(~r, t) (35)This equation takes the usual form desribing resonant plane wave propaga-tion through an ensemble of two-level atoms in the linear regime. However,the propagation parameters are deeply altered:

• the absorption oe�ient is redued from α0 to:
αΩ = α0

γabγac

|Ω2|2
(36)With typial γab and γac values of about 106s−1 and 103s−1 respetively,an Ω2 ontrol �eld Rabi frequeny of order 3 105s−1 is enough to redueopaity by two orders of magnitude.18



• the group veloity is redued from  to:
v =

(

1

c
+
α0γab

2|Ω2|2
)−1 (37)With the same numerial parameters, and with α0 = 103m−1, the groupveloity amounts to no more than 200m/s!The wave equation also tells us that, within the transpareny window, aninoming travelling wave of the form Ω1(t− z/c) in free spae turns into theform Ω1(t − z/v) as it propagates through the ative medium. The wavepreserves its temporal pro�le, just undergoing spatial ompression by thefator v/c. The �eld amplitude is also preserved due to ontinuity at theinterfae of free spae and ative medium. Therefore neither the inomingsignal duration nor its spetral width is a�eted by slowing down, providedthat the signal is ontained within the transpareny window. Now we needlarify the notion of transpareny window.The EIT wave equation has been derived within the adiabati onditionlimits. The inoming �eld variations have been assumed to be slow enoughso that the Raman oherene an instantaneously adjust to them. One ex-pets the adiabati ondition to fail if the inoming �eld varies too rapidly,i.e. if its spetral width exeeds some limiting value. Let us haraterize thesignal spetra width by the quantity Ω−1

1 ∂tΩ1. Let the signal be narrowerthan the absorption linewidth γab, whih leads to: (∂t + γab)Ω1
∼= γabΩ1.Then the adiabati ondition reads as (∂tΩ1)/Ω1 << |Ω2|2/γab. The trans-pareny width would thus be given by δT = |Ω2|2/γab. This result needbe examined more arefully. The di�erential equations we rely on − Blohequation and wave equation − only onvey loal desription, as illustratedby the linear absorption oe�ient. However, we need the overall transmis-sion through the entire atom ensemble to de�ne the transpareny window.Let the absorption oe�ient at ∆ from resonane be approximated by thefuntion: α(∆) = α0[1 − e−(∆/δT )2 ]. Then the transmission fator reads as

e−α(∆)L ∼= e−α0L(∆/δT )2 , whih �nally leads to the transpareny width:
∆T = δT/

√

α0L =
|Ω2|2

γab

√
α0L

(38)
19



4.4 Storage and retrieval, stopped lightThe energy arried by the inoming signal an be expressed as:
∫

|Ω1(t− z/c)|2 dz = c

∫

|Ω1(t− x)|2 dx (39)If one is able to have the entire pulse standing within the ative medium, thearried energy beomes, inside the material:
∫

|Ω1(t− z/v)|2 dz =
v

c

∫

|Ω1(t− z/c)|2 dz (40)whih represents a v/c redution with respet to the free spae value. There-fore most of the energy has been extrated from the �eld if v << c. It anbe shown that energy has been transferred to the ontrol �eld, as soon asthe signal �eld rosses the free spae to material interfae. Nonetheless, theRaman oherene is expressed as Ω1/Ω2, being proportional to the instan-taneous signal �eld. Therefore, a spin wave propagates within the materialalong with the signal �eld, although the latter does not arry any energy.If one abruptly swithes o� the ontrol �eld, the residual signal �elddisappears, being absorbed by the material, while the spin wave stops prop-agating, but survives as long as permitted by deoherene proesses. Oneimproperly says that light is "stopped". Atually one should say that thesignal �eld has been split into two parts. On the one hand, its energy hasbeen removed by the ontrol �eld. On the other hand its information ontenthas been stored in the Raman oherene [10℄.When the ontrol �eld is turned bak on, the signal �eld is rebuilt fromthe Raman oherene. The restored �eld resumes its progression, pulling itsompanion spin wave. Energy is fed bak to the �eld at the output of theative medium.To "stop" light without losing information, one has to make the entiresignal pulse to stand within the boundaries of the ative medium. The partof the signal entering the storage medium after ontrol �eld shutdown is lostby absorption. The spatial extension of a pulse with duration τ is vτ . Thishas to be smaller than the material thikness L. Besides the signal spetralwidth ∆ must be smaller than the transpareny width ∆T . Combining thosetwo onditions leads to:
∆ τ << ∆TL/v =

√

α0L (41)20



With the additional ondition ∆ τ > 1, beause of time-frequeny Fourieronjugation, the "stopped" light storage requirement reads as:
√

α0L >> 1 (42)4.5 Limits of the semi-lassial pitureIn a "stopped" light proess, a single photon trapping is expeted to leavethe atom ensemble in the following superposition state:
|Ψ1〉 =

1√
N

(

eiφ(~r1)|ca · · ·a〉 + eiφ(~r2)|ac · · ·a〉 + · · · + eiφ(~rN )|aa · · · c〉
) (43)This is a olletive single exitation state where the sum runs over all theatoms interating with the �eld. All the atoms are onsidered on an equalfooting, whih does not perfetly aount for the �nite spatial extension of thestored light pulse. However this does not interfere with the general meaningof the present disussion.The olletive state appears to be entangled. It annot be fatorized asa produt of individual atom states. This is preisely the type of state thatannot be produed in the frame of a semilassial piture analysis. In thesemilassial approah the atoms ommuniate with outside world througha lassial �eld that does not onvey any quantum information. As a result,olletive exitation, with all atoms onsidered on an equal footing, an onlybuild ensemble produt states suh as the following:

(1 + ǫ2)−N/2
(

|a〉 + ǫeiφ(~r1)|c〉
) (

|a〉 + ǫeiφ(~r2)|c〉
)

· · ·
(

|a〉 + ǫeiφ(~rN )|c〉
) (44)This state an be expanded as a sum of n-exitation states:

(1 + ǫ2)−N/2

{

|Ψ0〉 + ǫ
√
N |Ψ1〉 + ǫ2

√

N(N − 1)

2!
|Ψ2〉 + · · · + ǫN |ΨN〉

}(45)where |Ψ1〉 is de�ned above and where:
|Ψ0〉 = |aa · · ·a〉
|Ψ2〉 =

√

2!
N(N−1)

(

ei(φ(~r1)+φ(~r2))|cca · · ·a〉 + ei(φ(~r1)+φ(~r3))|cac · · ·a〉 + · · ·
)

· · · · · · · · · · · · · · · · · ·
|ΨN〉 = ei(φ(~r1)+···+φ(~rN )) |cc · · · c〉 (46)21



The 1-exitation omponent oinides with the previously de�ned single exi-tation entangled state |Ψ1〉 . In the n-exitation states expansion, the weightof |Ψ1〉 , as given by ǫ2N/(1 + ǫ2)−N ∼= ǫ2Ne−Nǫ2 , never exeeds 1/e, a valuethat is reahed at ǫ2N = 1 and equals the weight of the 0-exitation state
|Ψ0〉 . Sine ǫ2 represents state |c〉 population in an individual atom, ǫ2Norresponds to the average number of atoms in |c〉. Therefore the weight of
|Ψ1〉 is maximum when the average number of atoms in |c〉 is unity. Moregenerally, one easily heks that the n-exitation state distribution obeysPoisson statistis and is onsistent with exitation by a oherent state of the�eld but is never onsistent with exitation by a Fok state of the �eld, witha �xed number of photons.4.6 Single photon storage and retrieval: experimentThe �rst observation of single photon storage and retrieval is published inDeember 2005 [11℄. A laser-ooled atom loud is used as the storage ma-terial. The loud ontains about 4 109 85Rb atoms, ooled to 100µK in amagneto-opti trap.The quantum light signal has to be narrower than the Rubidium D1line, a few MHz-wide. No parametri light soure is able to generate suhmonohromati single photons. A spei� soure has to be developed �rst.Another loud, idential to the memory ensemble, plays this role. A stronglyattenuated lassial beam, direted along ~k1, illuminates this loud (see Fig.4. One waits for Raman sattering in diretion ~k2. Detetion of a Ramanphoton in this diretion projets the atom loud to the single exitation state:

1√
N

(

e−i(~k1−~k2).~r1 |ca · · ·a〉 + e−i(~k1−~k2).~r2 |ac · · ·a〉 + · · · + e−i(~k1−~k2).~rN |aa · · · c〉
)(47)where a and c refer to the ground substates of the atoms, onsidered as three-level Λ-systems. As soon as a photon is deteted on PD1, a rather intensepulse is direted to the soure loud along −~k1. In synhrony with this pulse,a single photon is emitted in diretion −~k2, with probability lose to unity.This emission orresponds to stimulated Raman sattering on the previouslyprepared single-exitation ensemble superposition state. The radiated singlephoton is then direted through an optial �ber to the memory loud. Thearrival time in the memory is known from the event detetion on PD1. Oneswithes o� the ontrol �eld in order to "stop" or to "trap" the photon22
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Figure 4: Single photon storage and retrieval [11℄. The single photon soureand the memory are both louds of laser-ooled Rb atoms. PD1, 2, 3 repre-sent photodetetors.
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inside the memory. One turns bak on this �eld to restore the photon. Tohek the uniity of the reovered photon, one performs an anti-orrelationmeasurement on PD2 and PD3, following the Hanbury Brown and Twissproedure. The memory lifetime appears to be no more than 10µs. This isassigned to magneti �eld inhomogeneity.5 EIT in a solid: inhomogeneous broadening5.1 Line broadening and relaxationThe most ritial EIT parameter is the Raman oherene lifetime, but thisdoes not restrit the hoie of material to suh sophistiated systems asLCAC. Long oherene lifetime an also be found in solid materials at liquidhelium temperature. In suh materials the absene of motion keeps the ativeenters from migrating outside the light beams, as in LCAC, but even bettersine motion is totally absent. One also avoids spatial dephasing that ana�et superposition states and an be aused by di�usion, even in LCAC.Rare earth ion doped rystals have been onsidered as potential solid mate-rial andidates for quantum memory appliations. O�ering similar oherenelifetime properties as atomi samples, they di�er from LCAC by the largeinhomogeneous broadening of their spetral lines.In LCAC the atoms move so slowly that the Doppler shift does not a�etthe absorption line pro�le. In solid materials the absene of motion of theabsorbing enters re�ets the strength of their interation with the rystal.Interation entails energy level shift and, beause the rystal is never perfet,the shift varies from site to site. As a result the transition frequeny isnot unique for all the absorbing enters. Instead the transition frequenyis distributed over a broad spetral interval, whose width Wab, named theinhomogeneous width, typially ranges from a few GHz to several tens of
GHz.Before inorporating inhomogeneous broadening in EIT analysis, we needlarify di�erent aspets of interation with environment. On the one hand,the interation shifts the energy levels, whih results in the inhomogeneousbroadening. This represents a stati aspet. Cooling down to a few Kelvinsdoes not signi�antly hange the level shift. On the other hand, interationalso exhibits a dynamial aspet, orresponding to interation �utuations.On an a → b transition, this is re�eted in the exess of the homogeneous24



width γab with respet to half the population deay rate γb/2. When thesample is ooled down, γab dereases and gets loser to γb/2.However homogeneous and inhomogeneous width are not di�erent inessene. This is a question of observation time sale. Suh e�et that appearsas a �utuation at a given time sale, and thus ontributes to homogeneousbroadening, may be regarded as a stati feature on a shorter time sale, andthen pertain to inhomogeneous broadening.In the absene of inhomogeneous broadening we have performed the anal-ysis in the viinity of single-photon resonane. This is not valid anymorein ase of large inhomogeneous broadening. Spetral distane to single-photon resonane varies dramatially among the atoms. Instead of perform-ing the analysis in time domain, we now onsider a spetral domain approah,through time-to-frequeny Fourier transform.5.2 Polarization and suseptibilityTo aount for the distribution of transition frequenies, we rewrite themaroopi polarization density in the form:
P (~r, t) = −µab

∫

dωabG(ωab) [ρab(~r, t;ωab) + ρba(~r, t;ωab)] (48)where G(ωab) stands for the spetral and spatial distribution law, normalizedto the atom density per unit volume n as: ∫ dωabG(ωab) = n. Time tofrequeny Fourier transform leads to:
P̂ (~r, ω) = −µab

∫

dωabG(ωab) [ρ̂ab(~r, ω;ωab) + ρ̂ba(~r, ω;ωab)] (49)In linear optis onditions, whih apply to our weak signal �eld, the polar-ization an be expressed as:̂
P (~r, ω) = ǫ0χ(ω)E(~r, ω) (50)where χ(ω) denotes the eletri suseptibility. This formula, well known ineletrostatis, also applies to eletrodynamis, provided the relevant quan-tities are expressed in the frequeny domain1. Splitting the suseptibility1If χ(ω) varies slowly over the �eld spetral width, the following approximation:

P (~r, t) = F
[

P̂ (~r, ω)
]

∼= ǫ0χ(ω)F [E(~r, ω)] = ǫ0χ(ω)E(~r, t)25



and the �eld amplitude into positive and negative frequeny omponents oneobtains:
P̂ (~r, ω) = ǫ0

[

χ(+)(ω) + χ(−)(ω)
] 1

2

[

Ê(~r, ω) + Ê∗(~r,−ω)
] (51)The positive (resp. negative) frequeny omponent of the �eld vanishes inthe ω ≈ −ω1 (resp. ω ≈ ω1) region. Likewise the positive (resp. negative)frequeny omponent of the suseptibility vanishes in the ω ≈ −ωab (resp.

ω ≈ ωab) region. Therefore the ross-term χ(+)(ω)Ê∗(~r,−ω)+χ(−)(ω)Ê(~r, ω)vanishes and the polarization density �nally reads as:
P̂ (~r, ω) =

1

2
ǫ0

[

χ(+)(ω)Ê(~r, ω) + χ(−)(ω)Ê∗(~r,−ω)
] (52)In order to determine the suseptibility, let us ome bak to the three-levelsystem Bloh equation. The transition frequeny is now distributed over theinhomogeneous width of the absorption line. We still assume that:

• all atoms, whatever their transition frequeny, initially sit in state |a〉
• the signal (resp. the ontrol) �eld only exites the a→ b (resp. b→ c)transitionAs we already notied, ross-polarizing the light beams may be enough toseparately drive the two transitions when angular seletion rules apply. How-ever, when the two transitions only di�er by their frequeny, they are oupledto a single spei� �eld only if the ground state splitting is muh larger thanthe homogeneous widths, the Rabi frequenies and the transition detunings.This requires that Wab << ωac. We shall see how to ope pratially withthis ondition.Sine Ω2 is a onstant, the Bloh equations for ρ̃ab and ρ̃ac are linearexpressions of time dependent quantities and an be solved by Fourier trans-formation. In terms of ρab, E(~r, t) and the new variable ζ = ρ̃ace

i(ω1t−~k1.~r),makes the time dependent polarization density proportional to the �eld, as in the frequenydomain. This implies instantaneous response to optial exitation and obsures the ausalharater of the material reation. The general expression, fully aounting for ausality,reads as:
P (~r, t) = F

[

P̂ (~r, ω)
]

= ǫ0

∫

dτχ̌(τ)E(~r, t − τ)where χ̌(τ) = 0 when τ ≤ 0 26



Eqs. 29 and 30 turn into:
ρ̇ab = [iωab − γab]ρab + i

µabE(~r, t)

2~
+ iζΩ2

ζ̇ = [i(ωac + ω2) − γac]ζ + iρabΩ
∗
2

(53)Proeeding to Fourier transformation one gets:
[i(ω − ωab) + γab]ρ̂ab(ω) = i

µabÊ(~r, ω)

2~
+ iζ̂(ω)Ω2

[i(ω − ωac − ω2) + γac]ζ̂(ω) = iρ̂ab(ω)Ω∗
2

(54)By eliminating ζ̂(ω) one �nally obtains the optial oherene expression2 :
ρ̂ab(ω) = i

µabÊ(~r, ω)

2~

i(ω − ωac − ω2) + γac

[i(ω − ωab) + γab][i(ω − ωac − ω2) + γac] + |Ω2|2
(55)This expression depends on both the ω − ωab detuning of the a → b single-photon transition to the Ê(~r, ω) signal �eld omponent, and the ω−ωac −ω2detuning of the a → c two-photon transition to the ompound exitationby Ê(~r, ω) and the ontrol �eld at ω2. Let ω(0)

ab represent the enter of theatom spetral distribution G(ωab). For sake of simpliity the splitting ωac isassumed to be the same in all the atoms. In other words, we suppose the
a→ c Raman transition is not inhomogeneously broadened. In general this isnot true in a solid, but aounting for Raman frequeny distribution proeedsalong the same lines as the present alulation and an be extrapolated easily.2The oherene ρab(t) must satisfy the ausality ondition. Thus ρab(t) does not dependon E(~r, t′), with t′ > t. This ondition an be translated to the frequeny domain. Byinverse Fourier transformation ρab(t) an be expressed as:
ρab(t) =

i

2π

µab

2~

∫

dt′E(~r, t′)

∫

dωeiω(t−t′) i(ω − ωac − ω2) + γac

[i(ω − ωab) + γab][i(ω − ωac − ω2) + γac] + |Ω2|2The non-ausal ontribution, arising from t′ > t, is obtained by ontour integration inthe lower-half omplex plane. To make the non-ausal ontribution to vanish, the sum ofresidues in the lower-half plane must anel. However, one of the two poles at least mustsit in the upper-half plane to give the ausal ontribution. Therefore if a pole is loatedin the lower-half plane, the orresponding residue must vanish. One easily heks that
i(ω − ωac − ω2) + γac annot vanish at a pole sitting in the lower-half plane. Thereforeausality imposes that both poles sit in the upper-half plane.27



Given the �xed ωac value, the enter of ωbc distribution is loated at ω(0)
bc =

ω
(0)
ab − ωac. Assuming that the ontrol laser is tuned to resonane with thisentral frequeny, so that ω2 = ω

(0)
bc , substituting Eq. 55 into Eq. 49, andomparing with the suseptibility de�nition (Eq.52), one �nally obtains:

χ(+)(ω) = −i
µ2

ab

~ǫ0

∫

dωabG(ωab)
i(ω − ω

(0)
ab ) + γac

[i(ω − ωab) + γab][i(ω − ω
(0)
ab ) + γac] + |Ω2|2(56)The analytial alulation an be ompleted easily if the atom distributionis given the following Lorentzian form [12℄:

G(ωab) =
n

π

Wab

(ωab − ω
(0)
ab )2 +W 2

ab

(57)Summation over ωab is performed by ontour integral. One may notie thatthe only pole in the upper-half omplex plane is loated at ωab = ω
(0)
ab +iWab.One obtains:

χ(+)(ω) = −in
µ2

ab

~ǫ0

i(ω − ω
(0)
ab ) + γac

[i(ω − ωab) +Wab + γab][i(ω − ω
(0)
ab ) + γac] + |Ω2|2

(58)Inhomogeneous broadening only results in the substitution of the homoge-neous width γab with the broadened linewidth Wab + γab. Without furtherinvestigation we an onlude that the expressions for indued transparenyand redued group veloity, we previously derived in the absene of inho-mogeneous broadening, are still valid provided γab is replaed everywhere by
Wab + γab. It ould be shown easily that Raman transition inhomogeneousbroadening is orretly desribed with substitution of Wac + γac to γac.5.3 Wave equation in the spetral domainThe temporal piture developed in Setion 4 is onditioned by an adiabatiapproximation. The present spetral analysis, not limited by suh ondition,is worth visiting a little further.In the spetral domain the wave equation reads as:

∆Ê(~r, ω) +
ω2

c2
Ê(~r, ω) = −ω2µ0P̂ (~r, ω) (59)28



The polarization density being expressed in terms of suseptibility, the waveequation for the positive frequeny �eld omponent reads as:
∆Ê(~r, ω) +

ω2

c2
[

1 + χ(+)(ω)
]

Ê(~r, ω) = 0 (60)The �eld is assumed to be a plane wave propagating along Oz. One looks fora solution in the form Ê(~r, ω) = E(ω)e−iκz. The wave equation then reduesto:
(

ω2

c2
[

1 + χ(+)(ω)
]

− κ2

)

E(ω) = 0 (61)With κ = k′ − iα/2, the solution is given by:
k′2 − α2(ω)

4
= k2

[

1 + χ
(+)
r (ω)

]

α(ω) = − k2

k′2
χ

(+)
im (ω)

(62)where χ(+)
r (ω) and χ(+)

im (ω) respetively stand for the real and imaginary partof χ(+)(ω). Under the assumption that ∣∣
∣
χ

(+)
r (ω)

∣

∣

∣
<< 1 and α(ω) << ω/c,the wave vetor k' and the absorption oe�ient α(ω) read as:

k′(ω) =
ω

c

√

1 + χ
(+)
r (ω)

α(ω) = −kχ(+)
im (ω)

(63)Substituting Eq. 58 into Eq. 63, one easily reovers the previously obtainedexpression of opaity at resonane. In the same way one an alulate theveloity group at resonane, given the de�nition as v = (dk′/dω)−1.More interestingly, the o�-resonane regime an be explored. Disregard-ing inhomogeneous broadening, and expanding suseptibility to seond orderas a funtion of detuning, one an express the transmitted power spetrum
I(z = L, ω) as:
I(z = L, ω) = I(z = 0, ω) exp

{

−α0L

(

γacγab

|Ω2|2
+

[

(ω − ωab)γab

|Ω2|2
]2
)} (64)whih leads to a gaussian-shape transpareny window whose width agreeswith Eq. 38. 29
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���������Figure 5: EIT transmission pro�le exhibiting the Autler Townes doublet.5.4 Memory bandwidthIn the prospet of signal proessing appliations, the transpareny width isa ritial parameter. This quantity has been derived above by limited orderexpansion of the suseptibility, but we need not restrit to this small detuningregion. Considering Eq. 58, one observes that, in onditions required for theopening of the transpareny window, when |Ω2|2 >> (Wab + γab)γac, χ(+)(ω)exhibits quasi-singularities at ω − ω
(0)
ab = ±|Ω2| (see Fig. 5 ). One easilyveri�es that, at these spetral positions, the absorption oe�ient returnsto its maximum value α0. Those two absorptions peaks re�et the Autler-Townes splitting of level b. Therefore the transpareny width appears to belimited by the ontrol �eld Rabi frequeny.This result also gives some information on the validity range of Eq. 64.Transpareny width limitation to |Ω2| requires that ∆T < |Ω2|, where ∆Tis given by Eq. 38. This is onsistent with ∆T < |Ω2| < γab

√
α0L, whihorresponds to a transpareny window narrower than the absorption pro�le.One might be tempted to inrease the ontrol �eld Rabi frequeny inorder to improve the memory operation bandwidth. However one must keepin mind that a small veloity group is neessary for e�ient informationtransfer from the signal �eld to the Raman oherene. Under ondition

|Ω2| < γab

√
α0L, the transpareny width an be expressed in terms of thegroup veloity as:

∆T = 2v
√

α0/L, (65)30
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Figure 6: Three-level Λ-system in Pr3+ : Y2SiO5. In addition to the two �eldsinvolved in the EIT proess, a third beam is used to repump ions from the
3H4(±5/2) ground state sublevel. Repumping serves to selet the ative ionswithin a narrow spetral interval, thus reduing the e�etive inhomogeeouswidth.whih depends neither on the absorption linewidth nor on the Rabi frequeny.Finally it should be notied that, if Raman transition too is a�eted byinhomogeneous broadening, then the group veloity lower bound is deterio-rated, inreasing from γac/α0 to Wac/α0.5.5 EIT demonstration in solidsThe EIT proess was observed for the �rst time in a rare earth ion dopedrystal of Pr3+ : Y2SiO5 in 1997 [13℄. Experiment operated on transition
1D2 −3 H4 at 606nm (see Fig. 6). With a I = 5/2 nulear spin, eaheletroni level is six times degenerate. Hyper�ne interation lifts degenerayinto 3 pairs of sub-levels, with a splitting in the MHz range. A Λ system is31



obtained when two lower sublevels are onneted by optial transition to aommon upper sub-level.Inhomogeneous broadening reahes Wab = 4GHz. This is muh largerthan the optial homogeneous width and the sub-level spaing and does notsatisfy the inhomogeneous broadening onditions of the alulation in setion5.2. Indeed we performed this alulation under assumption that Wab <<
ωac.Atually, a preparation step arti�ially redues the e�etive inhomoge-neous broadening to make it onsistent with the above alulation. The two�elds involved in the EIT proess optially pump the ions to the third groundsublevel that plays the role of a shelving state. The absortion pro�le is thustotally bleahed over the spetral interval within reah of the EIT �elds. Anarrow absorption band is then restored by a monohromati repump beamthat returns a spei� spetral lass of ions from the shelving state to |a〉state. The width of this group of ions, limited by the repump laser linewidth,represents the e�etive inhomogeneous broadening W eff

ab that easily satis�esthe ondition W eff
ab << ωac.One may wonder about the ontribution from ions, far from optial res-onane, but still satisfying the two-photon transition resonane ondition.Atually only ions with unbalaned sublevel population an ontribute to atwo-photon proess suh as EIT, sine the Raman transition probability isproportional to the sublevel population di�erene. Far from optial exita-tion by the di�erent �elds, the sublevels are equally populated at thermalequilibrium and those ions an be ignored.The Raman transition is a�eted by a ≈ 50kHz inhomogeneous broad-ening in Pr3+ : Y2SiO5. This broadening should be subsituted to γac in theEIT proess desription. Finally, a 60kHz-wide EIT transpareny windowwas observed.Observation of EIT was reported in various other solid state materialssuh as semiondutors [14, 15℄, nitrogen-vaany olor enters in diamond[16℄, Nd3+-doped rystals [17℄ but, for the time being, Pr3+ : Y2SiO5 stillby far outgoes these systems in terms of Raman oherene lifetime or EITe�ieny.Stopped light was also demonstrated in a Pr3+-doped rystal [18℄, witha memory lifetime of a few hundreds of µs. The storage lifetime was thendramatially inreased to more than 1s by an Australian group [19℄. Allthese works have been performed with lassial light. Quantum light storage32



in a solid has yet to be observed.6 Reovery from an absorbing mediumIn EIT the operation bandwidth, given by the transpareny window, is di-retly related to the ontrol �eld Rabi frequeny. At storage and retrievalboth the signal and the ontrol �elds have to be present simultaneously withinthe memory. We now onsider an alternative protool, �rst proposed inRef.[20℄, and examined in further details in [21℄. This is based on diretabsorption. The signal to be stored interats alone with the ative mate-rial. The operation bandwidth is expeted to be related to the absorptionlinewidth.6.1 Polarization ollapse, oherene survivalAs already notied in setion 2.2, sine information has to be stored �rstinto the optial oherene ρab, the information arrier pulse duration mustbe muh smaller than the inverse homogeneous width γab. Hene the pulsespetral width must be muh larger than γab. In addition, sine storage isbased on absorption, the pulse must be narrower than the absorption pro�le.In an homogeneously broadened medium, where all atoms have the sametransition frequeny, the absorption linewidth is given by γab

√
α0L. Heneone is left with the very restritive ondition √

α0L >> 1, similar to the onealready met in the frame of EIT. Interestingly, the ondition an be easilyrelaxed in inhomogeneously broadened material where the absorption widthan by far exeed γab

√
α0L. In the following we thus restrit the disussion toinhomogeneously broadened media. One may notie that, in EIT regime, theondition √

α0L >> 1 prevails whether the line is inhomogeneously broad-ened or not.The atomi response to a weak pulse was onsidered already in the frameof EIT. To desribe simple absorption one just anels Ω2 in Eq. 56 andobtains:
χ(+)(ω) = −i

µ2
ab

~ǫ0

∫

dωabG(ωab)
1

i(ω − ωab) + γab
(66)Assuming the homogeneous line is muh narrower than G(ωab), one simpli�es

33



χ(+)(ω) into:
χ(+)(ω) = −iπ

µ2
ab

~ǫ0
G(ω) (67)and the atomi response, as given by the polarization density, reads as (seeEq. 52):

P̂ (~r, ω) =
1

2
ǫ0

[

χ(+)(ω)Ê(~r, ω) + χ(−)(ω)Ê∗(~r,−ω)
] (68)Sine the inhomogeneous distribution G(ω) is assumed to be muh broaderthan the inoming pulse spetrum, the above equation tells us that the atomiresponse mathes the inoming pulse in the spetral domain. Therefore tem-poral pro�les oinide too. In other words the material response does notsurvive to the inoming pulse, ollapsing as the �eld drops to zero. The in-stantaneous harater of the material response is the reason why the pulsepropagation is just re�eted by an attenuation fator.However, provided the homogeneous width is muh smaller than the in-verse pulse duration, the atomi oherenes subsists long after the pulse hasfaded away. This is on�rmed by the integral Bloh equation. Aording toEq. 10, to �rst order in the �eld amplitude, assuming all atoms are initiallyin state |a〉, one obtains :

ρab(ωab;~r, t) = i
µab

2~

∫ t

−∞

dt′E(~r, t′)e(iωab−γab)(t−t′) (69)The oherene, built by the inoming pulse, relaxes with rate γab and maysurvive long after the �eld has vanished. The origin of the polarizationdensity ollapse lies in the phase shift of the di�erent atoms distributed overthe inhomogeneously broadened absorption pro�le. This is re�eted in theabove equation by the ωab-dependent phase fator that keeps on buildingup after the pulse extintion. As a result, the di�erent atom ontributionsinterfere destrutively as they are ombined into the polarization density.In order to extrat the information stored in the atomi oherenes, onehas to rephase them. We shall demonstrate that phase reversal makes theoherenes to faithfully regenerate the initial light pulse.
34
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����������	� ��	���Figure 7: Rephasing. All the atoms have the same phase at t1. Then phaseshift aumulates between atoms with di�erent transition frequenies. At t2the phase is reversed so that all atoms are phased together again at 2t2 − t16.2 Information reovery by phase reversalLet us assume that at time t2, after the extintion of the inoming pulse, oneis able to ahieve the following phase reversal operation:
ρab(ωab;~r, t

(+)
2 ) = ρba(ωab;~r, t

(−)
2 ) (70)In addition we assume that the operation does not entail any level populationhange, a ondition that will prove mostly important and di�ult to satisfypratially. Enating the rule for ρab instead of ρ̃ab, we mean reversal a�etsboth the spatial and the spetral phase. At t2 both transformations kz →

−kz and ωab(t2 − t1) → −ωab(t2 − t1) shall our.This phase reversal proedure is pure speulation so far. Later on weshall examine pratial means to ahieve this operation.After t2, the spetral phase keeps on growing at the same rate, in suh away that at time t = 2t2 − t1 the phase shift ωab(t+ t1 − t2) simultaneouslyvanishes in all the atoms, whatever their transition frequeny (see Fig. 7).35



Being phased together, the atoms radiate a light pulse at that moment. In anoptially thin sample we ould onsider that the oherenes just evolve freely,independently from eah other. The feedbak of the radiated pulse on theatoms would remain weak with respet to the initial pulse. On the ontrarywe are dealing with an optially thik, opaque medium. We an no longerneglet the radiated response feedbak. Indeed the delayed radiated responsewill prove to reah the same amplitude as the initial inoming pulse. Suh afeedbak is not unfamiliar to us. We impliitly aounted for suh a reationwhen we derived the inoming pulse wave equation: eah atom undergoesexitation by a loal �eld that ombines the input �eld and the ontributionsof the upstream atoms. In order to alulate the restored �eld and the�nal atomi state, we take the usual steps, �rst deriving the individual atomresponse from the Bloh equation, then ombining the elementary oherenesinto the marosopi polarization density, that is �nally used as a soure termin the wave equation to be satis�ed by the restored �eld.Let Eout(~r, t) denote the �eld radiated by the atoms after t2. At t > t2,the Bloh equation for oherenes reads as:
ρab(ωab;~r, t) = ρab(ωab;~r, t

(+)
2 )e(iωab−γab)(t−t2)+i

µab

2~

∫ t

t2

dt′Eout(~r, t
′)e(iωab−γab)(t−t′)(71)The two terms on the right hand side respetively orrespond to the freeevolution of the initial oherene and to the radiated response feedbak onthe oherenes.Sine atoms evolve freely from initial exitation by Ein(~r, t) to time t2,the oherene at t2 is simply given by:

ρab(ωab;~r, t
(−)
2 ) = i

µab

2~

∫ t2

−∞

dt′Ein(~r, t′)e(iωab−γab)(t−t′) (72)Taking aount of the reversal rule (Eq. 70) and substituting into Eq. 71,one obtains:
ρab(ωab;~r, t) = −i

µab

2~

[
∫ t2

−∞

dt′E∗
in(~r, t′)eiωab(t+t′−2t2)−γab(t−t′)

−
∫ t

t2

dt′Eout(~r, t
′)e(iωab−γab)(t−t′)

] (73)The polarization density P (~r, t)is obtained by substitution of Eq. 73 into Eq.48. The positive frequeny omponent of P (~r, t) an be split in two terms36



P
(+)
1 (~r, t) and P (+)

2 (~r, t) aording to:
P (+)(~r, t) = P

(+)
1 (~r, t) + P

(+)
2 (~r, t) (74)where P (+)

1 (~r, t) and P (+)
2 (~r, t) respetively orrespond to the atom free evo-lution from t2 and to the reovered �eld feedbak on the atoms. The �rstterm reads as:

P
(+)
1 (~r, t) = i

µ2
ab

2~

∫ t2

−∞

dt′E∗
in(~r, t′)e−γab(t−t′)

∫

dωabG(ωab)e
iωab(t+t′−2t2) (75)Sine the �eld spetrum is assume to be muh narrower than G(ωab), thequantity E∗

in(~r, t′)eiωLt′ varies slowly with respet to ∫ dωabG(ωab)e
iωab(t+t′−2t2)that peaks abruptly at t′ = 2t2 − t. Taking E∗

in(~r, t
′)eiωLt′e−γab(t−t′) out of thesum over t′ at t′ = 2t2 − t, one obtains:

P
(+)
1 (~r, t) = 2iπ

µ2
ab

2~
G(ωL)E∗

in(~r, 2t2 − t)e−2γab(t−t2) (76)Fourier transformation to frequeny domain leads to:
P̂

(+)
1 (~r, ω) = 2iπ

µ2
ab

2~
G(ωL)Ê∗

in(~r, ω)e−2iωt2−2γab(t2−t1) (77)As for the seond term P
(+)
2 (~r, t), we an proeed diretly to its frequenydomain expression. Indeed this term simply desribes the linear response to

Eout(~r, t), as given by Eqs 67 and 52:
P̂

(+)
2 (~r, ω) = −iπ

µ2
ab

2~
G(ωL)Êout(~r, ω) (78)The two terms P̂ (+)

1 (~r, ω) and P̂
(+)
2 (~r, ω) �nally ombine into the positivefrequeny omponent of the polarization density as:

P̂ (+)(~r, ω) = −iπ
µ2

ab

2~
G(ωL)

[

Êout(~r, ω) − 2Ê∗
in(~r, ω)e−2iωt2−2γab(t2−t1)

] (79)This quantity an be substituted into the wave equation for the restored �eld:
1

2

(

∂2

∂z2
+ k2

)

Êout(~r, ω) = −ω2µ0P̂
(+)(~r, ω) (80)37



We look for a solution in the form Êout(~r, ω) = A(z, ω)eikz, ounterpropagat-ing with the inoming �eld Êin(~r, ω). Indeed, given the form of P̂ (+)(~r, ω),the restored �eld is a funtion of Ê∗
in(~r, ω), a �eld that varies as eikz. Thelinearized wave equation �nally reads as:

∂

∂z
A(z, ω) =

1

2
α0

[

A(z, ω) − 2Ê∗
in(~r, ω)e−2iωt2−2γab(t2−t1)−ikz

] (81)where:
α0 =

πkµ2
ab

2~ǫ0
G(ωL) (82)With the boundary ondition A(L, ω) = 0 at the output side z = L of theabsorbing medium, and the inoming �eld spatial distribution Ê∗

in(z, ω) =

E∗
in(0, ω)e−

1

2
α0z+ikz, expressed in terms of the amplitude in the input side at

z = 0, one easily3 gets the solution as:
Êout(z, ω) = Ê∗

in(z, ω)e−2iωt2−2γab(t2−t1)
[

1 − eα0(L−z)
] (83)Inverse Fourier transformation leads to the following solution in the timedomain:

Eout(z, t) = E∗
in(z, 2t2 − t)e−2γab(t2−t1)

[

1 − eα0(L−z)
] (84)Sine E∗

in(z, 2t2 − t) is entered at t1, the reovered signal emission is en-tered at 2t2 − t1 as expeted. Otherwise, the restored �eld envelope is timereversed with respet to the initial pulse. Finally, the �eld amplitude isexatly restored at z = 0 provided α0L >> 1.We assumed the phase reversal operation does not inrease the upperlevel population. In the opposite limit, let us assume that a side e�et of thephase reversal operation is to promote all atoms to the upper level. Then thestorage material beomes an ampli�er, with gain equal to α0L for the regen-erated �eld emerging from the input side. Suh an ampli�ation ertainlymodi�es the quantum properties of the restored �eld. In addition ampli�edspontaneous emission then deteriorates the restitution �delity.3With the hange of variable: A(z, ω) = B(z, ω)eα0z/2, the wave equation is turned into:
∂zB(z, ω) = −α0Ê∗

in(0, ω)e−α0z−2iωt2−2γab(t2−t1). Summing from z to L with boundaryondition B(L, ω) = 0, one obtains: B(z, ω) = Ê∗

in(0, ω)e−2iωt2−2γab(t2−t1)
(

e−α0z − e−α0L
)
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Substitution of the restored �eld in Eq. 73 leads to:
ρab(ωab;~r, t) = −i

µab

2~
e−γab(t−t1)

[
∫ 2t2−t

−∞

dt′E∗
in(~r, t′)eiωab(t+t′−2t2)

+e−α0(L−z)

∫ t2

2t2−t

dt′E∗
in(~r, t

′)eiωab(t+t′−2t2)

] (85)As expeted, the oherene drops to zero whilst the light pulse is beingrestored, around t = 2t2 − t1. Indeed, during the reovery step, eah atom isexposed to exitation oming up from the downstream atoms, that is to sayfrom atoms loated further from the input side. This radiation gives a kikin diretion opposite to the initial pulse e�et, making the atom return tothe initial state. Closer to the input side, the restored signal ating on atomsgrows bigger, preisely where the atoms were exposed to larger exitation bythe initial pulse. A long time after t = 2t2 − t1, the oherene redues to:
ρab(ωab; z, t) = −i

µab

2~
e−α0(L− 1

2
z)Ê∗

in(0, ωab)e
iωab(t−2t2)e−γab(t−t1) (86)whih expresses the α0L dependene of the residual exitation.During the storage proess, a part W/Win = (1− e−αoL) of the inomingenergy stays in the medium, the remaining passing through without beingabsorbed. From the part that is stored, a fration is lost at retrieval, evenin the absene of dipole relaxation. Indeed the restored �eld is (1 − e−αoL)times smaller than the inoming one, aording to Eq. 84. Therefore onereovers a fration Wout/Win = (1 − e−αoL)2 of the inoming energy. Theenergy W −Wout

∼= Wine−αoL remains within the material. To summarize,with a �nite length material, energy is lost in equal amounts at storage andretrieval, one part being transmitted without absorption, the other part beingleft as an atomi exitation.7 Pratial implementation of phase reversalThe signal reovery proedure examined in the previous setion requires:
• spetral phase reversal of the optial oherene in all the atoms simul-taneously at a given time
• spatial phase reversal of the optial oherene in all the atoms39
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Figure 8: Two-pulse eho. (a) At time t1 a π/2-pulse brings the Blohvetors of all frequeny lasses along Ov. (b) The Bloh vetors spread overthe equatorial plane and at time t1 +t12 a π-pulse reverses their v oordinate.() At time t1 + 2t12 all the Bloh vetors are bak along Ov.
• no exitation to the upper level during the phase reversal proessWe review di�erent pratial phase reversal proedures and hek their abilityto satisfy the above onditions.7.1 Two-pulse photon ehoPhase reversal has been atively investigated for several deades, �rst in theframework of NMR, then in the optial domain after the advent of the laser.Known as spin eho in NMR and photon eho in optis, this phenomenon isbest desribed in the Bloh vetor piture (see Appendix B).Let an inhomogeneously broadened ensemble of two-level atoms be illu-minated at time t1 by a light pulse of duration τ and Rabi frequeny Ω1.Under assumption that Ω1 is real, the driving vetor ~β is direted along Ou.Let the pulse be too short for the inhomogeneous phase to build up duringthe pulse. In other words the detuning ∆ = ωab − ωL is assumed to be muhsmaller than τ−1. Then, driven by the applied �eld, the Bloh vetor pre-esses around ~β at angular veloity Ω1. The quantity ∫ +∞

−∞
Ω1(t

′)dt′, knownas the pulse area, represents the angle travelled by the Bloh vetor around
Ou during the pulse. Initially the Bloh vetor is direted downward alongthe Bloh sphere vertial axis Ow. Let the pulse area equal π/2. Then thepulse makes the Bloh vetor to travel a π/2 angle around Ou and brings italong Ov, in the equatorial plane of the Bloh sphere, as shown in Fig. 8.After the π/2-pulse extintion, the Bloh vetor preesses around the40



vertial axis Ow at veloity ∆. At time t the Bloh vetor oordinates readas:






u(t) = sin[∆(t− t1)]e
−γab(t−t1)

v(t) = cos[∆(t− t1)]e
−γab(t−t1)

w(t) = 0
(87)where the population relaxation has been negleted. The Bloh vetors be-longing to di�erent frequeny lasses rotate at di�erent angular veloities ∆and, as time elapses, they depart from eah other, generating a "panake"that spreads over the Bloh sphere equatorial plane.At time t2 a seond pulse is applied. Let the pulse area equal π. Thereforeeah Bloh vetor is made to travel a π angle around Ou, returning to theequatorial plane with reversed v oordinate. Just after the seond pulse theBloh vetor oordinates read as:







u(t2) = sin[∆t12]e
−γabt12

v(t2) = − cos[∆t12]e
−γabt12

w(t2) = 0
(88)This represents a symmetry with respet to the plane uOw. The slowestfrequeny lasses �nd themselves in advane of the fastest ones. As timeelapses, the free evolution is depited by:







u(t) = {u(t2) cos[∆(t− t2)] + v(t2) sin[∆(t− t2)]} e−γab(t−t1)

v(t) = {−u(t2) sin[∆(t− t2)] + v(t2) cos[∆(t− t2)]} e−γab(t−t1)

w(t) = 0
(89)The fastest vetors ath up the slowest ones so that they all meet along -Ovat time 2t2 − t1, aording to:







u(2t2 − t1) = 0
v(2t2 − t1) = −e−2γabt12

w(2t2 − t1) = 0
(90)At that moment the dipoles are phased together and emit the photon ehosignal.In the ontext of our quest for phase reversal, it is worth notiing thetransformation undergone at t2 an be expressed, in terms of oherene, as:

ρ̃ab(t
(+)
2 ) = ρ̃ba(t

(−)
2 ) (91)41



In the above disussion we have impliitly supposed that both pulsespropagate in the same diretion. If pulses propagate in di�erent diretionone must notie that the hange of variable ρab → ρ̃ab depends on the wavevetor of the referene pulse. Just before the seond pulse the hange ofvariable is still referred to the �rst pulse and reads as:
ρab(t

(−)
2 ) = ρ̃ab(t

(−)
2 )ei(ωLt2−~k1.~r) (92)Aording to Eq. 91, at t2 the oherene, this time referred to the seondpulse, undergoes the transformation:

ρ̃ab(t
(+)
2 ) = ρ̃ba(t

(−)
2 ) (93)or, equivalently, in terms of ρab :

ρab(t
(+)
2 ) = ρba(t

(−)
2 )e2i(ωLt2−~k2.~r) (94)Then, substituting Eq. 92 in this expression one �nally obtains:

ρab(t
(+)
2 ) = ρ̃ba(t

(−)
2 )ei[ωLt2−(2~k2−~k1).~r] (95)where ρ̃ba(t

(−)
2 ) is a slowly varying funtion of ~r. The spae-dependent phasefator indiates that the eho signal is emitted in diretion 2~k2 − ~k1. Dipoleontributions are phase-mathed all along the sample of length L provided:

(

|2~k2 − ~k1| − k
)

L << π. As soon as L exeeds a few hundreds of wave-lengths, the ondition is satis�ed only when ~k2 is lose to ~k1, whih leads toemission in diretion lose to ~k1 and ~k2.The seond pulse in the photon eho sequene reverses the phase of ρ̃ab(see Eq. 91), not that of ρab, as requested in setion 6.2. Therefore, thespetral phase reversal requirement is satis�ed, as illustrated by the oherenerephasing leading to eho emission, but spatial phase reversal is missing. Thephase mathing ondition foring eho emission in forward diretion re�etsthe absene of spatial phase reversal.Another ondition is not satis�ed. In the photon eho memory protool,the information to be stored should be arried by the �rst pulse while theseond pulse would be devoted to phase inversion. Initially all atoms areprepared in the ground state. The Bloh vetor is vertial, downward ori-ented. Unlike the π/2 pulse we onsidered in the brief presentation of photon42



eho, the weak signal pulse, with an area muh smaller than unity, hardlydisplaes the Bloh vetor from its initial vertial diretion. The seond pulseis expeted to onvert ρ̃ab into ρ̃ba, whih orresponds to a re�etion in thevertial plane uOw. But light annot perform suh a transformation! Lightan only rotate the Bloh vetor around an horizontal axis. Now the produtof two re�etions is atually equivalent to a rotation around the intersetionof the two planes of symmetry. Given one of the symmetries is taken withrespet to uOw, the other re�etion plane will have to interset uOw alongthe rotation axis. The only symmetry that preserves the phase inversion isthe re�etion with respet to the equatorial plane uOv, orthogonal to uOw.Combining those two symmetries orresponds to a π-rotation that keeps theBloh vetor nearly vertial, but now pointing up. In other words, the se-ond pulse, in order to aomplish the expeted spetral phase inversion, shallalso promote all the atoms to the upper level. As already notied, this woulddeeply a�et the restored signal.In onlusion, the two-pulse photon eho protool fails to satisfy two outof the three signal reovery requirements.7.2 Tri-level ehoThe photon eho proess is easily extended to the three-level Λ-system wealready met in EIT [22℄. As in EIT, information is stored in the Ramanoherene but, unlike EIT, a single transition is exited at a time.Let the system be illuminated by a three-pulse sequene. The time-separated driving pulses alternatively exite the a → b and b → c transi-tions. All the atoms have been prepared initially in state |a〉. By exitingthe a → b transition, the �rst pulse builds the optial oherene ρab. Theseond pulse, resonant with the b → c transition, onverts ρab into the ρacRaman oherene. Then a third pulse exites a → b again, onverting ρacinto the ρbc optial oherene that gives rise to the tri-level eho (see Fig. 9).Interation with the �rst pulse does not need muh omment. Only states
|a〉 and |b〉 are implied at this stage. The system obeys the two-level Blohequation. After the pulse extintion the oherene ρ̃ab(ωab;~r, t1) evolves freelyto ρ̃ab(ωab;~r, t) = ρ̃ab(ωab;~r, t1)e

(i∆−γab)(t−t1), where ∆ = ωab −ω1. Interationwith seond pulse must be examined more arefully sine the three levelsare now involved. Sine a single transition is exited, Eq.26 splits into two43
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Figure 9: tri-level eho in a Λ-system. The �rst two pulses build the Ramanoherene ρac from the optial oherene ρab. The inhomogeneous phaseshift aumulated by ρab between t1 and t2 is arried to ρac between t2 and
t3. Then ρac is turned into ρbc by the third pulse. The inhomogeneous phaseshift vanishes at t3, whih gives rise to eho emission.unoupled sets of equations:











ρ̇cc = i
2
(ρ̃cbΩ

∗
2 − ρ̃bcΩ2)

ρ̇bb = −ρ̇cc

˙̃ρcb = i
2
(ρcc − ρbb)Ω2

(96)and
{

˙̃ρab = i
2
ρ̃acΩ2

˙̃ρac = i
2
ρ̃abΩ

∗
2

(97)where inhomogeneous dephasing and relaxation have been omitted, giventhe shortness of the pulse4. The �rst set of equations represents the oherentexitation of a two-level system. The seond set desribes the oupling ofthe optial oherene ρ̃ab and the Raman oherene ρ̃ac. The solution of thelatter set reads as:
{

ρ̃ab(t
(+)
2 ) = ρ̃ab(t

(−)
2 ) cos(1

2

∫

Ω2dt) + iρ̃ac(t
(−)
2 ) sin(1

2

∫

Ω2dt)

ρ̃ac(t
(+)
2 ) = ρ̃ac(t

(−)
2 ) cos(1

2

∫

Ω2dt) + iρ̃ab(t
(−)
2 ) sin(1

2

∫

Ω2dt)
(98)4With respet to Eq.26 we have modi�ed the Rabi frequeny de�nition in order to beonsistent with the Bloh vetor piture. Rabi frequeny is now de�ned as µabA(~r, t)/~instead of µabA(~r, t)/(2~). With this de�nition the Bloh vetor preession rate aroundaxis Ou oinides with Ω. Numerial fators were simpler with the previous Ω de�nition.44



A π-pulse optimizes the onversion of ρ̃ab into ρ̃ac, leading to:
ρ̃ac(t

(+)
2 ) = iρ̃ab(t

(−)
2 ) = iρ̃ab(ωab;~r, t1)e

(i∆−γab)t12 (99)Therefore the Raman oherene inherits the inhomogeneous dephasing thatwas aumulated by the optial oherene during interval t12.Total onversion of ρ̃ab into ρ̃ac means state |b〉 amplitude drops to 0. Thisis atually onsistent with the two-level system evolution as desribed by Eq.96. We assume the Raman transition is not a�eted by inhomogeneous broad-ening and is resonantly exited by the driving �elds in suh a way that
ωac = ω1 − ω2. In other words, both ρ̃ab and ρ̃cb de�nitions refer to the sameoptial detuning ∆ = ωab − ω1 = ωbc − ω2. The Raman oherene, evolvingfreely until exitation by the third pulse at t3, reads as:

ρ̃ac(t
(−)
3 ) = iρ̃ab(ωab;~r, t1)e

(i∆−γab)t12−γact23 (100)just before the pulse arrival. One again, a π-pulse at frequeny ω1, exitingthe system on the a → b transition, optimizes the onversion bak to theoptial oherene ρ̃bc that, just after the extintion of the pulse reads as:
ρ̃bc(t

(+)
3 ) = ρ̃ab(ωab;~r, t1)e

(i∆−γab)t12−γact23 (101)One the driving �eld is o�, ρ̃bc evolves as: ρ̃bc(t) = ρ̃bc(t
(+)
3 )e(−i∆−γbc)(t−t3).The key point is that ρ̃bc phase fator evolves with opposite rate with respetto ρ̃ab. Hene the inhomogeneous phase ∆(t12 − t + t3) vanishes at t3 + t12,making the dipoles to radiate the tri-level eho on the b→ c transition.In the above disussion we impliitly assume the three pulses propagatealong the same diretion. As already notied for two-pulse ehoes, in moregeneral onditions, we must take are that the "tilded" oherene de�nitiondepends on the relevant pulse wave vetor diretion. Let ~ki denote the ithpulse wave vetor. Transformation to the rotating frame assoiated withthe �rst two pulses leads to: ρ̃ac = ρace

i(ω2−ω1)t−i(~k2−~k1).~r but the third pulseoperates on a Raman oherene de�ned as: ρ̃ac = ρace
i(ω2−ω1)t−i(~k2−~k3).~r. Toaount for this transformation one an perform the substitution: ρ̃ac(t

(−)
3 ) →

ρ̃ac(t
(−)
3 )ei(~k3−~k1), whih �nally leads to:

ρbc(ωab;~r, t) = ρ̃ab(ωab;~r, t1)e
−γabt12−γabt23−γab(t−t3)×

× e−iω2t−i∆(t−t3−t12)+i(~k3+~k2−~k1) (102)45



Therefore the eho signal is emitted in diretion ~k3 + ~k2 − ~k1. Then a phasemathed signal an be emitted in a diretion very di�erent from that of thedriving pulses. For instane, with ~k3 = −~k2 = −~k1 the eho signal is radiatedbakward, ounterpropagating with the �rst pulse.At �rst sight the three-level eho seems to represent a signi�ant progressin our quest for phase reversal. As in two-pulse eho, the spetral phaseis reversed but, unlike two-pulse eho, spatial phase an also be reversed,giving rise to bakward signal emission. One also notie that the seondpulse, despite of its large area, does not promote atoms to the upper level,avoiding ampli�ation issues. Unfortunately the intense third pulse is oupledto a → b transition, strongly exiting the populated state |a〉 and massivelypromoting atoms to the upper eletroni state.We ould be tempted to apply the third pulse to the empty transition
b → c again instead of a → b. However, this way, one annot reverse thespetral phase. Indeed two suessive π-pulses make a 2π rotation, whih isno hange at all. In other words, the seond pulse builds ρac from ρab and,exiting b → c again, the third pulse turns bak ρab into ρac without anyphase inversion.In onlusion, two out of the three signal reovery onditions are satis�edby the three-level eho. The third ondition seems to be out of reah of theoptial driving tehniques. Non-optial proedures are thus onsidered.7.3 Controlled reversible inhomogeneous broadeningIt has been proposed to reverse the inhomogeneous spetral shift by invert-ing an external stati eletri �eld [23℄. Atually the spetral shift must betotally ontrolled by an external �eld. In other words, the natural inho-mogeneous broadening does not help. Instead, out of the inhomogeneouslybroadened medium, one has to selet a group of atoms with the same transi-tion frequeny. This an be ahieved by optially pumping the other atomsto an auxilliary shelving state. This works for instane in Pr3+-doped rys-tals sine three long lifetime sublevels are available in the eletroni groundstate. A non-uniform external �eld is then used to satter the seleted atomsover an arti�ially tailored bandwidth. The external non-uniform eletri�eld is adjusted so that the engineered inhomogeneous broadening mathesthe bandwidth of the pulse to be stored. Provided that it is aused by linearStark e�et, the frequeny shift an be reverted by inversion of the eletri�eld. The proedure has been oined Controlled reversible inhomogeneous46
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Figure 10: tri-level CRIB time-diagram. Inhomogeneous broadening is gen-erated by Stark e�et. The applied voltage polarity determines the sign ofthe spetral shift.broadening [CRIB) by their instigators.This proedure, �rst demonstrated in a two-level system [24, 25℄, shouldwork best when ombined with the tri-level eho (see Fig. 10). As disussedabove, a narrow bandwidth group of atoms is �rst seleted. They are pre-pared in state |a〉. The non-uniform eletri �eld is swithed on. The signal isdireted to the absorbing medium at t1. After signal extintion, the eletri�eld is swithed o� and a π-pulse, tuned to the b→ c transition, onverts ρ̃abinto ρ̃ac at t3. The reovery step ontrasts signi�antly with the orrespond-ing step in the onventional three-level eho. Instead of exiting the a → btransition, the π-pulse at t3 is tuned again to the b → c empty transition,onverting ρ̃ac bak to ρ̃ab. Then the eletri �eld is turned bak on, withinverted polarity. This way, ρ̃ab phase shift evolves at opposite rate and om-pensates for the previously aumulated phase shift. Atoms are rephased attime t3 + t12 and the eho signal is emitted.The three riteria for total signal reall appear to be satis�ed. Both spe-tral and spatial phase shift are reverted, and no atom is promoted to upperlevel by the π-pulses sine both of them exite a transition between unpop-ulated states. However, the opaity of the absorbing material is altered byCRIB. Indeed, the available atoms, initially distributed over a narrow inter-47



val δ, are spread by the external eletri �eld over the memory bandwidth
∆mem, whih redues the opaity by the fator δ/∆mem. One may wonderabout the appropriate size of δ. Atually the initial width δ gives rise to aninhomogeneous phase shift that annot be reverted. Beause of this phaseshift, the optial dipole available lifetime is limited to ≈ 1/δ, whih mustby far exeed the duration of the signal to be stored. As a onsequene, thetime-bandwidth produt of the memory is limited by the quantity ∆mem/δ,whih is nothing but the inverse redution fator of opaity. Therefore, itseems highly improbable to store anything but a single Fourier transformlimited pulse, arrying one single information, with the CRIB tehnique.8 ConlusionWe have reviewed two strategies for storing quantum light in a marosopiensemble of atoms. The disussion has been essentially onduted withinthe limits of the semi-lassial piture. Essential features suh as the re-trieval e�ieny an be addressed orretly within the frame of this piture.Moreover, this problem revives the interest in basi oherent light-matter in-teration proesses and sheds new light on them. However, a fully quantumanalysis is needed to aount for the entanglement of the atom ensemble,as resulting from oupling with quantum light. Despite of numerous e�ortsin this diretion, a lot of work has still to be aomplished. Most of all,quantum memory for light has yet to be demonstrated experimentally in asolid. Both the theoretial obsurities and the experimental hallenge makethis �eld of researh mostly attrative.A Density operatorA.1 statistial mixing and quantum ohereneLet us onsider a two level atom. Let |a〉 and |b〉 be the eigenstates of atomihamiltonian with eigenvalues Ea and Eb. Let the atom be initially in state
|a〉. Exitation by a light �eld prepares the atom in a superposition state
|ψ〉 = a|a〉 + b|b〉. The notion of density operator lari�es the di�erenebetween a quantum state and a statistial mixture. The density operator isde�ned as:

ρ = |ψ〉〈ψ| = ρm + ρq (103)48



where ρm and ρq respetively denote the diagonal and o�-diagonal ompo-nants:
ρm = |a|2|a〉〈a| + |b|2|b〉〈b|
ρq = ab∗|a〉〈b| + a∗b|b〉〈a| (104)In an ensemble of N atoms, identially oupled to the �eld, the expetationvalues of the atom numbers in ground and exited states are repetively givenby N |a|2 and N |b|2. The diagonal operator ρm aounts for this statistialmixture. However, ρm alone fails to desribe the quantum properties. Thoseare expressed by the non-diagonal operator ρq. The o�-diagonal elements

〈a|ρq|b〉 = 〈a|ρ|b〉 = ρab and 〈b|ρq|a〉 = 〈b|ρ|a〉 = ρba are named "quantumoherene".To hold some physial meaning, the oherene has to be onneted withthe measure of an observable. The oherene assoiated with observable Xan be de�ned as:
C(X) = Tr[(ρ− ρm)X]

= 〈a|(ρ− ρm)X|a〉 + 〈b|(ρ− ρm)X|b〉
= 〈a|(ρ− ρm)|b〉〈b|X|a〉 + 〈b|(ρ− ρm)|a〉〈a|X|b〉

(105)It appears that only observables with o�-diagonal elements give aess toquantum oherene. The marosopi polarization density preisely ownsthis property.A.2 Environment and relaxationThe density operator has helped us to introdue the notion of oherene.However, density operator is mostly known as a tool to aount for the inter-ation of a quantum system with an environment, a bath with many degreesof freedom. This may be a radiation reservoir or a marosopi materialsystem. Connetion with the environment usually leads to relaxation. So,interation with radiation leads to deay from upper state to ground levelby spontaneous emission. This a�ets the diagonal elements of the densityoperator. The o�-diagonal elements are often more sensitive to oupling withenvironment and deay faster than population.The notions of partial trae and redued density operator an be intro-dued with the example of spontaneous emission. Let |0E〉 and |1E〉 respe-tively represent the 0- and 1-photon �eld state. In the produt Hilbert state
HA ⊗HE , the atom+�eld ensemble evolves aording to unitary dynamis.49



The state |a〉⊗|0E〉 remains unhanged sine the atom is in the ground state.On the ontrary the state |b〉 ⊗ |0E〉 evolves to |a〉 ⊗ |1E〉 with probability pduring the time interval ∆t. In other words, during the time interval ∆t, theunitary operator UAE transforms the ompound state |b〉 ⊗ |0E〉 into:
UAE|b〉 ⊗ |0E〉 =

√

1 − p |b〉 ⊗ |0E〉 +
√
p |a〉 ⊗ |1E〉 (106)This ompletes the unitary transform multipliation table, starting with a0-photon state. Therefore, starting from an initial separable state:

|ψ〉 ⊗ |0E〉 = (a|a〉 + b|b〉) ⊗ |0E〉 (107)the atom-�eld system evolves to the entangled state:
|Ψ(1)

AE〉 =
(

a|a〉 + b
√

1 − p |b〉
)

⊗ |0E〉 + b
√
p |a〉 ⊗ |1E〉 (108)after one time interval ∆t. Let ρAE denote the atom-�eld density operator.The expetation value of an observable OA that only depends on atomivariables an be expressed as:

〈OA〉 = TrHA⊗HE
(OAρAE) = TrHE

(

OAρA(E)

) (109)where ρA(E) = TrHE
(ρAE)represents the redued density operator, resultingfrom partial trae of the total density operator over the �eld Hilbert spae.Hene one just need the redued density operator to determine any observablethat only depends on the atomi parameters. In our simple model the �eldHilbert spae is spanned by the two states |0E〉 and |1E〉. Therefore, afterone time interval ∆t, the redued density operator reads as:

ρ
(1)
A(E) = TrHE

(

ρ
(1)
AE

)

= 〈0E|Ψ(1)
AE〉〈Ψ

(1)
AE|0E〉 + 〈1E|Ψ(1)

AE〉〈Ψ
(1)
AE|1E〉, (110)whih an be represented by the matrix:

ρ
(1)
A(E) =

[

〈a|ρ(1)
A(E)|a〉 〈a|ρ(1)

A(E)|b〉
〈b|ρ(1)

A(E)|a〉 〈b|ρ(1)
A(E)|b〉

]

=

[

1 − (1 − p)〈b|ρ(0)
A(E)|b〉

√
1 − p〈a|ρ(0)

A(E)|b〉√
1 − p〈b|ρ(0)

A(E)|a〉 (1 − p)〈b|ρ(0)
A(E)|b〉

]

(111)
50



Let an evolution time interval t be desribed as a sequene of n elementaryintervals of duration ∆t = t/n. Assuming an iterative appliation of thistransform, i.e. :
ρ

(m)
A(E) =

[

1 − (1 − p)〈b|ρ(m−1)
A(E) |b〉 √

1 − p〈a|ρ(m−1)
A(E) |b〉

√
1 − p〈b|ρ(m−1)

A(E) |a〉 (1 − p)〈b|ρ(m−1)
A(E) |b〉

]

, (112)one �nally obtains:
ρA(E)(t) =

[

1 − e−γbt〈b|ρA(E)(0)|b〉 e−γbt/2〈a|ρA(E)(0)|b〉
e−γbt/2〈b|ρA(E)(0)|a〉 e−γbt〈b|ρA(E)(0)|b〉

]

, (113)where the ratio p/∆t has been substituted with the spontaneous deay rate
γb. This expresses the spontaneous emission e�et on both populations andoherenes. As expeted upper level population deays to the ground levelwith rate γb. Less obviously, the oherene terms deay with rate γb/2. Whilethe total density operator obeys unitary dynamis, the redued operatorappears to undergo non-unitary evolution.Spontaneous emission is an inelasti proess. Atomi exitation energy istransferred to the radiation �eld. However oherene relaxation may ourduring elasti proesses, the atom interating with the environment with-out any population redistribution. Let an atom be oupled to a reservoir.Initially the atom+reservoir state reads as:

|ψ〉 ⊗ |Ξ〉 = (a|a〉 + b|b〉) ⊗ |Ξ〉 (114)where Ξ stands for the initial reservoir state. Let the ompound system evo-lution be determined by the unitary operator U(t) aording to the followingtable:
|a〉 ⊗ |Ξ〉 U(t)→ |a〉 ⊗ |Ξa(t)〉 |b〉 ⊗ |Ξ〉 U(t)→ |b〉 ⊗ |Ξb(t)〉 (115)where:

〈Ξa(t)|Ξa(t)〉 = 〈Ξb(t)|Ξb(t)〉 = 〈Ξ(t)|Ξ(t)〉 = 1 (116)The atom stays in its initial state but the reservoir evolution depends on theatomi state. With the transformation table, the evolution of an arbitrayompound state reads as:
|ψ〉 ⊗ |Ξ〉 = (a|a〉 + b|b〉) ⊗ |Ξ〉 U(t)→ a|a〉 ⊗ |Ξa(t)〉 + b|b〉 ⊗ |Ξb(t)〉 (117)51



In the same way as in the spontaneous emission example, the system evolvesto an entangled state. By performing the partial trae of the density operatorover the reservoir states we then obtain the redued density operator:
ρ(t) = Tr [ρat+Ξ(t)] =

∑

iΞ

〈iΞ|ρat+Ξ(t)|iΞ〉 (118)where states |iΞ〉 span the environment Hilbert spae. In the basis set ofvetors |a〉, |b〉, the redued operator reads as:
ρ(t) =

[

|a|2 ab∗〈Ξb(t)|Ξa(t)〉
a∗b〈Ξa(t)|Ξb(t)〉 |b|2

] (119)The atomi oherene appears to be governed by the environment evolution.In general states Ξa(t)〉 and Ξb(t)〉 beome more and more orthogonal astime elapse, gaining the orthogonality of their assoiated atomi states. Thisevolution an often be desribed as:
〈Ξb(t)|Ξa(t)〉 = e−γabt (120)Spontaneous emission deay, ombined with elasti relaxation, leads tothe following general relation:

γab ≥ γb/2 (121)B The Bloh vetorB.1 Connetion with NMRDeveloping the Nulear Magneti Resonane (NMR) theory, Felix Bloh de-sribes the evolution of the magneti moment operator expeting value andshows this quantity satis�es the equation of motion of a lassial magnetidipole. The Hamiltonian reads as H = − ~M. ~B where ~B and ~M respetivelyrepresent the magneti indution and the magneti dipole moment. The lat-ter is onneted to the angular momentum ~J by ~M = γ~ ~J , where γ denotesthe gyromagneti ratio. From Shrödinger equation, and with the help ofthe ommutation relations: [Jx, Jy] = iJz, [Jz, Jx] = iJy and [Jy, Jz] = iJx,one easily shows that d〈 ~M〉/dt = −γ ~B × 〈 ~M〉. For instane, the equation of52



〈Mx〉 reads as:
i~

d〈Mx〉
dt

= i~Tr (Mxdρ/dt) = −Tr
(

Mx

[

~M. ~B, ρ
])

= −Tr
{

Mx

(

~M. ~B
)

ρ
}

+ Tr
{

ρ
(

~M. ~BMx

)}

= −By (〈MxMy〉 − 〈MyMx〉) − Bz (〈MxMz〉 − 〈MzMx〉)

(122)The system evolves in 2J + 1 dimension Hilbert spae, the state degeneraybeing totally lifted by the applied magneti �eld. The magneti dipole mo-ment operates in the Hilbert spae, but the expetation value of its x, y, zomponents obey those equations of motion in real spae.Turning now to the two-level atoms, we know that the Hamiltonian anbe expressed in terms of the Pauli matries:
σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

] (123)that an be put together to form the vetor ~σ. Hene the Hamiltonian of anatom interating with a lassial eletromagneti �eld reads as:
H0 + eRE =

1

2
~ωabσ3 + µabEσ1 (124)where the state vetor is expressed as: |ψ〉 = a|a〉 + b|b〉 =

[

b
a

]The Pauli matries obey the same ommutation rules as an angular mo-mentum. More preisely, the spin operator de�ned as: ~S = 1
2
~σ obeys theommutation rules of a J = 1/2 angular momentum. Hene ~σ an be re-garded as a magneti moment. In the two-level atom Hamiltonian, the opti-al eletri �eld and the level spaing respetively play the same role as thehorizontal radio-frequeny and the vertial stati magneti �elds in NMR.B.2 Bloh vetor de�nition. Equation of motionThe Bloh vetor ~B an be de�ned as the expetation value Tr (ρ~σ) of thePauli operator. Aording to the equation of motion, the Bloh vetor rapidlypreesses around axis ”3” at optial frequeny ωab. The eletri �eld osillat-ing at frequeny ωL along axis ”1” an be broken up in two vetors rotatingwith opposite veloities ωL and −ωL within the plane orthogonal to axis

”3”. Only the eletri �eld omponent at veloity ωL lose to ωab ouples53



e�iently to the Bloh vetor. One neglets interation with the other om-ponent rotating at −ωL. This is the rotating wave approximation.In the frame of the rotating eletri �eld omponent, the Bloh vetoroordinates u, v, w are diretly derived fom the de�nition ~B = Tr (ρ~σ) as:






u = ρ̃ab + ρ̃ba

v = i (ρ̃ba − ρ̃ab)
w = ρbb − ρaa

(125)The optial Bloh equation reads as5. :






u̇ = −∆v + Im(Ω)w − γabu
v̇ = ∆u− Re(Ω)w − γabv
ẇ = −Im(Ω)u+ Re(Ω)v − γb(1 + w)

(126)In the same way as the motion of a magneti moment immersed in a magneti�eld, the Bloh equation an be written as:
d ~B

dt
= ~β × ~B − d ~B

dt

∣

∣

∣

∣

∣

relax

(127)where: ~β =







Re(Ω)
Im(Ω)
∆

, and d ~B

dt

∣

∣

∣

∣

∣

relax

=





γab 0 0
0 γab 0
0 0 γb




~B +





0
0
γb



Some geometrial properties ome along with the preession form of theequation of motion:
• in the absene of relaxation, the length of ~B does not vary.
• if the system starts in a pure state, the length of ~B remains unity inthe absene of relaxation.
• when ~β points to a �xed diretion, ~B preesses around ~β, at �xed angle.Projetion of ~B on ~β diretion is onstant.5In previous setions we had de�ned the Rabi frequeny so as to get rid of uselessnumerial fators. In those setions the Bloh equation was expressed in terms of ohereneand level population. From now on we modify the Rabi frequeny de�nition in order tomake the Bloh vetor preession rate around axis Ou oinide with Ω. Rabi frequeny isnow de�ned as µabA(~r, t)/~ instead of µabA(~r, t)/(2~).54



• the driving vetor ~β, the Bloh vetor ~B and the inrease of ~B form aright-handed trihedron.When atoms are resonantly exited by a �xed �eld, the Bloh vetorrotates at angular frequeny Ω in the plane orthogonal to ~β. The resultingosillation of w, representing the level population di�erene, is known as theRabi osillation.
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