
HAL Id: cel-00154509
https://cel.hal.science/cel-00154509

Submitted on 13 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realizability: a machine for Analysis and Set Theory
Jean-Louis Krivine

To cite this version:
Jean-Louis Krivine. Realizability: a machine for Analysis and Set Theory. École thématique. Uni-
versité de Luminy Février 2006, 2006, pp.106. �cel-00154509�

https://cel.hal.science/cel-00154509
https://hal.archives-ouvertes.fr

Realizability :

a machine for Analysis and set theory
Jean-Louis Krivine

PPS Group, University Paris 7, CNRS

krivine@pps.jussieu.fr

Marseille, february 2006

1

Introduction

In this tutorial, we introduce the Curry-Howard (proof-program) correspondence

which is usually restricted to intuitionistic logic.

We explain how to extend this correspondence to the whole of mathematics

and we build a simple suitable machine for this.

1st problem

Each mathematical proof must give a program which we can run in this machine.

2nd problem (specification problem)

Understand the behaviour of these programs

i.e. the specification associated with a given theorem.

The first problem is now completely solved, but the second is far from being so.

2

Usual λ-calculus

The λ-terms are defined as follows, from a given denumerable set of λ-variables :

• Each variable is a λ-term.

• If t is a λ-term and x a variable, then λx t is a term (abstraction).

• If t ,u are terms, then (t)u is a term (application).

Notations. ((t)u1) . . .un is also denoted by tu1 . . .un .

The substitution is denoted by t [u1/x1, . . . ,un/xn]

(replace, in t , each free occurrence of xi with ui).

λ-calculus is very important in computer science, because it is the core of every

programming language.

It is a very nice structure, with many properties (Church-Rosser, standardization, . . .)

which has been deeply investigated.

But, in the following, nothing else than the definition above is used about λ-calculus.

3

A machine in symbolic form

The machine is the program side of the proof-program correspondence.

In these talks, I use only a machine in symbolic form,

not an explicit implementation.

We execute a process t ?π ; t is (provisionally) a closed λ-term,

π is a stack, that is a sequence t1 . t2 . . . tn .π0 where

π0 is a stack constant, i.e. a marker for the bottom of the stack.

We denote by t .π the stack obtained by ”pushing” t on the top of the stack π.

Execution rules for processes (weak head reduction of λ-calculus) :

tu?πÂ t ?u .π (push)

λx t ?u .πÂ t [u/x]?π (pop)

This symbolic machine will be used to follow the execution of programs

written in an extension of λ-calculus with new instructions.

4

A machine in symbolic form (cont.)

We get a better approximation of a “real” machine by eliminating substitution.

The execution rules are a little more complicated (head linear reduction) :

λx1 . . .λxk tu? t1 tk .πÂλx1 . . .λxk t ? t1 tk . v .π
with v = (λx1 . . .λxku)t1 . . . tk

(in particular, for k = 0, tu?πÂ t ?u .π)

λx1 . . .λxk xi ? t1 tk .πÂ ti ?π.

It is necessary to add new instructions, because such simple machines

can only handle ordinary λ-terms, i.e. programs obtained from proofs

in pure intuitionistic logic.

Observe that some of these instructions will be incompatible with β-reduction.

Not a problem, because β-reduction plays no real role in the following.

5

These two methods of execution are essentially equivalent.

For real machine implementation, we use head linear reduction

which is much more efficient. But weak head reduction is better for easy reading ;

I shall use it during this tutorial, and indicate, from time to time,

the small changes which are necessary for head linear reduction.

Observe that head linear reduction needs the introduction of combinators

or instructions, in order to avoid garbage.

For example, it is better to introduce a new fixpoint instruction Y

with the reduction rule : Y? t .πÂ t ?Yt .π.

The usual Curry fixpoint Y =λ f A f A f with A f =λx(f)(x)x

would give the following (equivalent, but not very readable) result :

Y ? t .πÂ t ? ((λ f A f)t)(λ f A f)t .π.

This phenomenon does not arise with weak head reduction.

6

Intuitionistic Curry-Howard correspondence

Consider second order formulas with → and ∀ as the only logical symbols.

Intuitionistic natural deduction is given by the following usual rules :

A1, . . . , Ak ` Ai

A1, . . . , Ak , A ` B ⇒ A1, . . . , Ak ` A → B

A1, . . . , Ak ` A → B , A1, . . . , Ak ` A ⇒ A1, . . . , Ak ` B

A1, . . . , Ak ` A ⇒ A1, . . . , Ak `∀x A and ∀X A
(if x, X are not free in A1, . . . , Ak)

A1, . . . , Ak `∀x A → A[t]

A1, . . . , Ak `∀X A → A[F /X x1 . . . xk]
(comprehension scheme)

Notations. Let X be a propositional variable (predicate of arity 0).

⊥ is defined as ∀X X (thus, ⊥→ F is a particular case of the compr. scheme).

∃Y {A1, . . . , Ak} means ∀X [∀Y (A1, . . . , Ak → X) → X].

7

Intuitionistic Curry-Howard correspondence (cont.)

These rules become rules for typing λ-terms, as follows :

x1:A1, . . . , xk :Ak ` xi :Ai

x1:A1, . . . , xk :Ak , x:A ` t :B ⇒ x1:A1, . . . , xk :Ak `λx t :A → B

x1:A1, . . . , xk :Ak ` t :A → B , u:A ⇒ x1:A1, . . . , xk :Ak ` tu:B

x1:A1, . . . , xk :Ak ` t :A ⇒ x1:A1, . . . , xk :Ak ` t :∀x A and t :∀X A
(if x, X are not free in A1, . . . , Ak)

x1:A1, . . . , xk :Ak `λx x:∀x A → A[t]

x1:A1, . . . , xk :Ak `λx x:∀X A → A[F /X x1 . . . xk]
(comprehension scheme)

In this way, we get programs from proofs in pure (i.e. without axioms)

intuitionistic logic. It is the very first step of our work.

8

Realizability

We know that proofs in pure intuitionistic logic give λ-terms.

But pure intuitionistic, or even classical, logic is not sufficient

to write down mathematical proofs.

We need axioms, such as extensionality, infinity, choice, . . .

Axioms are not theorems, they have no proof !

How can we find suitable programs for them ?

The solution is given by the theory of classical realizability.

We define, for each mathematical formula Φ :

• the set of stacks which are against Φ, denoted by ‖Φ‖
• the set of closed terms t which realize Φ, which is written t ∥−Φ.

We first choose a set of processes, denoted by ⊥⊥, which is saturated, i.e.

t ?π ∈⊥⊥, t ′?π′Â t ?π ⇒ t ′?π′ ∈⊥⊥
9

Realizability (cont.)

Equivalently, we can choose the complement ⊥⊥c of ⊥⊥, which is closed by execution

i.e. t ?π ∈⊥⊥c , t ?πÂ t ′?π′ ⇒ t ′?π′ ∈⊥⊥c

The set ‖Φ‖ and the property t ∥−Φ are defined by induction on the formula Φ.

They are connected as follows :

t ∥−Φ ⇔ (∀π ∈ ‖Φ‖) t ?π ∈⊥⊥
There are three steps of induction, because our logical symbols are

the arrow : →, the first and second order universal quantifiers : ∀x , ∀X .

1. ‖Φ→Ψ‖ = {t .π ; t ∥−Φ,π ∈ ‖Ψ‖}.

In words : if the term t realizes the formula Φ

and the stack π is against the formula Ψ

then the stack t .π (push t on the top of π) is against the formula Φ→Ψ.

10

Realizability (cont.)

2. ‖∀xΦ(x)‖ =⋃
{‖Φ(a)‖; a ∈N}

This means that the domain of first order variables is N.

In words : a stack is against ∀xΦ(x) if it is against Φ(a) for some integer a.

3. Let X be a predicate variable of arity k . Then

‖∀X Φ(X)‖ =⋃
{‖Φ[X /X]‖;X :Nk →P (Π)}

This means that the domain of k-ary predicate variables is P (Π)N
k

.

It follows that t ∥−∀xΦ(x) ⇔ (∀a ∈N) t ∥−Φ(a) and

t ∥−∀X Φ(X) ⇔ (∀X ∈P (Π)N
k

) t ∥−Φ[X /X]

We have defined ‖Φ‖ and t ∥−Φ for every closed second order formula Φ

with parameters. Parameters of arity k are functions X :Nk →P (Π).

A closed atomic formulas is X (n1, . . . ,nk). Its truth value is obvious.

11

Realizability (cont.)

We see that realizability theory is exactly model theory, in which the truth value set

is P (Π) instead of {0,1}, Π being the set of stacks.

We are indeed considering “ standard ” second order models :

the domain of individuals is N

the domain for k-ary predicate variables is P (Π)N
k

(instead of {0,1}N
k

).

For each function f :Nk →N, we have the k-ary function symbol f

with its natural interpretation.

The truth values ; and Π are denoted by > and ⊥. Therefore :

t ∥−> for every term t ; t ∥−⊥ ⇒ t ∥−F for every F .

Warning. In our realizability models, the domain of variation of individual variables

is N. But, the usual 2-valued models we get from them are non-standard, i.e.

they contain non-standard integers and even individuals which are not integers at

all.
12

The adequation lemma

In order to get a model, we have only to choose the saturated set ⊥⊥.

The case ⊥⊥=; is degenerate : we get back the usual two-valued model theory.

The lemma below is the analog of the soundness lemma for our notion of model.

It is an essential tool for the proof-program correspondence.

Adequation lemma.

If x1:Φ1, . . . , xn:Φn ` t :Φ and if ti ∥−Φi (1 ≤ i ≤ n) then t [t1/x1, . . . , tn/xn] ∥−Φ.

In particular : If ` t :Φ then t ∥−Φ.

The proof is a simple induction on the length of the derivation of · · · ` t :Φ.

In the following, we shall more and more use semantic realizability t ∥−Φ
instead of syntactic typability ` t :Φ.

13

The language of mathematics

The proof-program correspondence is well known for intuitionistic logic.

Now we have

Mathematics ≡ Classical logic + some axioms

that is Mathematics ≡ Intuitionistic logic + Peirce’s law + some axioms

For each axiom A , we choose a closed λ-term which realizes A , if there is one.

If not, we extend our machine with some new instruction which realizes A ,

if we can devise such an instruction.

Now, there are essentially two possible axiom systems for mathematics :

1. Analysis, i.e. second order classical logic with dependent choice.

2. ZFC, i.e. Zermelo-Fraenkel set theory with the full axiom of choice.

Thus, we now have many axioms to deal with.

First of all, we must settle the law of Peirce : ((A →⊥) → A) → A.

14

Peirce’s law

We adapt to our machine the solution found by Tim Griffin in 1990.

We add to the λ-calculus an instruction denoted by cc. Its reduction rule is :

cc? t .πÂ t ?kπ .π
kπ is a continuation, i.e. a pointer to a location where the stack π is saved.

In our symbolic machine, it is simply a λ-constant, indexed by π.

Its execution rule is kπ? t .π′Â t ?π.

Therefore cc saves the current stack and kπ restores it.

Using the theory of classical realizability, we show that cc ∥− (¬A → A) → A.

In this way, we extend the Curry-Howard correspondence to every proof

in pure (i.e. without axiom) classical logic : we now have the new typing rule

x1:A1, . . . , xk :Ak ` cc:(¬A → A) → A

Let us check that cc ∥− (¬A → A) → A :

15

Peirce’s law (cont.)

Take t ∥−¬A → A and π ∈ ‖A‖. For every u ∥− A, we have u?π ∈⊥⊥, therefore

kπ?u .π′ ∈⊥⊥ for every stack π′. Thus kπ ∥− A →⊥ and kπ .π ∈ ‖¬A → A‖.

It follows that t ?kπ .π ∈⊥⊥ thus cc? t .π ∈⊥⊥. QED

This extended λ-calculus is called λc-calculus.

The set of closed λc-terms is denoted by Λc .

A closed λc-term which contains no continuation is called a proof-like term.

We say that the formula Φ is realized if there is a proof-like term τ such that

τ ∥−Φ for every choice of ⊥⊥. Thus :

• Every λc-term which comes from a proof is proof-like.

• If the axioms are realized, every provable formula is realized.

If ⊥⊥ 6=;, then τ ∥−⊥ for some λc-term τ : take t ?π ∈⊥⊥ and τ= kπt .

Observe that it is not a proof-like term.

16

A useful trick
We can define the truth value ‖V →Φ‖ when Φ is a truth value

(for example a closed formula with parameters) and V is any set of terms.

The definition is ‖V →Φ‖ = {v .π; v ∈V ,π ∈ ‖Φ‖}.

For example {ξ} →Φ and ¬V have truth values.

Theorem. Let Φ be a truth value and V a set of terms.

Then (V →Φ) ↔ (¬Φ→¬V) is (uniformly) realized :

λ f λk k◦ f ∥− (V →Φ) → (¬Φ→¬V) ;

λhλvccλk(h)kv ∥− (¬Φ→¬V) → (V →Φ).

Theorem. Let X be a truth value and X−= {kπ; π ∈ ‖X ‖}.

Then ¬X−↔ X is (uniformly) realized.

Indeed cc ∥−¬X−→ X and λxλy y x ∥−X →¬X−.

It follows that, in order to realize X ∨ A it is sufficient (but often much easier)

to realize X−→ A.
17

First simple theorems

The choice of ⊥⊥ is generally done according to the theorem Φ for which

we want to solve the specification problem. Let us take two simple examples.

Theorem. If θ comes from a proof of ∀X (X → X) (with any realized axioms)

then θ? t .πÂ t ?π i.e. θ behaves like λx x .

Proof. Take ⊥⊥= {p ; p Â t ?π} and ‖X ‖ = {π}.

Thus t ∥−X and θ? t .π ∈⊥⊥. QED

Example : θ =λx ccλk kx .

Dual proof. Take ⊥⊥c = {p ; θ? t .πÂ p} and ‖X ‖ = {π}.

Thus, θ? t .π ∈⊥⊥c ; since π ∈ ‖X ‖ and θ ∥−X → X , we have t 6∥−X

and therefore t ?π ∈⊥⊥c . QED

18

First simple theorems (cont.)

The formula Bool(x) ≡∀X (X 1, X 0 → X x) is equivalent to x=1∨x=0.

Theorem. If θ comes from a proof of Bool(1), then θ? t .u .πÂ t ?π

i.e. θ behaves like the boolean λxλy x .

Proof. Take ⊥⊥= {p ; p Â t ?π}, ‖X 1‖ = {π} and ‖X 0‖ =;= ‖>‖.

Thus t ∥−X 1, u ∥−X 0 and θ? t .u .π ∈⊥⊥. QED

Dual proof. Take ⊥⊥c = {p ; θ? t .u .πÂ p}, ‖X 1‖ = {π} and ‖X 0‖ =;= ‖>‖. We have

u ∥−X 0, π ∈ ‖X 1‖, θ ∥−X 1, X 0 → X 1 and θ? t .u .π ∈⊥⊥c .

Thus t 6∥−X 1 and t ?π ∈⊥⊥c . QED

19

Another example : ∃x(P x →∀y P y)

Write this theorem ∀x[(P x →∀y P y) →⊥] →⊥. We must show :

z:∀x[(P x →∀y P y) →⊥] ` ?:⊥. We get z:(P x →∀y P y) →⊥,

z:(P x →∀y P y) → P x , cc z:P x , cc z:∀x P x , λd cc z:P x →∀y P y

and zλd cc z:⊥. Finally we have obtained the program θ =λz zλd cc z .

Let us find a characteristic feature in the behaviour of all terms θ

such that ` θ:∃x(P x →∀y P y). Let α0,α1, . . . and $0,$1, . . .

be a fixed sequence of terms and of stacks. We define a new instruction κ ;

its reduction rule uses two players named ∃ and ∀ and is as follows :

κ?ξ .πÂ ξ?αi .$ j

where i is first chosen by ∃, then j by ∀.

The player ∃ wins iff the execution arrives at αi ?$i for some i ∈N.

20

∃x(P x →∀y P y) (cont.)

Theorem. If ` θ:∀x[(P x →∀y P y) →⊥] →⊥, there is a winning strategy for ∃ when

we execute the process θ?κ .π (for any stack π).

Proof. Let ⊥⊥ be the set of processes for which there is a winning strategy for ∃.

Define a realizability model on N, by setting ‖Pn‖ = {$n}. Thus αn ∥−Pn.

Suppose that ξ ∥−Pi →∀y P y for some i ∈N. Then :

ξ?αi .$ j ∈⊥⊥ for every j and it follows that κ?ξ .π ∈⊥⊥, for any stack π : indeed, a

strategy for ∃ is to play i and to continue with a strategy for ξ?αi .$ j if ∀ plays j .

It follows that κ ∥− (Pi →∀y P y) →⊥ and therefore :

κ ∥−∀x[(P x →∀y P y) →⊥]. Thus, θ?κ .π ∈⊥⊥ for every stack π. QED

21

∃x(P x →∀y P y) (cont.)

Dual proof. If there is no winning strategy for ∃, then there is one for ∀ :

to play so that ∃ never has a winning strategy.

Suppose that ∀ has chosen such a strategy and define ⊥⊥c

to be the set of processes we can reach from θ?κ .π.

Set, as before, ‖Pn‖ = {$n}. Then αn ∥−Pn because αn?$n is not reached.

Then κ 6∥−∀x[(P x →∀y P y) →⊥] because θ?κ .π ∉⊥⊥.

Thus, there is an i ∈N and a ξ ∥−Pi →∀y P y s.t. κ?ξ .π′ ∈⊥⊥c .

At this moment, ∃ can play αi and ∀ will play $ j by his strategy.

Thus ξ?αi .$ j ∈⊥⊥c because this process is reached.

This contradicts the property of ξ because αi ∥−Pi and $ j ∈ ‖∀y P y‖. QED

22

∃x(P x →∀y P y) (cont.)

For instance, if θ =λz zλd cc z , we have :

θ?κ .πÂ κ?λd ccκ .πÂλd ccκ?αi0 .$ j0 if ∃ plays i0 and ∀ plays j0.

We get cc?κ .$ j0 Â κ?k$ j0
.$ j0. A winning strategy for ∃ is now to play j0 :

if ∀ plays j1, this gives k$ j0
?α j0 .$ j1 Âα j0?$ j0.

Remark. The program θ does not gives explicitly a winning strategy.

Programs associated with proofs of arithmetical theorems will give such strategies,

i.e. will play in place of ∃.

We shall return to this topic later and consider the general case :

true first order formulas.

23

Axioms for mathematics

Let us now consider the usual axiomatic theories which formalize mathematics.

• Analysis is written in second order logic. There are three groups of axioms :

1. Equations such as x +0 = x , x + s y = s(x + y), . . .

and inequations such as s0 6= 0.

2. The recurrence axiom ∀x int(x), which says that each individual (1st order object)

is an integer. The formula int(x) is : ∀X {∀y(X y → X s y), X 0 → X x}.

3. The axiom of dependent choice :

If ∀X∃Y F (X ,Y), then there exists a sequence Xn such that F (Xn, Xn+1).

Analysis is sufficient to formalize a very important part of mathematics

including the theory of functions of real or complex variables,

measure and probability theory, partial differential equations,

analytic number theory, Fourier analysis, etc.

24

Axioms for mathematics (cont.)

• Axioms of ZFC can be classified in three groups :

1. Equality, extensionality, foundation.

2. Union, power set, substitution, infinity.

3. Choice : Any product of non void sets is non void ;

possibly other axioms such as CH, GCH, large cardinals.

In order to realize axioms 1 and 2 (i.e. ZF), we must interpret ZF

in another theory called ZFε which is much simpler to realize.

The λc-terms for ZF are rather complicated, but do not use new instructions.

The solution for AC and CH has been found very recently.

We need new instructions and get very complicated programs for these axioms.

25

Realizability models of analysis

For the moment, we consider realizability models of 2nd order logic.

For these models, the domain of individuals is N

and the domain of k-ary predicate variables is P (Π)N
n

.

The only left free choice is ⊥⊥.

But it is important to remember that these domains are used only

for computing the truth values of formulas : ‖∀xΦ(x)‖ =⋃
n∈N‖Φ(n)‖.

For example, it does not mean that the formula : “ every individual is an integer ”

that is the recurrence axiom ∀x∀X [∀y(X y → X s y), X 0 → X x] is realized.

Indeed, for the most usual choices of ⊥⊥, the negation of this formula is realized.

In order to grasp this strange situation, we absolutely need ordinary 2-valued models.

We now explain how to get them.

26

Coherence

In fact, the situation is even worse, because there are

some useful examples of ⊥⊥ for which ⊥ is realized. For instance :

⊥⊥= the set of processes the execution of which is infinite ; we have δδ ∥−⊥.

Now, by adequation lemma, the set of realized formulas is closed by

classical deduction. If this set is consistent, we say that ⊥⊥ is coherent.

It means that there is no proof-like term θ such that θ ∥−⊥.

In other words, for every proof-like term θ, there is a stack π such that θ?π ∉⊥⊥.

From now on, we consider only the case when ⊥⊥ is coherent.

Examples : let p0 be some given process ; then ⊥⊥= {p; p Â p0} is coherent if

there is at least 2 stack constants ; ⊥⊥= {p; p0 6Â p} is not coherent in general.

27

2-valued realizability models

Let ⊥⊥ be a coherent saturated set of processes. Then the set of realized closed

formulas is closed under derivation in classical logic and does not contain ⊥.

It is therefore consistent and we obtain, in this way, 2-valued models

of second order logic or of set theory.

We shall see that these models are very different from the model we started with.

As told before, there exist individuals which are not integers ; but there are also

non-standard integers in the following strong sense : there is a unary predicate P

such that the formulas ∃x[int(x)∧P x], ¬Pn are realized for each integer n.

28

The Boolean algebra P (Π)

Every coherent ⊥⊥ gives a Boolean structure on the set P (Π) of truth values :

for X ,Y ⊂Π, define :

X ≤Y ⇔ there is a proof-like term θ s.t. θ ∥−X →Y

It is easy to prove that this is a Boolean preorder on P (Π), with X c = ‖¬X ‖ and

inf(X ,Y) = ‖X ∧Y ‖ = ‖∀X ((X ,Y → X) → X)‖ or ‖(X ,Y →⊥) →⊥‖,

sup(X ,Y) = ‖X ∨Y ‖ = ‖∀X ((X → X), (Y → X) → X)‖
or ‖(X →⊥), (Y →⊥) →⊥‖.

Let B =P (Π)/' be this Boolean algebra.

Every closed formula has a value in P (Π) and therefore a value in B.

We get, in this way, Boolean models of second order logic or set theory.

Using any ultrafilter on B, we obtain again the 2-valued realizability models

described in the last slide.

29

Remarks on 2-valued models

We use the following terminology : the standard model of analysis is (N,2N).

Given ⊥⊥, we have the realizability model associated with ⊥⊥, which is (N,P (Π)N)

with the definition of truth value of closed 2nd order formulas.

Then, we have the 2-valued realizability models, we have just defined.

For any closed second order formula F the following conditions are equivalent :

• M |= F for every 2-valued model M associated with ⊥⊥
• there exists a proof-like term θ s.t. θ ∥−F

Notice that every predicate and every function on individuals which is defined

in the standard model is also defined in the 2-valued realizability models

(because we put them in the language). But, in these models,

there are many individuals and predicates which are not named in the language.

For example, non-standard integers or non integers.

30

Axioms of analysis : equations

Axioms : ¬(0 = s0) ; p0 = 0 ; ∀x(psx = x) ; ∀x(x +0 = x) ; ∀x(x.0 = 0) ;

∀x∀y(x + s y = s(x + y)) ; ∀x∀y(x.s y = x y +x)

Such equations and inequations are very easy to realize.

Theorem. Any true equation is realized by λx x .

Any true inequation is realized by λx xt for an arbitrary t.

Proof. x = y is defined by ∀X (X x → X y) in second order logic. QED

Useful definition. Define a new predicate x 6= y by setting :

‖n 6= p‖ =;= ‖>‖ if n 6= p and ‖n 6= p‖ =Π= ‖⊥‖ if n = p .

Theorem. λxλy y x ∥−∀x∀y[x 6= y →¬(x = y)] and

λx xt ∥−∀x∀y[¬(x = y) → x 6= y] for any t.

This means we can use the predicate x 6= y in place of ¬(x = y).

31

Another important Boolean algebra

The predicate x2 = x defines a set B of individuals, which is a Boolean algebra.

For example, ∀x∀y[x2 = x, y2 = y → (x + y −x y)2 = x + y −x y] is a consequence

of true equations (associativity, commutativity and distributivity).

Another way : realize ∀x∀y[x2 = x, (x + y −x y)2 6= x + y −x y → y2 6= y], i.e.

∀x(x2 = x,1 6= 1 →⊥)∩∀x(x2 = x, x2 6= x →⊥) i.e.

∀x(1 6= 1 → x2 6= x)∩∀x(x2 6= x → x2 6= x) realized by λx x .

Lemma. Every element 6= 1 of B is not a successor.

Indeed, (x +1)2 = x +1 gives x2+x = 0 thus x = 0. QED

In most interesting models, the algebra B is not trivial, i.e. B 6= {0,1}.

This shows that there are individuals which are not integers.

Let us give an example.

32

A non trivial Boolean algebra B

Set ⊥⊥= {p ∈Λ?Π; p Â I ?π0} ; I is λx x , π0 is a fixed stack constant.

Lemma. |>,⊥→⊥|∩|⊥,>→⊥|= |>,>→⊥|.
It is clearly sufficient to prove ⊂. Let t ∈ |>,⊥→⊥|∩|⊥,>→⊥|, π ∈Π,

κ= kπ0I ∥−⊥, ω= (λx xx)λx xx and a,b be two fresh constants.

Suppose that t ?a .b .πÂ a?π′ ; then t ?ω .κ .πÂω?π′′,
which contradicts t ∥−>,⊥ → ⊥. Therefore, during the execution of t ? a .b .π,

neither a nor b comes in head position. Since t ?u .κ.π Â I ?π0, it follows that

t ?u . v .πÂ I ?π0. This shows that t ∥−>,>→⊥. QED

Now, |∀x(x 6= 1, x 6= 0 → x2 6= x)| = |>,⊥→⊥|∩|⊥,>→⊥| ;

this shows that λx x00 ∥−¬∀x(x 6= 1, x 6= 0 → x2 6= x).

This formula means that B is a non trivial Boolean algebra.

33

An atomless Boolean algebra B

An atom of B is a minimal element of B \ {0}. We show that, in the above model,

the algebra B has no atom ; thus, it is not only non trivial, but even infinite.

The fact that B is atomless is expressed by the formula :

∀x(x2 = x, x 6= 0 →∃y(y2 = y ∧x y 6= 0∧x y 6= x) i.e.

∀x[∀y(x y 6= 0, x y 6= x → y2 6= y), x 6= 0 → x2 6= x].

The truth value of this formula is :

|∀y(y 6= 0, y 6= 1 → y2 6= y),>→⊥|∩|∀y(0 6= 0,0 6= 0 →⊥),⊥→⊥|.
We have just seen that |∀y(y 6= 0, y 6= 1 → y2 6= y)| = |>,>→⊥|.
Thus, we get |(>,>→⊥),>→⊥|∩|(⊥,⊥→⊥),⊥→⊥|
which is realized by λxλy x y y .

34

Exercise on this model
We have shown that any element of B \ {1} has no predecessor (in every model).
But, in this model, the converse is false, i.e.
there are individuals without predecessor that are not in B.
We show that the formula ∃x[x2 6= x ∧∀y(x 6= s y)] that is
∀x[x2 6= x,∀y(x 6= s y) →⊥] →⊥ is realized. We have
|∀y(n 6= s y)| => if n = 0 and ⊥ if n 6= 0. Therefore
|∀x[x2 6= x,∀y(x 6= s y) →⊥]| =⋂

n |n2 6= n,∀y(n 6= s y) →⊥|
= |⊥,>→⊥|∩|⊥,⊥→⊥|∩|>,⊥→⊥|= |>,>→⊥| by the lemma above.
Thus |∃x[x2 6= x ∧∀y(x 6= s y)]| = |(>,>→⊥) →⊥|
and this formula is realized by λx x00.

We have now many examples of non integers.
We have not yet given an example of a non-standard integer.
A much more difficult problem is : does there exist an ultrafilter on B ?

35

Intersection of types

Let F (x) be any second order formula. It is interesting to compare the truth values

|F (1)∧ F (0)| and |F (1)| ∩ |F (0)|. We show that |F (1)| ∩ |F (0)| is equivalent to the

formula ∀x[x2 = x → F (x)]. This means that :

i) ∀x[x2 = x → F (x)] →|F (1)|∩ |F (0)| and

ii) |F (1)|∩ |F (0)|→∀x[x2 = x → F (x)] are both realized.

(i) is realized by λx xI (put x = 1,0 in x2 = x → F (x)).

Now ∀x[x2 = x → F (x)] is equivalent to ∀x[¬F (x) → x2 6= x]

the value of which is |¬¬F (1)|∩ |¬¬F (0)|. But we have

λx xI ∥−|F (1)|∩ |F (0)|→ |¬¬F (1)|∩ |¬¬F (0)|.
We have found the meaning of F (1)∩F (0)

which is clearly stronger than F (1)∧F (0).

36

Axioms of analysis : recurrence

The proper recurrence axiom is ∀x int(x), where int(x) is the formula :

∀X [X 0,∀x(X x → X sx) → X x]

This axiom cannot be realized, even by means of new instructions ;

thus, in realizability models, there are individuals which are not integers.

There are two solutions, which are logically equivalent for integers ;

but they correspond to very different programming styles.

The first method is to discard the recurrence axiom

and restrict first order quantifiers to the formula int(x).

The second method is the same we shall use to realize axioms of ZF.

We define a new equality ' on individuals, which allows to realize

the recurrence axiom : every individual becomes equivalent to an integer.

It uses a fixpoint combinator and the programming style is LISP’s.

37

Recurrence axiom, 1st method

The language has a function symbol for each recursive function.

Let int(x) ≡∀X [∀y(X y → X s y), X 0 → X x].

Theorem. If a second order formula Φ is provable with the recurrence axiom,

then the restricted formula Φint is provable without it, using the axioms

∀x1 . . .∀xk{int(x1), . . . ,int(xk) → int(f (x1, . . . , xk))} for each symbol f .

Now, we only need to realize these new axioms. There are two ways of doing this :

• Prove this formula from true equations.

Examples. The successor s : int(x) → int(sx) is provable with no equation.

Addition : int(x), int(y) → int(x + y) is provable with the equations :

x +0 = x ; x + s y = s(x + y), . . .

This works for a very large class of recursive functions :

the provably total functions in second order arithmetic.

38

Recurrence axiom (cont.)

• The second method works for every recursive function f .

Assume, for simplicity, that f is unary. We have two lemmas.

Lemma. If τ is a closed λ-term, τ'β n (Church integer), then τ ∥− int(sn0).

Define T =λ f λn(n)λg g◦ s . f .0 (storage operator [5]).

Storage lemma. If (∀π ∈ ‖X ‖)φ? sn0 .π ∈⊥⊥ then Tφ ∥− int(n) → X .

Proof. Let ‖P j‖ = {sn− j 0 .π; π ∈ ‖X ‖} for 0 ≤ j ≤ n ;

‖P j‖ =; for j > n. Then λg g◦ s ∥−∀x(P x → Psx) and φ ∥−P0.

Thus, if ν ∥− int(n) then ν?λg g◦ s .φ .π ∈⊥⊥ which gives Tφ?ν .π ∈⊥⊥. QED

We can state this result as follows : T ∥−∀X∀n{({sn0} → X) → (int(n) → X)} i.e. the

formula int(n) may be replaced with {sn0} when computing truth values.

39

Recurrence axiom (cont.)

Finally, we realize the axiom we need :

Theorem. Let τ be a closed λ-term which computes the recursive function f .

Then Tλx τx ∥−∀x[int(x) → int(f (x))].

By the storage lemma, we only need to prove that λx τx? sn0 .π ∈⊥⊥
for π ∈ ‖int(f (n))‖. But this follows from the first lemma,

since τsn0 'β r with r = f (n). QED

40

Imperative call-by-value

Let ν ∈Λc such that ` ν:int(sn0) ; i.e. ν "behaves like" the integer n.

In the λc-term φν this data is called by name by the program φ.

In the λc-term Tφν the same data is called by value by φ,

which means it is computed first (in the form sn0).

Theorem. If ` ν:int(sn0), then Tφ?ν .πÂφ? sn0 .π.

Let ⊥⊥= {p; p Âφ? sn0 .π}. Then Tφ?ν .π ∈⊥⊥, by the storage lemma. QED

I name this behaviour imperative call-by-value, to avoid confusion with

the well-known notion of (functional) call-by-value, and because

it is very similar to the usual notion of call-by-value in imperative languages.

It is only defined for data types (booleans, integers, trees, . . .)

41

Computing recursive functions

So, we can discard the recurrence axiom and replace it with the formulas :

∀x1 . . .∀xk{int(x1), . . . ,int(xk) → int(f (x1, . . . , xk))} for each symbol f .

These formulas make sense, because there exist individuals which are not integers.

Theorem. If `φ : ∀~x{~int(~x) → int(f~x)}, then φ computes the function f , i.e. :

if ~n is a sequence of Church integers, then Tκ?φ~n .πÂ κ? sp0 .π with p = f (~n).

This works for every data type : Booleans, integers, sums, products and lists

of data types, etc. Here, we only use the types of integers and of Booleans.

Bool(x) ≡∀X (X 1, X 0 → X x). For this type we have :

Theorem. If `φ : ∀x{int(x) → Bool(f (x))}, then

φ? n̂ . t .u .πÂ t ?π if f (n) = 1 ; φ? n̂ . t .u .πÂ u?π if f (n) = 0

where n̂ is any closed λ-term β-equivalent to the Church integer n.

42

Remarks on head linear reduction

If we use the head linear reduction machine, the storage lemma is no longer true :

the storage operator T =λ f λn(n)λg g◦ s . f .0 introduces garbage.

We define a storage instruction T and an auxiliary instruction U

with the following execution rules :

T?φ .ν .πÂ ν?U .φ .0 .π and U? g .ξ .πÂ g ? sξ .π.

Storage lemma. If (∀π ∈ ‖X ‖)φ? sn0 .π ∈⊥⊥ then Tφ ∥− int(n) → X .

Proof. Let ‖P j‖ = {sn− j 0 .π; π ∈ ‖X ‖} for 0 ≤ j ≤ n ;

‖P j‖ =; for j > n. Then U ∥−∀x(P x → Psx) and φ ∥−P0.

Thus, if ν ∥− int(n) then ν?U .φ .π ∈⊥⊥ which gives Tφ?ν .π ∈⊥⊥. QED

43

Recurrence axiom, 2nd method

Theorem. Y ∥−∀x[∀y(X y → s y 6= x) →¬X x] →∀x¬X x

where Y = A A with A =λaλ f (f)(a)a f is the Turing fixpoint combinator.

Its execution rule is Y? t .πÂ t ?Yt .π.

Remark. In head linear reduction, Y must be an instruction with this reduction rule.

Now, this formula says that the relation s y = x is well founded.

From this, it is easy to prove that every individual x can be uniquely written as

x = x0+n, where n is an integer and x0 has no predecessor.

We have defined an equivalence relation on individuals and we consider integers as

equivalence classes. The class 0 is the set of individuals without predecessor.

The recurrence axiom ∀X∀x[∀y(X y → X s y), X 0 → X x] which we cannot realize, is

replaced with : ∀X∀x[∀y(X y → X s y),∀y(y ' 0 → X y) → X x]

which is provable from the well foundedness of s y = x .

44

Fixpoint and well foundedness

We prove more generally :

Theorem. Let x @ y be well founded on integers and φ(x, y) its characteristic

function. Then Y ∥−∀X {∀x[∀y(X y →φ(y, x) 6= 1) →¬X x] →∀x¬X x}.

Proof. Let t ∥−∀x[∀y(X (y) →φ(y, x) 6= 1) →¬X (x)]

for some X :N→P (Π). We prove Yt ∥−¬X (n) by induction on n,

following @. Let u ∥−X (n), we must prove Y? tuπ ∈⊥⊥, i.e. t ?Yt .u.π ∈⊥⊥.

It is sufficient to prove Yt ∥−∀y(X (y) →φ(y,n) 6= 1).

Now, if y @ n, this is true because Yt ∥−X (y) →⊥, by induction hypothesis ;

else this is also true because ‖φ(y,n) 6= 1‖ =;. Q.E.D.

45

Non standard integers (1st example)

Let an,πn be given sequences of λ-constants (instructions) and stack constants.

Define a realizability model by setting ⊥⊥= {p ∈Λ?Π; ∃n(p Â an?πn)}.

In this model, define a unary predicate P by ‖Pn‖ = {πn}.

Since an ∥−Pn, every 2-valued realizability model satisfies Pn for every n ∈N.

We show that there are such models with non-standard integers :

more precisely, the formula ∀x[int(x) → P x] is not realized.

Indeed, consider a proof-like term θ ∥−∀x[int(x) → P x]

and choose n such that an is not in θ.

Then θ?n .πn ∈⊥⊥, i.e. θ?n .πn Â an?πn which is impossible.

46

Non standard integers (cont.)

Suppose now we have an instruction σ with the following execution rule :

σ? t .πÂ t ?n .πn where πn is the stack constant of π.

Then σ ∥−∀x[int(x) → P x] →⊥
i.e. there are non-standard integers in every 2-valued realizability model.

Indeed, let t ∥−∀x[int(x) → P x] and π ∈Π.

We must show that σ? t .π ∈⊥⊥, i.e. t ?n .πn ∈⊥⊥.

This follows from the hypothesis on t .

Instructions similar with σ will be used in order to realize

the axiom of dependent choice.

47

Examples of arithmetical theorems

Theorem. Let ` θ : ∃x[int(x)∧ f (x) = 0], with f recursive. Let κ be a stop instruction.

Then θ?Tκ .πÂ κ? sn0 .π with f (n) = 0 ; T is the storage operator.

Proof. We have θ ∥−∀x[int(x) → f (x) 6= 0] →⊥.

Now take ⊥⊥= {p ; p Â κ? sn0 .π with f (n) = 0}.

We simply have to show that Tκ ∥−∀x[int(x) → f (x) 6= 0] i.e. by the storage lemma,

that κ? sn0 .π ∈⊥⊥ for every n such that π ∈ ‖ f (n) 6= 0‖.

But this means that ‖ f (n) 6= 0‖ 6= ; and thus f (n) = 0. QED

Remark. κ is clearly a pointer to an integer. In the program, we wrote Tκ,

because we want it to point to a computed integer.

It is the intuitive meaning of imperative call-by-value.

48

Examples of arithmetical theorems (cont.)

We consider now an arithmetical theorem {∃x∀y[f (x, y) 6= 0]}int.

Define a game with two players ∃ and ∀ : ∃ plays an integer m, ∀ answers by n ;

the play stops as soon as f (m,n) 6= 0 and then ∃ won ;

thus ∀ wins if and only if the play does not stop.

Intuitively, ∃ is the “ defender ” of the theorem and

∀ “ attacks ” it, searching to exhibit a counter-example.

It is clear that ∃ has a winning strategy if and only if N |= ∃x∀y[f (x, y) 6= 0] ; then,

there is an obvious strategy for ∃ : simply play successively 0,1,2, . . .

We show that a proof of {∃x∀y[f (x, y) 6= 0]}int gives an explicit programming

of a winning strategy for the “ defender ”.

Usually, this strategy is much more efficient than the trivial one.

49

Programming a winning strategy

Let us add to our symbolic machine, an instruction κ which allows an interactive

execution. Its execution rule is :

κ? sn0 .ξ .πÂ ξ? sp0 .πnp

for n, p ∈N ; πnp is a stack constant.

This execution rule is non deterministic since p is arbitrary. Intuitive meaning :

in the left hand side, the program (the player ∃), plays the integer n and prepares

a handler ξ for the answer of ∀ ; in the right hand side, the attacker ∀ plays p ;

πnp store the information about this move.

Theorem. If ` θ : {∃x∀y(f (x, y) 6= 0)}int, then every reduction of θ?Tκ .π
gives ξ? sp0 .πnp with f (n, p) 6= 0 (T is the storage operator).

This means that the process θ?Tκ .π acts as a winning strategy for ∃.

50

Programming a winning strategy (cont.)

Proof. Take for ⊥⊥ the set of processes every reduction of which gives

ξ? sp0 .πnp with f (n, p) 6= 0. We must show that θ?Tκ .π ∈⊥⊥.

Now θ ∥−∀x[int(x),∀y(int(y) → f (x, y) 6= 0) →⊥] →⊥.

Therefore, by definition of ∥− , it is sufficient to show that :

Tκ ∥−∀x[int(x),∀y(int(y) → f (x, y) 6= 0) →⊥].

By the storage lemma, we only need to show that :

if ξ ∥−∀y(int(y) → f (n, y) 6= 0) then κ? sn0 .ξ .π ∈⊥⊥, i.e.

ξ? sp0 .πnp ∈⊥⊥ for every p ∈N.

If f (n, p) 6= 0, this is true by definition of ⊥⊥.

Else, πnp ∈ ‖ f (n, p) 6= 0‖ =Π, hence the result, by hypothesis on ξ. QED

51

Programming a winning strategy (cont.)

Remark. κ can be considered as a pointer to the object (n,ξ) consisting of the

integer n and the handler ξ (data and method). Moreover, the integer n is called by

value which is guaranteed by writing Tκ instead of κ.

Example. We take the theorem {∃x∀y[f (x) ≤ f (y)]}int where f is recursive.

Let φ(x, y) be the characteristic function of the well founded relation f (x) < f (y).

The formula is ∀x[int(x),∀y(int(y) →φ(y, x) 6= 1) →⊥] →⊥.

A particular case of the result p. 44 is :

Y ∥−∀x[∀y(int(y) →φ(y, x) 6= 1) →¬int(x)] →∀x¬int(x).

Thus, we get θ =λh(Yλxλn hnx)0. It is easily checked that the process

θ?Tκ .π gives the following strategy, much better than the trivial one :

∃ plays 0 ; if ∀ plays p and if f (p) < f (0), then ∃ plays p and so on.

52

The axiom of dependent choice

We need a new instruction in our machine. Any of the following two will work :

1. The signature. Let t 7→ nt be a function from closed terms into the integers,

which is very easily computable and “practically” one-to-one. It means that the one-

to-one property has to be true only for the terms which appear during the execution

of a given process. And also that we never try to compute the inverse function.

We define an instruction σ with the following reduction rule :

σ? t .πÂ t ?nt .π.

A simple way to implement such an instruction is to take for nt the signature

of the term t , given by a standard algorithm, such as MD5 or SHA1.

Indeed, these functions are almost surely one-to-one for the terms

which appear during a finite execution of a given process.

53

The axiom of dependent choice (cont.)

2. The clock. It is denoted as ħ and its reduction rule is :

ħ? t .πÂ t ?n .π
where n is a Church integer which is the current time (for instance, the number of

reduction steps from the boot).

Both instructions, the clock and the signature, can be given (realize) the same type,

which is not DC but a formula DC’ which implies DC in classical logic.

By means of this proof, we get a λ-term γ[cc,σ] or γ[cc,ħ] which has the type DC.

The instructions σ, ħ appear only inside this λ-term γ.

By looking at its behavior, we find that the integers produced by these instructions

are only compared with each other. No other operation is performed on these

integers.

54

” Proof ” of the dependent choice axiom

For simplicity, we consider the countable choice axiom :

∃Z∀x(F [x, Z (x, y)/X y] →∀X F [x, X])

Indeed, the dependent choice is the same formula in which the individual parameter

x is replaced with a predicate parameter. There is nothing to change in the following

proofs, because the parameter does not play any role.

We use a variant of the instruction σ with the following reduction rule :

σ? t .πÂ t ?nπ .π
(π 7→ nπ is a given recursive bijection of Π onto N).

Theorem. There exists a ” predicate ” U :N3 →P (Π) such that

σ ∥−∀x{∀n(int[n] → F [x,U (x,n, y)/X y]) →∀X F [x, X]}.

55

The dependent choice axiom (cont.)

The usual countable choice axiom follows easily, but not intuitionistically.
Simply define, for each x , the unary predicate Z (x,•) as U (x,n,•) for the first integer
n s.t. ¬F [x,U (x,n, y)/X y], or as N if there is no such integer :
Z (x, z) ≡∀n{int(n),∀p(int(p), p < n → F [x,U (x, p, y)/X y]),

¬F [x,U (x,n, y)/X y] →U (x,n, z)}.
Proof. By definition of ‖∀X F [x, X]‖, we have :
π ∈ ‖∀X F [x, X]‖⇔ (∃R ∈P (Π)N)π ∈ ‖F [x,R/X]‖.
By countable choice, we get a function U :N3 →P (Π) such that
π ∈ ‖∀X F [x, X]‖⇔π ∈ ‖F [x,U (x,nπ, y)/X y]‖.
Let x ∈N, t ∥−∀n(int[n] → F [x,U (x,n, y)/X y]) and π ∈ ‖∀X F [x, X]‖.
We must show that σ? t .π ∈⊥⊥ and, by the rule for σ,
it suffices to show t ?nπ .π ∈⊥⊥. But this follows from
nπ ∥− int(snπ0), π ∈ ‖F [x,U (x,nπ, y)/X y]‖ (by definition of U) and
t ∥− int(snπ0) → F [x,U (x,nπ, y)/X y]. QED

56

Instructions for dependent choice

This proof gives a rather complicated term γ containing ħ and cc which realizes

the dependent choice axiom. It is much clearer to give it as an instruction ;

in any case, this is necessary if we use head linear reduction.

We introduce four instructions γ,E,U0,U1. Their execution rules are :

γ? t .πÂ E? t .n .π where n is the current time or the number of the stack π.

E? t .m .πÂ t ? (((U0)(E)t)m)kπ . (((U1)(E)t)m)kπ .π
U0? t .m .k .u .ρ Â u? t .m .k .ρ
U1? t .n .kπ .u . t ′ .n′ .kπ′ .ρ Â u?ρ if n = n′;

Â t ′?n .π if n < n′

Â t ?n′ .π′ if n′< n

π,π′,ρ are arbitrary stacks ; t , t ′,m,k,u are arbitrary terms ;

n,n′ are integers in the form introduced by γ.

57

Instructions for dependent choice (cont.)

We now show that γ realizes the dependent choice, as follows : given a formula

F [Y] with some parameters we do not write, we explicitly define a unary predicate

V :N→P (Π) and prove that γ ∥−∀Y (∀y(V y ↔ Y y) → F [Y]) →∀Y F [Y].

Remark. It will be clear, from the definition of V , that if the formula is F [X ,Y] with

the parameter X , then V : P (Π)N×N→P (Π), i.e. V : P (Π)N→P (Π)N.

Thus, we have γ ∥−∀X {∀Y (∀y(V [X](y) ↔ Y y) → F [X ,Y]) →∀Y F [X ,Y]}

which is stronger than dependent choice (non extensional axiom of choice).

We first define a binary predicate U :N2 →P (Π), such that for every stack π :

π ∈ ‖∀X F [X]‖ ⇒ π ∈ ‖F [Un]‖ where π=πn (n is the number of π).

Un is the unary predicate defined by Un(y) =U (n, y).

Since ‖∀X F [X]‖ =⋃
{F [V]; V :N→P (Π)}, this a simple application

of the countable choice axiom.

58

Instructions for dependent choice (cont.)

Define now a unary predicate V :N→P (Π) in the following way :

V (y) ≡∀n{
⋂

m<n|{m} → F [Um]|, {n},Φn →Un y}

with Φn = {kπ; π ∈ ‖F [Un]‖}.
Intuitively, V is Un for the first integer n such that ¬F [Un] if there is one,
and N otherwise. Indeed, {m} stands for int(m) and Φn for ¬F [Un].
Lemma. E ∥−∀n(∀y(V y ↔Un y) → F [Un]) →⋂

n |{n} → F [Un]|.
Remarks. i) This lemma will be used with the stronger hypothesis :

∀Y (∀y(V y ↔ Y y) → F [Y]).
ii) ∀y(V y ↔ Y y) → F [Y] is an abbreviation for
∀y(V y → Y y),∀y(Y y →V y) → F [Y].
We prove, by induction on n, that
if t ∥−∀n{∀y(V y ↔Un y) → F [Un]} and π ∈ ‖F [Un]‖.
then E? t .n .π ∈⊥⊥. Using the rule for E, it suffices to show that :

59

i) (((U0)(E)t)n)kπ ∥−∀y(V y →Un y)

ii) (((U1)(E)t)n)kπ ∥−∀y(Un y →V y).

Proof of (i). Let v ∥−V y and ρ ∈ ‖Un y‖ ; we must show that

U0?E t .n .kπ . v .ρ ∈⊥⊥, i.e. v ?E t .n .kπ .ρ ∈⊥⊥.

By the induction hypothesis, we have E t ∈⋂
m<n |{m} → F [Um]|.

By hypothesis on π, we have kπ ∈Φn . Hence the result, by definition of V (y).

Proof of (ii). Let u ∥−Un y , η′ ∈⋂
m<n′ |{m} → F [Um]|, n′ ∈N, π′ ∈ ‖F [Un′]‖

and ρ ∈ ‖Un′y‖. We have to show that U1?E t .n .kπ .u .η′ .n′ .kπ′ .ρ ∈⊥⊥.

If n = n′, this is u?ρ ∈⊥⊥, which is true by the hypothesis on u and ρ.

If n < n′, this is η′?n .π ∈⊥⊥, which is true by the hypothesis on η′ and π.

If n′< n, this is E t ?n′ .π′ ∈⊥⊥. But, by the induction hypothesis, we have :

E t ∥− {n′} → F [Un′], hence the result since, by hypothesis, π′ ∈ ‖F [Un′]‖. QED

60

Theorem. γ ∥−∀Y {∀y(V y ↔ Y y) → F [Y]} →∀Y F [Y].

Let t ∥−∀Y {∀y(V y ↔ Y y) → F [Y]} and π ∈ ‖∀Y F [Y]‖.

Thus, we have π ∈ ‖F [Un]‖ where n is the number of π (π=πn).

By the lemma above, it follows that E? t .n .π ∈⊥⊥, which gives the result,

using the execution rule of γ. QED

As explained before, if F ≡ F [X ,Y] has a second order unary predicate parameter X

then V : P (Π)N→P (Π)N is defined by

V [X , y] ≡∀n{
⋂

m<n|{m} → F [X ,Um[X]]|, {n},Φn →Un[X , y]}.

We have γ ∥−∀X {∀Y (∀y(V [X](y) ↔ Y y) → F [X ,Y]) →∀Y F [X ,Y]}

and V [X] is a choice function which is non-extensional :

the formula ∀x(X x ↔ X ′x) →∀y(V [X , y] ↔V [X ′, y]) is not realized.

Nevertheless, we get the dependent choice, because we can iterate the function V ,

which gives the desired sequence V n[X0] of predicates.

61

Example

We prove the following formula intuitionistically from the axiom of choice :

∀a[(Ra →∀x Rx) →⊥] →⊥, which we denote ∃∗a[Ra →∀x Rx].

Take F [X] ≡ X 6= ;→ X ∩R 6= ; i.e. F [X] ≡∃x X x →∃x{X x,Rx}.

By the axiom of choice : γ ∥−∀X {∀x(V x ↔ X x) → F [X]} →∀X F [X].

As every formula, F [X] is compatible with extensionality.

Thus F [V] `∀X {∀x(V x ↔ X x) → F [X]}.

We easily show ∀X F [X] `∀x Rx : take X x ≡ (x = y).

Now, we have to show `∃∗a(Ra → F [V]), i.e. ∃∗a(∃x V x,Ra →∃x{V x,Rx}). By the

intuitionistic rule : A →∃∗a B(a) `∃∗a[A → B(a)], we have now to show :

∃x V x →∃∗a(Ra →∃x{V x,Rx}). It is sufficient to prove :

∃x V x →∃∗a(Ra →V a ∧Ra) i.e. ∃x V x →∃∗a(Ra →V a)) or finally

∃x V x →∃∗a V a which is trivial.

62

Thus, we obtain `∃∗a[Ra →∀x Rx] by an intuitionistic proof

from the non-extensional axiom of choice. The program we get contains γ

but no occurrence of cc. Here it is :

B =λk(k)λr

(γλxλyλαλu((u)(x)(α)λx(k)λr (γλx′λy ′λαλu((u)(x′)(y)x)r)J I)r)J I

with I =λx x , J =λx xI .

We have checked that this term implements correctly a winning strategy for ∃
in the game associated with the formula ∀a[(Ra →∀x Rx) →⊥] →⊥.

63

The standard realizability model of Analysis

Realizability models are obtained by choosing a set ⊥⊥ which must be saturated

and coherent. Let ⊥⊥c be the complement of ⊥⊥. The conditions on ⊥⊥c are :

p∈⊥⊥c , p Âq ⇒ q∈⊥⊥c (saturation) ;

for every proof-like term ξ there is a stack π s.t. ξ?π ∈⊥⊥c (coherence).

Let ξ 7→πξ be a one-one map from proof-like terms into stack constants.

If ξ?πξ ∈ ⊥⊥c for every ξ, the set ⊥⊥ is obviously coherent. The set of all processes

obtained by executing ξ?πξ will be called the thread generated by the proof-like

term ξ, and ξ?πξ is the boot of this thread.

Thus, ⊥⊥c = the union of all threads is a somewhat canonical way to define ⊥⊥.

We have thus ⊥⊥c = {p; there is a proof-like ξ s.t. ξ?πξÂ p}

We call this model the standard realizability model.

Nevertheless, as we shall see, it contains non standard integers.

64

B in the standard realizability model

We show that the Boolean algebra B of individuals x s.t. x2 = x is non trivial.

Theorem. Let d0 = δδ0 and d1 = δδ1, with δ=λx xx . Then :

λx(cc)λk((x)(k)d0)(k)d1 ∥−∀x(x 6= 1, x 6= 0 → x2 6= x) →⊥.

We know that |∀x(x 6= 1, x 6= 0 → x2 6= x)| = |>,⊥→⊥|∩|⊥,>→⊥|.
Let t ∈ |>,⊥→⊥|∩|⊥,>→⊥| and π ∈Π. We must show that :

λx(cc)λk((x)(k)d0)(k)d1? t .π ∈ ⊥⊥ that is t ? kπd0 .kπd1 .π ∈ ⊥⊥. If this is not true,

by hypothesis on t , we have kπd0,kπd1 6∥−⊥. Therefore, both terms appear in head

position in some thread ; since they both contain the stack constant of π, these

threads are the same one ; thus d0 and d1 appear in head position in the same

thread, which is absurd. QED

We now show that this Boolean algebra is atomless.

65

Theorem. Let θ =λxλy ccλk((x)(k)y0)((x)(k)y1)(k)y2. Then we have :

θ ∥−∀x[∀y(x y 6= 0, x y 6= x → y2 6= y), x 6= 0 → x2 6= x]

(which means that the Boolean algebra B has no atom).

A simple computation shows that we have to prove i) and ii) :

i) θ ∥− (⊥,⊥→⊥),⊥→⊥.

Let t ∈ |⊥,⊥→⊥| and u ∈ |⊥|.
We have to show that θ? t .u.π ∈⊥⊥ i.e. = t ?kπu0.((t)(kπ)u1)(kπ)u2.π ∈⊥⊥.

But u ∥−⊥ ⇒ kπuξ ∥−⊥ for all ξ. Since t ∥−⊥,⊥→⊥, it follows that

((t)(kπ)u1)(kπ)u2 ∥−⊥ and therefore t ?kπu0.((t)(kπ)u1)(kπ)u2.π ∈⊥⊥.

ii) θ ∥−|>,⊥→⊥|∩|⊥,>→⊥|,>→⊥.

Let t ∈ |>,⊥→⊥|∩|⊥,>→⊥| and u ∈Λc .

Again, we have to show that t ?kπu0.((t)(kπ)u1)(kπ)u2.π ∈⊥⊥.

66

Let t ∈ |>,⊥→⊥|∩|⊥,>→⊥| and u ∈Λc .

Again, we have to show that t ?kπu0.((t)(kπ)u1)(kπ)u2.π ∈⊥⊥.

If this is not true, the hypothesis on t gives successively :

kπu0 6∥−⊥ and ((t)(kπ)u1)(kπ)u2 6∥−⊥ ; and then kπu1 6∥−⊥ and kπu2 6∥−⊥.

It follows that kπu0,kπu1,kπu2 all appear in head position in some thread.

Since they contain kπ, these threads are the same (their stack constant is the same).

Suppose, for example, that kπu0 appears first in head position,

then kπu1, and then kπu2. We have thus :

kπu0?π0 Â u?πÂ ·· · Â kπu1?π1 Â u?πÂ ·· · Â kπu2?π2 Â u?πÂ ·· ·
But such an execution is clearly impossible because, at the second appearance

of the process u?π, we enter in a loop and can never arrive at kπu2?π2. QED

Thus, the standard realizability model contains non integers.

We now show it contains also non-standard integers.

67

A generic non-standard integer

Let n 7→ ξn be a fixed recursive enumeration of proof-like terms. We define a unary

predicate G by setting :

‖Gn‖ =Πn i.e. the set of stacks which end with the constant πξn .

We assume there is no instruction which changes the stack constant.

It follows that πξ is the only one which appears in the thread ξ?πξ.

Since
⋃

nΠn =Π, we get ‖∀x Gx‖ =Π, thus I ∥−¬∀x Gx .

We show that Gn is realized for each integer n. Indeed suppose that :

δδ0 6∥−Gn and δδ1 6∥−Gn with δ=λx xx .

Then, ξn?πξn Â δδ0?π0 and ξn?πξn Â δδ1?π1 which is impossible.

It follows that the predicate G contains every standard integer,

but not every individual. Does it contain every integer ?

68

A generic non-standard integer (cont.)

Let ς (for ”self”) be a new instruction with the following reduction rule :

ς? t .πÂ t ?n .π ; n is the integer such that π ∈Πn .

Then ς ∥−∀x(int(x) →Gx) →⊥.

Indeed, if t ∥−∀x(int(x) →Gx) and π ∈Πn , then n ∥− int(n) and π ∈ ‖Gn‖.

Thus t ?n .π ∈⊥⊥ and ς? t .π ∈⊥⊥.

It follows that the predicate ¬G contains at least one non-standard integer.

In the next slide, we show that the formula ∀x∀y{¬Gx, x 6= y →G y} is realized.

Thus, the predicate ¬Gx consists in exactly one individual

and it is a non-standard integer. We call it the generic integer.

We add a new individual constant g to our language, and replace Gx with x 6= g.

The non-standard proof-like term ξg has remarkable properties.

69

A generic non-standard integer (cont.)

The following lemma is a useful tool in order to show that A∨B is realized.

Lemma. If ξ?kπ .ρ ∈⊥⊥ for all π ∈ ‖A‖ and ρ ∈ ‖B‖,

then γξ ∥−¬A → B with γ=λxλy ccλh y cch◦x .

The hypothesis gives cckρ◦ξ ∥− A. If t ∥−¬A, we get t cckρ◦ξ ∥−⊥,

therefore ccλh t cch◦ξ?ρ ∈⊥⊥ for every ρ ∈ ‖B‖.

Thus, γξ? t .ρ ∈⊥⊥, because it reduces to this process. QED

We want to show that ∀x∀y[¬Gx, x 6= y →G y] is realized.

By the preceding lemma, it is sufficient to show that :

0?kπ . t .ρ ∈⊥⊥ with 0 =λxλy y , π ∈ ‖Gn‖ =Πn , ρ ∈ ‖Gp‖ =Πp , t ∥−n 6= p .

If n 6= p , this process is in no thread, because it contains two different stack constants

πξn and πξp . If n = p , then t ∥−⊥ and 0?kπ . t .ρ Â t ?ρ, hence the result. QED

70

The clock in the standard realizability model
The execution rule of the clock instruction ħ is defined formally as follows :
let πξ be the stack constant of the current process ħ? t .π.
“ Reboot ” ξ?πξ until you arrive at ħ? t .π (if this never happens, you are stuck).
Let n be the number of steps ; then ħ? t .πÂ t ?n .π.
The implementation is much simpler : you only have to set a counter
which is incremented at each step.
Warning : you must check that the current process ħ? t .π was not attained before.
In this case, you enter an endless loop.

Definition. A term θ is called strongly solvable if θ ∥−⊥→⊥.
This means that, if θ? t comes in head position in a thread, and t is not proof-like,
then t comes in head position in this thread.
θ is called solvable if λx θx . . . x is strongly solvable.
If θ is a usual λ-term, this is the usual notion of solvability.

71

Theorem. If θ is a (strongly) solvable proof-like term,
then it comes in head position in the generic thread.

Let φθ :N2 → {0,1} be the recursive function such that : φθ(n, p) = 1 iff
θ comes in head position in the thread ξp ?πξp at the (n +4)-th step.
We show that ħλxλy(θ)(y)x ∥−∀p{∀n[int(n) →φθ(n, p) 6= 1] → p 6= g}
(in other words, ∃n{int(n),φθ(n,g) = 1}).
Let p ∈N, π ∈ ‖p 6= g‖ and t ∥−∀n[int(n) →φθ(n, p) 6= 1].
Suppose that ħλxλy(θ)(y)x ? t .π ∉ ⊥⊥. Therefore, this process appears in a thread,
which is ξp ?πξp because π ∈ ‖p 6= g‖. Thus, we have :
ξp ?πξp Âħλxλy(θ)(y)x? t .πÂ θ? tn.π, where n is the number of steps
in the reduction of ξp ?πξp until ħλxλy(θ)(y)x? t .π. Thus, we obtain θ? tn.π
at the (n +4)-th step of reduction. Since θ is in head position at this moment,
we have φθ(n, p) = 1. By hypothesis on t , it follows that tn ∥−⊥. Now, by hypothesis,
θ ∥−⊥→⊥ and therefore θ? tn.π ∈⊥⊥. This is a contradiction, because
θ? tn.π appears in the thread ξp ?πξp . QED

72

Theorem. If θ is a proof-like term such that θm is strongly solvable for each m ∈N,

then the following formula is realized :

“ ∀m{int(m) → θm comes in head position in the generic thread} ”.

Remark. It follows that the generic thread neither stops, nor loops (take θ = 0).

Let ψθ :N3 → {0,1} be the recursive function defined by ψθ(m,n, p) = 1 iff

θm comes in head position at the (n +4)-th step in the thread ξp ?πξp . We prove :

Tλmħλxλy(θm)(y)x ∥−∀p∀m{int(m),∀n[int(n) →ψθ(m,n, p) 6= 1] → p 6= g}

(in other words ∀m(int(m) →∃n{int(n),ψθ(m,n,g) = 1})).

It is sufficient to prove that, for all integers m, p

and all stacks ρ in ‖∀n[int(n) →ψθ(m,n, p) 6= 1] → p 6= g‖, we have :

ħλxλy(θm)(y)x?ρ ∈⊥⊥. But this results from the last theorem

and the fact that ψθ(m,n, p) =φθm(n, p). QED

73

Clock and choice

We check that, with the clock instruction ħ, the axiom of dependent choice is real-

ized.

Theorem. Let F [x, X] be a formula with parameters, X being a unary predicate

variable. There exists Φ :N4 →P (Π) such that :

ħ ∥−∀x∀p∀X {∀n(int(n),F [x,Φ(n, p, x, y)/X y] →⊥),F [x, X] → p 6= g}.

We define v :N2 →Λc by putting : v(n, p) = the λc-term u which is in second posi-

tion in the stack, at the n-th execution step in the thread ξp ?πξp . At the n-th step

of this execution, we have therefore a process of the form τ? t .u.π.

We define now Φ(n, p, x, y), (using axiom of choice), in such a way that :

If there exists X :N→P (Π) such that v(n, p) ∥−F [x, X]

then v(n, p) ∥−F [x,Φ(n, p, x, y)/X y].

Then Φ has the desired property :

74

Clock and choice (cont.)

Consider x, p ∈N, X :N→P (Π), λc-terms t ,u such that

t ∥−∀n(int(n),F [x,Φ(n, p, x, y)/X y] →⊥), u ∥−F [x, X]

and a stack π ∈ ‖p 6= g‖. We must show that ħ? t .u.π ∈⊥⊥.

If not, then ħ? t .u.π appears in a thread, at the n-th step.

By hypothesis on π, this thread is ξp ?πξp .

Thus, we have u = v(n, p), by definition of v , hence v(n, p) ∥−F [x, X].

By definition of Φ, we get u = v(n, p) ∥−F [x,Φ(n, p, x, y)/X y].

But, since n ∥− int(n), it follows that t ?n.u.π ∈⊥⊥, by hypothesis on t .

This is a contradiction, because this process appears at the (n +1)-th step

in the thread ξp ?πξp . QED

75

Clock and choice (cont.)

It follows that the standard generic model satisfies the formula :

∀x∀X (F [x, X] →∃n{int(n),F [x,Φ(n,g, x, y)/X y]}).

Thus, we can define the binary predicate Ψ(x, y) by the formula :

“ Φ(n,g, x, y) for the first integer n such that F [x,Φ(n,g, x, y)/X y],

and > if there is no such integer ”.

Then, we have, in the generic model :

∀x∀X (F [x, X] → F [x,Ψ(x, y)/X y]) which is the axiom of choice.

76

A game on first order formulas
We consider first order formulas written with :
→, ∀, >, ⊥, 6=, predicate constants, function symbols for recursive functions.
A 1st order formula has the form ∀~x[Φ1, . . . ,Φn → A] where Φ1, . . . ,Φn

are 1st order formulas and A is atomic (i.e. Rt1 . . . tk or t0 6= t1 or > or ⊥).
In the following, we only consider closed 1st order formulas.
The atomic closed formula t0 6= t1 is interpreted as > (resp. ⊥)
if it is true (resp. false) in N.
We define a game between two players : ∃ (the defender) and ∀ (the opponent).
At each step, there are two sets U ,V of closed 1st order formulas
and a set A of closed atomic formulas. U and A increase at each step.
U (resp. V) is the choice set for ∃ (resp. ∀).
At the beginning of the game
U =;, A = {⊥} and V = V0, a given (finite) set of closed formulas.

77

A move of the game is as follows : the player ∀ chooses a formula Φ ∈ V ,

Φ≡∀~x[Ψ1(~x), . . . ,Ψm(~x) → A(~x)] and~i ∈Nk .

The atomic formula A(~i) must not be > (otherwise, ∀ has lost).

Then Ψ1(~i), . . . ,Ψm(~i) are added to U and A(~i) is added to A .

The player ∃ chooses Ψ ∈U , Ψ=∀~y[Φ1(~y), . . . ,Φn(~y) → B(~y)]

and ~j ∈Nl such that B(~j) ∈A (if this is impossible, then ∃ has lost).

V is changed into {Φ1(~j), . . . ,Φn(~j)}.

∃ wins iff ∀ cannot play at some step (every formula of V ends with >,

in particular if V =;).

In fact, the player ∀ tries to build a model over N in which V0 is not satisfied

and ∃ tries to avoid this :

Theorem. i) Any model M over N s.t. M 6|= V0 gives a winning strategy for ∀.

ii) There exists a strategy for ∃ with the following property : every play

that ∃ loses following this strategy, gives a model M over N s.t. M 6|= V0.

78

i) We define a strategy for ∀ such that, at each step, we have M 6|= V , M |= U and

every formula of A is false in M . This is true at the beginning of the game.

Thus, at each step, ∀ can choose Φ ∈ V such that M |= ¬Φ.

Then Φ=∀~x[Ψ1(~x), . . . ,Ψm(~x) → A(~x)] and ∀ can choose~i ∈Nk

such that M |=Ψ1(~i), . . . ,Ψm(~i) and ¬A(~i).

Then, ∀ adds Ψ1(~i), . . . ,Ψm(~i) to U and A(~i) to A .

Thus, U and the negation of formulas of A remain true in M .

Then ∃ chooses Ψ ∈U , Ψ=∀~y[Φ1(~y), . . . ,Φn(~y) → B(~y)] and ~j ∈Nl

such that B(~j) ∈A . Therefore, B(~j) is false in M .

Since M |=Ψ, the new set V = {Φ1(~j), . . . ,Φn(~j)} is not satisfied by M .

79

ii) The strategy for ∃ is as follows : fix an enumeration of all ordered pairs (Ψ,~j)

where Ψ=∀~y[Φ1(~y), . . . ,Φn(~y) → B(~y)] is a closed formula

and ~j is a finite sequence of integers of the same length as ~y .

At each step, ∃ chooses the first allowed pair (Ψ,~j), not chosen before.

Consider a play which ∃ loses with this strategy. M is the model which satisfies

exactly the closed atomic formulas which are never put in A during the play.

A pair (Ψ,~j) is called acceptable if Ψ is put is U and B(~j) in A at some step

where B(~y) is the final atom of Ψ.

Every acceptable pair is effectively played by ∃ at some step : indeed, let (Ψ,~j) be

the first counter-example . At some step during the play, Ψ and B(~j) are respectively

in U and A and every acceptable pair before (Ψ,~j) has been chosen by ∃.

At this moment, the strategy tells ∃ to play (Ψ,~j).

We prove, by induction, that M satisfies every formula Ψ which is put in U

and the negation of every formula Φ chosen by ∀ during the play.

80

Proof for Ψ : The result is clear if Ψ is atomic because, if Ψ is both in U and A

then (Ψ,;) is acceptable and thus will be chosen by ∃ ; then ∃ wins.

Let Ψ=∀~y[Φ1(~y), . . . ,Φn(~y) → B(~y)]. We must show that

M |=Φ1(~j), . . . ,Φn(~j) → B(~j) for every ~j ∈Nk .

This is clear if B(~j) is never put in A , because M |= B(~j).

Otherwise, (Ψ,~j) is acceptable and is chosen by ∃ at some step.

Then V = {Φ1(~j), . . . ,Φn(~j)} and Φ1(~j), for instance, is chosen by ∀.

By induction hypothesis, we have M |= ¬Φ1(~j), which gives the result.

Proof for Φ : Let Φ=∀~x[Ψ1(~x), . . . ,Ψm(~x) → A(~x)] ; ∀ chooses~i

and puts A(~i) in A and Ψ1(~i), . . . ,Ψm(~i) in U . By induction hypothesis,

M |=Ψ1(~i), . . . ,Ψm(~i) ; and, by definition, M 6|= A(~i). Thus M |= ¬Φ.

It follows that M 6|= V0 since, at the beginning of the play, ∀ chooses Φ ∈ V0.

QED

81

Specification of first order formulas

For every closed first order formula Φ, we define an instruction κΦ and a set [Φ] ⊂Π.

If Φ is atomic, Φ ≡ R~i , with ~i ∈ Nk , we choose a stack constant πΦ and we set

[Φ] = {πΦ} and also ‖Φ‖ = {πΦ}.

If Φ≡⊥ (resp. >), then [Φ] =Π (resp. ;). This settles the case when Φ is t0 6= t1.

In general, Φ=∀~x[Ψ1(~x), . . . ,Ψn(~x) → A(~x)] where A(~x) is atomic.

The execution rule of κΦ is κΦ?ξ1ξn .πÂ ξ j ?ρ

where j ∈ {1, . . . ,n} and ρ ∈Π are defined in the following way :

the player ∃ first chooses~i ∈Nk (~x is of length k) such that π ∈ [A(~i)].

If this is impossible, then ∀ wins.

Then, the player ∀ chooses j ∈ {1, . . . ,n} and a stack ρ ∈ [Ψ j (~i)].

In particular, the player ∀ loses when n = 0 or Ψ j (~i) ≡>.

Finally we define [Φ] = {κ
Ψ1(~i)κ

Ψn(~i) .π;~i ∈Nk ,π ∈ [A(~i)]}.

82

A game is associated with each process p : p is performed and ∃ wins iff the execu-

tion terminates with κΦ?π where Φ is the closure of an atomic formula and π ∈ [Φ].

In other words, iff ∀ cannot play any more.

It is clear that this game is exactly the same as before, but the process plays the role

of ∃ for the choice of formulas ; ∃ still chooses the integers.

We shall see below that, by restricting formulas to the set int, the process will

completely replace the player ∃.

Lemma. Define ⊥⊥= {p; ∃ has a winning strategy for the game associated with p}.

Then, for each closed formula Φ, we have [Φ] ⊂ ‖Φ‖ and κΦ ∥−Φ.

Proof by induction on Φ. The result is trivial if Φ is atomic.

If Φ=∀~x[Ψ1(~x), . . . ,Ψn(~x) → A(~x)], by induction hypothesis, we have

κ
Ψ j (~i) ∥−Ψ j (~i) and π ∈ ‖A(~i)‖, which shows that [Φ] ⊂ ‖Φ‖.

83

Now, suppose that ξ j ∥−Ψ j (~i) for 1 ≤ j ≤ n and that π ∈ ‖A(~i)‖. We have to show

that κΦ?ξ1ξn .π ∈⊥⊥, i.e. that ∃ has a winning strategy for the game associated

with this process. The strategy is first to choose this ~i . Then, we have π ∈ [A(~i)]

because A(~i) is atomic. After that, ∀ chooses j and ρ ∈ [Ψ j (~i)]. But, by the induction

hypothesis, we have ρ ∈ ‖Ψ j (~i)‖ and therefore ξ j ?ρ ∈ ⊥⊥. Now, ∃ can follow the

strategy for the game associated with the process ξ j ?ρ. QED

Corollary. If θ ∥−Φ for every ⊥⊥ (in particular, if ` θ : Φ) and π ∈ [Φ], then ∃ has a

winning strategy for the game defined by the process θ?π.

If Φ is ∀~x[Ψ1(~x), . . . ,Ψn(~x) → A(~x)] where A(~x) is atomic, then ∀ begins the play by

choosing~i ; then, the process θ?κ
Ψ1(~i)κ

Ψn(~i) .πA(~i) is started.

84

A move of the play happens each time a constant κΦ comes in head position.

Then p = κΦ?ξ1ξn .πA and the process has already chosen, in place of ∃, the

formulas Φ and A. The player ∃ has only to choose the integers ~i . Then, ∀ chooses

j ∈ {1, . . . ,n} and a stack ρ ∈ [Ψ j (~i)] i.e. creates new constants of term and stack. The

process restarts with ξ j ?ρ.

This corollary allows to classify the proofs of Φ (and more generally the terms

which realize Φ) according to the strategies associated with them.

Examples.

i) θ =λz zλd cc z ∥−∃x∀y(Rx → R y) i.e. ∀x[∀y(Rx → R y) →⊥] →⊥.

A very simple game : ∃ chooses i ∈N or Rk in U ; ∀ chooses j and puts R j in A

and Ri in U . The strategy given by θ wins at the second move.

The proofs are characterized by a pair (m,n) ∈N2, with m ≤ n : n is the number of

moves and m is the choice of ∃ at the end of the play.

85

ii) Y ∥−∀x{∀y(R y → x 6= s y),Rx →⊥} →∀x(Rx →⊥).

First, ∀ chooses n and puts Φ,Rn in U . In the general move, ∃ chooses Rp if possible

(Rp ∈U ∩A) and wins ; or he chooses q ∈N. Then V = {∀y(R y → q 6= s y),Rq} ; thus

∀ may choose Rq and put it in A ; else, if q 6= 0, he may put R(q −1) in U .

The strategy for ∃ given by Y, is to always choose the last (and least) p such that

Rp ∈U .

Another winning strategy is to successively choose 0,1, . . . ,n. This forces ∀ to put

R0,R1, . . . ,Rn in A . Then ∃ can play Rn and win.

But this strategy does not correspond to any proof-like term. The reason is that,

during the execution of processes, the choices of ∀ appear only in index of κ-

instructions, and there is no mean to compute with them.

86

Machine replaces man
We consider now a formula Φint, where Φ is 1st order. We use the notations
int(~x) → F for int(x1), . . . ,int(xk) → F and~i .π for i1 ik .π.
We have Φint ≡∀~x[int(~x),Ψint

1 (~x), . . . ,Ψint
m (~x) → A(~x)] where A is atomic.

The game is exactly the same as for Φ.
We define, almost as before, the instructions κΦ and the set [Φ] ⊂Π :
If Φ is atomic, we choose a stack constant πΦ and we set [Φ] = {πΦ} = ‖Φ‖.
If Φ≡⊥ (resp. >), then [Φ] =Π (resp. ;). This settles the case when Φ is t0 6= t1.
In general, Φ=∀~x[Ψ1(~x), . . . ,Ψn(~x) → A(~x)] where A(~x) is atomic.
The execution rule of κΦ is : κΦ?~i .ξ1ξn .π Â ξ j ?ρ ; ~i is a sequence of
integers of the form sr 0 of the same length k as ~x , such that π ∈ [A(~i)].
If this condition is not fulfilled, the execution loops indefinitely.
j ∈ {1, . . . ,n} and ρ ∈ [Ψ j (~i)] are chosen by ∀.
Finally we define [Φ] = {~i .Tκ

Ψ1(~i)Tκ
Ψn(~i) .π;~i ∈Nk ,π ∈ [A(~i)]}.

87

Machine replaces man (cont.)

During the execution of a process, the machine plays in place of ∃.
The process implements completely a strategy for ∃.
The following theorem gives a specification for Π1

1 consequences of Analysis.
Theorem. Let Φ be a closed 1st order formula. If θ ∥−Φint for every ⊥⊥ (in particular,
if ` θ : Φint is provable in Analysis) and π ∈ [Φ], then the process θ?π plays a
winning strategy for ∃.
Examples. i) We have already given examples of the form [∃x∀y(f (x, y) 6= 0)]int.
ii) Consider Φ≡∀x[∀y(X y → X s y), X 0 → X x], which is not realized.
But Φint ≡∀x[int(x),∀y(int(y), X y → X s y), X 0 → X x] is provable.
The game : first, ∀ chooses n and puts X n in A and ∀y(X y → X s y), X 0 in U .
During the game, ∃ chooses X p if possible (i.e. X p ∈U ∩A) and wins ;
or he chooses q such that Xsq ∈A and sets V = {X q}.
Then ∀ must choose X q and put it in A .

88

Computing predecessor

At the beginning of the play, the player ∃ has no other choice

than to output n −1. Thus we have, for n > 0

θ?n .Tκ .κ0 .πÂ κ? (n −1) .ξ .η .π. We have shown :

Theorem. Any proof of ∀x[∀y(X y → X s y), X 0 → X x]int gives a λ-term

which computes the predecessor function.

The simplest strategy for ∃ is to choose successively n −1,n −2, . . . ,0.

The simplest term θ =λmλ f λa(mλgλnλy((g)(s)n)(f)ny)00a

follows this strategy. It is obtained by proving

f : ∀y(int(y), X y → X s y) `λgλnλy((g)(s)n)(f)ny : F (x) → F (sx)

with F (x) ≡∀y[int(y), X y → X (x + y)].

89

Remark. The formula Φ≡∀x[∀y(X y → X s y), X 0 → X x] cannot be realized,

although the game and the winning strategies are the same as for Φint.

The reason is that the integer n, chosen by ∀, appears in the processes

only as an index of a κ-instruction. It cannot be compared with 0.

The formula Φ′≡∀x[int(x),∀y(X y → X s y), X 0 → X x]

is (trivially) realized by I which checks if n = 0.

By proving Φint, we compute, in fact, a sequence of integers from n−1 to 0.

We can use the following simpler formula if we only want to compute

the predecessor : Φ0 ≡∀x(∀y X s y, X 0 → X x).

We note that Φint
0 is provable in Analysis.

Theorem. If θ ∥−Φint
0 , then θ?n .Tκ . a .πÂ κ? (n−1) .π for n > 0.

Same proof as before.

This can be generalized to compute other functions.

90

Computing quotient

Consider, for example the following formula Φ :

∀x[∀y X 7y,∀y X (7y+1), . . . ,∀y X (7y+6) → X x]

Φint is provable in Analysis. Exactly the same method shows :

If θ ∥−Φint, then θ computes the quotient and the remainder by 7 ;

i.e. θ?n .Tκ0Tκ6 .πÂ κr ?q .π where n = 7q + r,0 ≤ r ≤ 6.

We can generalize a bit more, with the following useful trick :

Let a,b ∈N and X be a truth value.

Define the predicate a = b 7→ X as X if a = b and > if a 6= b.

Theorem (trivial). λxλy y x ∥−∀x∀y∀X {(x=y 7→ X) → (x=y → X)}

and λx xI ∥−∀x∀y∀X {(x=y → X) → (x=y 7→ X)}.

Thus, we can use x=y 7→X instead of x=y →X

at the cost of a little more code.

91

Computing logarithm
Now consider the formula Φ :
∀x{∀y∀z∀u[2y=z+u+1 → X (2y + z)], X 0 → X x}

which can be read as ∀x{∀y∀z[z < 2y → X (2y + z)], X 0 → X x}.
Φ says that each integer has a logarithm, and Φint is provable in Analysis.
With the theorem above, any θ ∥−Φint is easily transformed into η ∥−Ψint with
Ψ≡∀x{∀y∀z∀u[2y=z+u+1 7→X (2y + z)], X 0 → X x}

Consider a play with Φ (resp. Ψ). The player ∀ chooses n and puts
X n in A , X 0 and Φ′ (resp. Ψ′) in U . ∃ cannot choose X 0.
Thus, ∃ chooses y, z,u such that n = 2y+z .
In the case of Φ, he has no other obligation. But, in the case of Ψ, he must satisfy
2y=z+u+1, otherwise he gets the formula > which is forbidden. Thus

Theorem. If η ∥−Ψint, then η computes the logarithm ;
i.e. η?n .Tκ .πÂ κ?p . q .r .π′ with n = 2p +q and 2p = q+r+1.

92

Well founded recursive relations
Let f :N2 →N be recursive. The predicate f (x, y) = 1 is well founded
iff the formula ∀X∀z{∀x[∀y(f (x, y) = 1 → X y) → X x] → X z} is true in N.
We show that, in this case, this formula is even realized.
Theorem. If the predicate f (x, y) = 1 is well founded, then
Y ∥−∀X∀z{∀x[∀y(f (x, y) = 1 7→X y) → X x] → X z}.
Let t ∥−∀x[∀y(f (x, y) = 1 7→ X y) → X x] and n ∈ N ; we show by induction on n,
following the well founded predicate “ f (x, y) = 1 ”, that Yt ∥−X n.
Since Yt ?πÂ t ?Yt .π, it suffices to show that Yt ∥−∀y(f (n, y) = 1 7→ X y)

i.e. Yt ∥− f (n, p) = 1 7→ X p . This is trivial if f (n, p) 6= 1

and this follows from the induction hypothesis if f (n, p) = 1.
Thus, if π ∈ ‖X n‖, we have t ?Yt .π ∈⊥⊥ and therefore Y? t .π ∈⊥⊥. QED

This shows that a recursive well founded predicate is also well founded
in every realisability model.

93

True Π1
1 formulas

But formulas provable in Analysis are not the only realized formulas.

Indeed, we have the remarkable property :

Theorem. If Φ is a true Π1
1 formula, then Φint is realized.

This shows, in particular, that the integers of the realizability models are elementary

equivalent to standard integers. It is not possible to show the independence of some

arithmetical (and even Π1
1) true formula by means of realizability models.

This leaves the possibility open for Σ1
1 (or more complicated) true formulas, a case

which is inaccessible to forcing methods, because of the Shoenfield theorem.

Sketch of proof.

Let Φ be a given Π1
1 formula. We have associated with Φ a game such that

Φ is true iff the “ trivial ” strategy for ∃ is winning.

The trivial strategy is to always play the first allowed move not already played.

94

True Π1
1 formulas (cont.)

Now let f (x, y) = 1 be the recursive predicate which says that

x, y are successive positions chosen by ∀ such that, between them,

∃ has applied the trivial strategy.

It is clear that this strategy is winning iff the predicate f (x, y) = 1 is well founded

(each play is finite, which means that every branch is finite).

Now, we have shown p. 92 that this predicate is well founded iff

Y ∥−∀X {∀x[∀y(f (x, y) = 1 7→ X y) → X x] →∀x X x}.

But we have just proved that : “ f (x, y) = 1 is well founded” → Φ.

Let θ be a proof-like term associated with this proof. Then θY ∥−Φ. QED

95

Zermelo-Fraenkel set theory

A first order theory. Its axioms can be classified in three groups :

1. Equality, extensionality, foundation.

2. Union, power set, substitution, infinity.

3. Choice ; possibly other axioms such as CH, GCH, large cardinals.

We can realize the first two groups by λc-terms,

i.e. no new instruction is necessary besides cc.

Curiously, equality and extensionality are the most difficult ones. For example,

the first axiom of equality ∀x(x = x) is realized by a λ-term τ

with the reduction rule : τ? t .πÂ t ?τ .τ .π (fixed point of λxλ f f xx).

Therefore, we need to consider first a theory with a strong membership relation ε,

without extensionality ; in some sense, ∈ is defined by means of ε .

96

ZFε set theory
Three binary symbols ∈,⊂ and ε (strong membership) ; x = y is x ⊂ y ∧ y ⊂ x .
• ”Definition” of ∈ and ⊂ :
∀x∀y[x ∈ y ↔ (∃z ε y) x = z] ; ∀x∀y[x ⊂ y ↔ (∀z εx) z ∈ y].
• Foundation : ∀a[(∀x εa)F (x) → F (a)] →∀a F (a) (for every formula F).
• Comprehension : ∀a∃b∀x[x εb ↔ (x εa ∧F (x))] (”)
• Pair : ∀a∀b∃x[a εx ∧b εx]

• Union : ∀a∃b(∀x εa)(∀y εx) y εb.
• Power set : ∀a∃b∀x(∃y εb)∀z(z ε y ↔ (z εa ∧F (z, x))) (”)
• Collection : ∀a∃b(∀x εa)[∃y F (x, y) → (∃y εb)F (x, y)] (”)
• Infinity : ∀a∃b{a εb ∧ (∀x εb)[∃y F (x, y) → (∃y εb)F (x, y)]} (”)

This theory is a conservative extension of ZF :
1. If Z Fε` F (formula of Z F), then Z F ` F : simply replace ε by ∈ in Z Fε.
2. We must show that each axiom of Z F is a consequence of Z Fε.

97

ZFε set theory (cont.)

Example. Z Fε ` a ⊂ a (and thus a = a).

By foundation, assume ∀x(x εa → x ⊂ x) ; this gives ∀x(x εa → x = x), thus

∀x[x εa → (∃y εa) x = y], i.e. ∀x(x εa → x ∈ a), and therefore a ⊂ a.

Now, we define realizability models for ZFε, which will therefore be also

realizability models for ZF. We only need to define ‖F‖ for atomic formulas F .

Of course, we start with a model of ZF, and we take as atomic formulas :

a 6εb, a ∉ b and a ⊂ a. Then define : ‖a 6εb‖ = {π ∈Π; (a,π) ∈ b}.

We check that all the axioms of ZFε, except the first, are realized, without knowing

the precise definition of ‖a ∉ b‖, ‖a ⊂ b‖, simply because they are defined in ZF.

Foundation. Y ∥−∀a[∀x(F (x) → x 6εa) →¬F (a)] →∀a¬F (a).

This explains why we find Yλxλ f f xx ∥−∀x(x = x).

98

ZFε set theory (cont.)

Comprehension. For every set a and every formula F (x), set :

b = {(x, t .π); (x,π) ∈ a, t ∥−F (x)}. We easily get ‖x 6εb‖ = ‖F (x) → x 6εa‖. It follows

that (I , I) ∥−∀x[x 6εb ↔ (F (x) → x 6εa)].

Other axioms of ZFε are realized in the same way. For example :

Collection. Let a be a set, C l (a) its transitive closure and F (x, y) a formula.

We set b =⋃
{Φ(x, t)×C l (a); x ∈C l (a), t ∈Λc} with

Φ(x, t) = {y of minimum rank ; t ∥−F (x, y)}, or ; if there is no such y .

We show that ‖∀y(F (x, y) → x 6εa)‖ ⊂ ‖∀y(F (x, y) → y 6εb)‖. Indeed :

suppose t ∥−F (x, y), (x,π) ∈ a. Then x,π ∈C l (a), and therefore :

(y ′,π) ∈ b for some y ′ ∈Φ(x, t) ; it follows that t ∥−F (x, y ′) and π ∈ ‖y ′ 6εb‖. Therefore

t .π ∈ ‖∀y(F (x, y) → y 6εb)‖.

We have proved that I ∥−∀y(F (x, y) → y 6εb) →∀y(F (x, y) → x 6εa).

99

ZFε set theory (cont.)

We must now realize the first axioms of ZFε and therefore define the truth values of
the atomic formulas : ‖a ∉ b‖, ‖a ⊂ b‖, where a,b vary in a given model of ZFC.
It would be nice to have :
‖a ∉ b‖ = ‖∀z(z ⊂ a, a ⊂ z → z 6εb)‖ and ‖a ⊂ b‖ = ‖∀z(z ∉ b → z 6εa)‖
because we should deduce immediately that I realizes the axioms we need.
Now ‖c 6εa‖ =; if r k(a) ≤ r k(c). Thus, the above equations may be written as :
‖a ∉ b‖ =⋃

r k(c)<r k(b)‖(c ⊂ a, a ⊂ c → c 6εb)‖
‖a ⊂ b‖ =⋃

r k(c)<r k(a)‖(c ∉ b → c 6εa)‖ i.e.
‖a ∉ b‖ =⋃

r k(c)<r k(b)Φ(a,b,c,‖c ⊂ a‖,‖a ⊂ c‖)

‖a ⊂ b‖ =⋃
r k(c)<r k(a)Ψ(a,b,c,‖c ⊂ a‖,‖a ⊂ c‖)

where Φ,Ψ are functionals defined in ZF.
We simply observe now that this is a correct inductive definition
on the ordered pair of ordinals : (r k(a)∪ r k(b),r k(a)∩ r k(b)).

100

ZFε set theory (cont.)

Remark. It is also possible to define the relations x ∉ y , x ⊂ y by formulas with the
only symbol 6ε and then to prove the first axioms of ZFε from the others axioms.
We cannot use induction to define these relations, because ordinals are not
definable in ZFε. But we can use coinduction.
Anyway, this method gives complicated λ-terms for the first axioms of ZFε
so that we prefer the above method.

Remark. The definition of t ∥−x ∉ y and t ∥−x ⊂ y is very similar to the defintion of
forcing. In fact, the generic models of set theory, which are defined in forcing, are
particular cases of realizability models.
Thus, the theory presented here gives completely new models of set theory.
The fact that forcing is a case of realizability, is used to find programs associated with
the axiom of choice and the continuum hypothesis. We build a model by combining
both methods ; we call this iterated realizability by analogy with iterated forcing.

101

The full axiom of choice

We get a program for the axiom of dependent choice in the same way as in Analysis.

The problem for the full axiom of choice is more difficult. It has been solved recently

(not yet published). As a bonus, we get also the continuum hypothesis.

The proof is too long to be given here ; the result is as follows :

we need two new instructions χ and χ′ which appear inside

two very complex λ-terms, together with cc and the clock (or the signature).

The behaviour of these programs is not yet understood.

These new instructions χ, χ′ work on the bottom of the stack.

Their reduction rules is as follows :

χ? t .τ . t1 . . . tn .π0 Â t ? t1 . . . tn .τ .π0

χ′? t . t1 . . . tn .τ .π0 Â t ?τ . t1 . . . tn .π0

where π0, as before, is a marker for the bottom of the stack.

102

The axiom of choice (cont.)

In order to understand the behaviour of these new instructions, we consider

processes of the form <t ?π, τ> where τ is a closed term.

The execution rules are as follows :

<tu?π, τ>Â<t ?u .π, α0τ> <λx t ?u .π,τ>Â<t [u/x]?π, α1τ>
<cc? t .π, τ>Â<t ?kπ .π, α2τ> <kπ? t .ρ, τ>Â<t ?π, α3τ>
<χ? t .τ . t1 . . . tn .π0, τ′>Â<t ? t1 . . . tn .τ′ .π0, τ>
<χ′? t . t1 . . . tn .τ′ .π0, τ>Â<t ?τ . t1 . . . tn .π0, τ′>
The αi are fixed closed terms, which we shall not write explicitly here.

In fact, we get a parallel execution ; χ and χ′ are communication instructions.

103

Conclusion

The conclusion is that we can translate every mathematical proof

into a program. We can execute this program in a lazy λ-calculus machine

extended with only four new instructions : cc, σ (or ħ), χ and χ′.
This machine can be implemented rather easily.

The challenge, now, is to understand all these programs,

first of all, the ones we obtained for the axioms of ZFC.

It is very plausible that we shall find, in this way, programs analogous

to the core of an operating system like Unix.

This would give a method to implement such a core on a very firm basis.

104

References

1. S. Berardi, M. Bezem, T. Coquand On the computational content of the axiom of

choice. J. Symb. Log. 63, pp. 600-622, 1998.

2. U. Berger, P. Oliva Modified bar recursion and classical dependent choice. Preprint.

3. T. Coquand. A semantics of evidence for classical arithmetic.

J. Symb. Log. 60, pp. 325-337, 1995.

4. V. Danos & L. Regnier. How abstract machines implement head linear reduction.

Higher Order and Symbolic Computation (to appear).

5. T. Griffin. A formulæ-as-type notion of control.

Conf. Record of the 17th A.C.M. Symp. on Principles of Progr. Languages, 1990.

6. G. Kreisel. On the interpretation of non-finitist proofs I-II.

J. Symb. Log. 16, p. 248-267, 1951. - J. Symb. Log. 17, p. 43-58, 1952.

105

References (cont.)

7. J.-L. Krivine Typed lambda-calculus in classical Zermelo-Fraenkel set theory.

Arch. Math. Log. 40, 3, pp. 189-205, 2001.

8. J.-L. Krivine Dependent choices, ‘quote’ and the clock.

Th. Comp. Sc. 308, pp. 259-276, 2003.

9. J.-L. Krivine Realizability in classical logic.

To appear in Panoramas et Synthèses. Société mathématique de France.

Pdf files at http://www.pps.jussieu.fr/˜krivine

106

