Combined Analysis: structure-texture-microstructure-phase-stresses-reflectivity determination by x-ray and neutron scattering
Daniel Chateigner

To cite this version:

HAL Id: cel-00109040
https://cel.archives-ouvertes.fr/cel-00109040v2
Submitted on 26 Oct 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Combined Analysis:
structure-texture-microstructure-phase-
stresses-reflectivity determination by x-ray and
neutron scattering

Daniel Chateigner
Combined Analysis: structure-texture-microstructure-phase-stresses-reflectivity determination by x-ray and neutron scattering

Daniel Chateigner
daniel.chateigner@ensicaen.fr

CRISMAT-ENSICAEN, UMR CNRS n°6508, 6 Bd. M. Juin, F-14050 Caen, France
IUT Mesures-Physiques, Université de Caen Basse-Normandie, Caen, France
http://www.ecole.ensicaen.fr/~chateign/texture/combined.pdf

0 Introduction ... 13

1 Some basic notions about powder diffraction .. 15
 1.1 Crystallite, grain, polycrystal and powder .. 15
 1.2 Bragg law and harmonic reflections ... 15
 1.2.1 Bragg law ... 15
 1.2.2 Monochromator ... 16
 1.2.3 Harmonic radiation components ... 16
 1.3 Geometrical conditions of diffraction, Ewald sphere .. 17
 1.4 Imperfect powders ... 19
 1.5 Main diffraction line profile components ... 19
 1.5.1 Origin of g(x) ... 20
 1.5.1.1 Laboratory X-rays .. 20
 1.5.1.2 Synchrotron X-rays ... 21
 1.5.1.3 Constant wavelength neutrons .. 21
 1.5.1.4 Time Of Flight neutrons ... 21
 1.5.1.5 Constant-wavelength Instrument Resolution Examples .. 21
 1.5.2 Origin of f(x) ... 22
 1.5.2.1 Bragg law ... 15
 1.5.2.2 Profile refinement with cell constraint (Whole pattern fitting) .. 25
 1.5.2.3 Peak-shape Functions for constant wavelength instruments ... 26
 1.5.2.3.1 Gaussian ... 26
 1.5.2.3.2 Lorentzian and Modified Lorentzian (Pearson VII) ... 27
 1.5.2.3.3 Voigt ... 27
 1.5.2.3.4 Pseudo-Voigt ... 27
 1.5.2.3.5 Split Pearson VII [Toraya 1986] ... 27
 1.5.2.3.6 Variable pseudo-Voigt ... 28
 1.5.2.3.7 Parameterised pseudo-Voigt [Thompson et al. 1987] ... 28
 1.5.2.3.8 Anisotropic variable Pearson VII [Le Bail et Jouanneaux 1997] .. 29
 1.5.2.3.9 Anisotropic variable Pearson VII [Le Bail et Jouanneaux 1997] 29
 1.5.2.3.10 Anisotropic parameterised pseudo-Voigt [Stephens 1999] .. 30
 1.5.2.4 Peak-shape Functions for TOF neutrons ... 30
 1.5.2.4.1 Convolution of Gaussian and rising and falling exponentials .. 30
 1.5.2.4.2 Convolution of Pseudo-Voigt and back-to-back exponentials .. 31
 1.5.2.4.3 Moderator pulse shape function ... 32
 1.5.2.4.4 Convolution of PV with the Ikeda-Carpenter pulse function 32
 1.6 Peak profile Parameters .. 23
 1.7 Modelling of the diffraction peaks ... 23
 1.7.1 Why needing modelling ? .. 23
 1.7.2 Modeling of a powder diffraction pattern ... 24
 1.7.2.1 Decomposition of the diagram (individual adjustment of the peaks) 24
 1.7.2.2 Profile refinement with cell constraint (Whole pattern fitting) .. 25
 1.7.2.3 Peak-shape Functions for constant wavelength instruments ... 26
 1.7.2.3.1 Gaussian ... 26
 1.7.2.3.2 Lorentzian and Modified Lorentzian (Pearson VII) ... 27
 1.7.2.3.3 Voigt ... 27
 1.7.2.3.4 Pseudo-Voigt ... 27
 1.7.2.3.5 Split Pearson VII [Toraya 1986] ... 27
 1.7.2.3.6 Variable pseudo-Voigt ... 28
 1.7.2.3.7 Parameterised pseudo-Voigt [Thompson et al. 1987] ... 28
 1.7.2.3.8 Anisotropic variable pseudo-Voigt [Le Bail et Jouanneaux 1997] .. 29
 1.7.2.3.9 Anisotropic variable Pearson VII [Le Bail et Jouanneaux 1997] 29
 1.7.2.3.10 Anisotropic parameterised pseudo-Voigt [Stephens 1999] .. 30
 1.7.2.4 Peak-shape Functions for TOF neutrons ... 30
 1.7.2.4.1 Convolution of Gaussian and rising and falling exponentials .. 30
 1.7.2.4.2 Convolution of Pseudo-Voigt and back-to-back exponentials .. 31
 1.7.2.4.3 Moderator pulse shape function ... 32
 1.7.2.4.4 Convolution of PV with the Ikeda-Carpenter pulse function 32
2 Structure refinement by diffraction profile adjustment (Rietveld method)............................ 49

2.1 Principle of the Rietveld method.. 49
2.2 Rietveld based codes... 50
2.3 Parameters modelling.. 51
 2.3.1 Background modelling.. 51
 2.3.1.0 Background components... 51
 2.3.1.1 Empirical approaches... 51
 2.3.1.1.1 mth order polynomial function.. 52
 2.3.1.1.2 Fourier series.. 52
 2.3.1.1.3 Interpolation... 52
 2.3.1.1.4 2D detectors.. 52
 2.3.1.2 Physical approaches.. 53
 2.3.2 Structure factor... 54
 2.3.2.1 Structure factor expression.. 54
 2.3.2.1.1 Usual 3-dimensional definition... 54
 2.3.2.1.2 Higher-space representation... 54
 2.3.2.2 Scattering factors... 55
 2.3.2.2.1 X-rays scattering factors.. 55
 2.3.2.2.2 Neutrons scattering factors.. 55
 2.3.2.2.3 Electrons scattering factors... 56
 2.3.2.3 Site occupation factors... 57
 2.3.2.4 Atomic positions.. 57
 2.3.2.5 Thermal vibrations and temperature factors.. 57
 2.3.2.5.1 Isotropic.. 57
 2.3.2.5.2 Anisotropic... 58
 2.3.2.5.3 Negative thermal displacement parameters.. 58
 2.3.2.5.4 Debye temperature to temperature factors.. 59
 2.3.3 Crystallites Preferred Orientation (texture) corrections... 59
 2.3.3.1 Original Rietveld and March approaches... 60
 2.3.3.2 March–Dollase approach .. 60
 2.3.3.3 Modified March–Dollase approach... 60
 2.3.3.4 Donnet–Jouanneaux function... 61
 2.3.3.5 Arbitrary Texture correction... 61
 2.3.3.6 Remarks... 61
 2.3.4 Peak asymmetry.. 62
 2.3.4.1 Rietveld's correction [Rietveld 1969]:.. 62
 2.3.4.2 Howard’s correction [Howard 1982]:... 62
 2.3.4.3 Finger, Cox and Jephcoat’s correction [Finger et al. 1994]:... 63
 2.3.4.4 Bérar-Baldinozzi correction [Bérar et Baldinozzi 1993]:... 63
 2.3.4.5 TOF neutrons.. 63
 2.3.5 Peak displacements.. 64
2.3.5.0 Zero-shift... 64
2.3.5.1 Debye-Scherrer geometry... 64
2.3.5.2 Flat plate, 0-20 Bragg-Brentano symmetrical geometry ... 64
2.3.5.3 Flat plate at fixed sample angle φ, asymetrical geometry ... 64
2.3.5.4 Flat plate transmission geometry... 64
2.3.5.5 Sample eccentricity (Bragg-Brentano geometry).. 64
2.3.5.6 Sample transparency ... 65
2.3.5.7 Sample planarity (Bragg-Brentano geometry).. 65
2.3.6 Lorentz-polarisation correction ... 65
2.3.6.0 Series of flat co-planar monochromators ... 65
2.3.6.1 Powder diffraction... 66
2.3.6.1.1 Bragg-Brentano geometry ... 66
2.3.6.1.2 2D detector and polarised beams.. 66
2.3.6.2 Time Of Flight neutrons ... 67
2.3.6.3 General remark.. 67
2.3.7 Volume, Absorption, thickness corrections... 67
2.3.7.1 Schulz geometry, point detector, thin layered structure .. 67
2.3.7.2 Schulz geometry, CPS detector, thin layered structure .. 68
2.3.7.3 Transmission geometry, 2D detectors, flat sample.. 69
2.3.8 Lowalisation corrections.. 70
2.3.8.1 Schulz reflection geometry, CPS detector.. 70
2.3.8.2 Debye-Scherrer transmission geometry, 2D detectors ... 70
2.3.8.3 Debye-Scherrer transmission geometry, CAPS detectors ... 71
2.3.9 Microabsorption/Roughness corrections.. 72
2.3.9.1 Sparks model, Bragg-Brentano .. 72
2.3.9.2 Suortti model, Bragg-Brentano ... 72
2.3.9.3 Pitschke model, Bragg-Brentano .. 73
2.3.9.4 Sidey model, Bragg-Brentano ... 73
2.3.10 Wavelength ... 73
2.4 Crystal Structure Databases .. 74
2.5 Reliability factors in profile refinements.. 74
2.6 Parameter exactness .. 77
2.7 The Le Bail method... 77
2.8 Refinement procedures.. 78
2.8.1 Least squares ... 78
2.8.2 Genetic or evolutionary algorithms.. 79
2.8.3 Derivative difference minimisation (DDM).. 81
2.8.4 Simulated annealing... 82
2.9 Refinement Strategy.. 82
2.10 Structural determination by diffraction .. 83
2.10.1 The phase problem in diffraction... 83
2.10.2 Patterson function.. 83
2.10.3 Direct methods... 85
2.10.4 Direct space methods.. 87
2.10.5 Fourier difference map.. 87
2.10.6 Extension to aperiodic structures .. 88
2.10.6.1 Generalities ... 88
2.10.6.2 Superspace formalism principle .. 88
3 Automatic indexing of powder diagrams.. 90
3.1 Principle .. 90
3.2 Dichotomy approach ... 90
3.3 Criterions for quality.. 91
4 Quantitative Texture Analysis (QTA)... 92
4.0 Classical Texture Analysis.. 92
4.0.1 Qualitative aspects of texture analysis .. 92
4.0.2 Effects on diffraction diagrams .. 94
4.0.2.1 0-20 diagrams.. 94
4.0.2.2 Asymmetric diagrams.. 95
4.0.2.3 φ-scans: rocking curves... 98
Combined Analysis

4.6 Resolution of the fundamental equation

4.6.1 ODF and OD

4.6.2 Generalised spherical harmonics

4.6.2.1 Principle

4.6.2.2 Normal Diffraction and Positivity of $f(g)$

4.6.2.2.1 Complete, even and odd ODFs

4.6.2.2.2 Positivity method

4.6.2.2.3 “GHOST” and quadratic methods

4.6.2.3 Least-squares refinement

4.6.4.1 Regular WIMV

4.6.4.2 Extended WIMV (E-WIMV)

4.6.5 Arbitrarily Defined Cells (ADC) method [Pawlik 1993]

4.6.7 Component method [Helming 1998]

4.6.7.1 Description

4.6.7.2 Gaussian components

4.6.7.3 Elliptical components [Matthies et al. 1987]

4.6.8 Exponential Harmonics [Van Houtte 1991]

4.6.9 Radon transform and Fourier analysis

4.6.10 Orientation space coverage

4.7 OD Refinement reliability estimators

4.7.1 RP factors

4.7.2 RPw Surface weighted factors

4.7.3 RB Bragg-like factors

4.7.4 RBw Bragg-like weighted factors

4.7.5 Rw weighted factors

4.7.6 Visual inspection

4.8 Inverse pole figures

4.8.1 Definition

4.8.2 Inverse pole figure sectors

4.9 Texture strength factors

4.9.1 Texture Index

4.9.1.1 ODF Texture Index

4.9.1.2 Pole Figure Texture Index

4.9.2 Texture Entropy

4.9.3 Pole Figure and ODF strengths

4.9.4 Correlation between F^2 and S

4.10 Texture programs

4.10.1 Berkeley Texture Package (BEARTEX)

4.10.2 Material Analysis Using Diffraction (MAUD)

4.10.3 General Structure Analysis System (GSAS)

4.10.4 preferred orientation package, Los Alamos (popLA)

4.10.5 The Texture Analysis software (LaboTex)

4.10.6 Pole Figure Interpretation (POFIN)

4.10.7 Strong Textures (STROTEX and Phiscans)

4.10.8 STEREOPOLE

4.10.9 MTEX

4.11 Limits of the classical texture analysis

4.12 Magnetic Quantitative Texture Analysis (MQTA)

4.12.1 Magnetisation curves and magnetic moment distributions

4.12.2 A simple sample holder for MQTA

4.12.3 Methodology

4.12.3.1 Measured pole figures

4.12.3.2 Normalisation conditions

4.12.3.3 Nuclear part determination

4.12.3.4 Normalisation conditions of the ODFs

4.12.3.5 Absence of external magnetic field
5 Quantitative Microstructure Analysis (QMA) ... 180
 5.1 Problematic .. 180
 5.2 Microstructure modelling (classical) .. 181
 5.2.1 Integral Breadth, FWHM, volume- and area-weighted sizes 181
 5.2.1.1 Integral breadth and apparent linear size ... 181
 5.2.1.2 Area- and volume-weighted sizes .. 182
 5.2.1.3 Relationship between FWHM and Gaussian and Lorentzian components of the integral breadth ... 183
 5.2.1.4 An expression between Gaussian and Lorentzian integral breadth components 183
 5.2.2 Scherrer approach ... 183
 5.2.3 Stokes and Wilson microstrains ... 184
 5.2.4 Williamson-Hall approach .. 184
 5.3 Bertaut-Warren-Averbach approach (Fourier analysis) .. 185
 5.3.1 Instrumental contribution removal .. 185
 5.3.2 Broadening due to crystallite size ... 186
 5.3.3 Crystallite size and microdistortion broadening ... 187
 5.3.4 Fourier analysis to integral breadths ... 189
 5.3.5 Integral breadths to distributions, sizes and microstrains 190
 5.3.6 Relationships between \(<R_A>\) and \(<R_V>\) ... 191
 5.4 Anisotropic broadening, Popa approach [Popa 1998] ... 191
 5.4.1 Anisotropic broadening ... 191
 5.4.2 Anisotropic Crystallite sizes ... 192
 5.4.3 Anisotropic Microstrains .. 197
 5.5 Stacking and Twin faults .. 198
 5.5.1 From Line shifts and Fourier analysis ... 198
 5.5.1.1 Face-centered cubic materials ... 198
 5.5.1.2 Hexagonal compact materials .. 199
 5.5.2 Popa approach ... 199
 5.6 Dislocations .. 199
 5.6.1 Dislocation density .. 200
 5.6.1 Wilkins' model and Fourier analysis .. 200
 5.7 Crystallite Size distributions .. 201
 5.7.0 Normal size distribution function ... 201
 5.7.1 Lognormal distribution function ... 202
 5.7.2 Gamma distribution function .. 202
 5.7.3 Anisotropic distribution functions ... 203
 5.8 Rietveld approach ... 203
 5.8.1 Constant wavelength data .. 203
 5.8.2 Time of Flight neutrons .. 204

6 Quantitative Phase Analysis (QPA) ... 205
 6.0 Standardised experiments .. 205
 6.1 Polycrystalline samples .. 205
 6.2 Amorphous-crystalline aggregates .. 206
 6.2.1 Crystallinity fraction [Ruland 1961] .. 206
 6.2.2 Amorphous modeling [Le Bail 1995] .. 207
 6.3 Detection limit ... 208

7 Residual Strain-stress Analysis (RSA) ... 209
 7.1 Strain definitions .. 209
Combined Structure-Texture-Microstructure-Stress-Phase-Reflectivity Analysis

8 X-ray Reflectivity (XRR)

8.1 Introduction ... 215
 8.1.1 Definition of the reflectivity ... 215
 8.1.2 Specular and off-specular reflectivity 215
 8.1.3 Combined Specular - off-specular scans 216
8.2 X-rays and neutrons refractive index 217
 8.2.1 X-rays ... 217
 8.2.1 Neutrons .. 218
8.3 The critical angle of reflection ... 219
 8.3.1 X-rays ... 219
 8.3.2 Neutrons .. 220
8.4 Fresnel formalism (Specular reflectivity) 220
 8.4.1 Reflection coefficient and reflectivity 220
 8.4.1.1 Reflection coefficient .. 220
 8.4.1.2 Flat sample reflectivity 221
 8.4.1.3 Single layer on substrate 222
 8.4.1.4 More complex structures 222
 8.4.2 Transmission coefficient ... 223
 8.4.3 Yoneda wings ... 224
8.5 Surface roughness .. 225
 8.5.1 Roughness representation .. 225
 8.5.2 Bulk sample ... 227
 8.5.2 Single layer on substrate ... 227
8.6 Matrix formalism (specular reflectivity) 228
8.7 Born approximation ... 229
8.8 Electron density profile .. 230
8.9 Multilayers reflectivity curves 230
8.10 Instrumental Corrections ... 231
 8.10.1 Correction for irradiated area 231
 8.10.2 Imperfectly parallel beam 232
9 Combined Structure-Texture-Microstructure-Stress-Phase-Reflectivity Analysis 234
 9.1 Problematic ... 234
 9.2 Implementation .. 237
 9.3 Experimental set-up ... 239
 9.4 Instrument calibration .. 239
 9.4.1 Peaks broadening ... 240
 9.4.1.1 ω broadening ... 241
 9.4.1.2 20 broadening ... 242
 9.4.1.3 ω broadening ... 242
 9.4.1.4 General broadening ... 243
 9.4.2 Peak shifts .. 243
 9.4.3 Background variations ... 244
 9.5 Refinement Strategy .. 244
 9.5.1 Global scheme .. 244
10 Macroscopic anisotropic properties

10.1 Aniso- and Iso-tropic samples and properties

10.2 Macroscopic/Microscopic properties

10.2.1 γ and γ tensors

10.2.2 Microscopic properties

10.2.2.0 Classifications of properties

10.2.2.1 Extensive and Intensive variables

10.2.2.2 Work element of conjugated variables

10.2.2.3 Generalised Thermodynamics

10.2.2.3.1 Generalised energy and Free Enthalpy

10.2.2.3.2 Linear Generalised total derivatives

10.2.2.3.2.1 Constitutive thermodynamic equations

10.2.2.3.2.2 Material properties

10.2.2.3.3 Property tensor reduction by symmetry operators

10.2.2.3.3.1 Curie and Neumann principles

10.2.2.3.3.2 Crystallographic groups

10.2.2.3.3.2 Polar and axial vectors

10.2.2.3.3.3 Time reversal symmetry

10.2.2.3.3.3 Space and Time reversal, magnetic groups

10.2.2.4 Thermal properties

10.2.2.4.1 Heat capacity

10.2.2.4.2 Thermal conductivity

10.2.2.4.3 Thermal diffusivity

10.2.2.5 Electric and Optical properties

10.2.2.5.1 Dielectric properties
10.2.2.5.2 Optical linear properties ... 333
10.2.2.5.2.1 Refractive index ... 333
10.2.2.5.2.2 Linear Birefringence ... 334
10.2.2.5.3 Optical rotation properties .. 335
10.2.2.5.3.1 Circular Birefringence ... 335
10.2.2.5.3.2 Optical Rotation (Gyration) .. 335
10.2.2.5.3.3 Optical Rotatory Power ... 336
10.2.2.5.4 Electrical Conductivity-Resistivity ... 336
10.2.2.5.5 ElectroOptic effects ... 337
10.2.2.5.5.1 Generalised ElectroOptic polarisation formulation 337
10.2.2.5.5.2 Quadratic non-linear electrical effect 337
10.2.2.5.5.3 Linear ElectroOptic (Pockels) effect .. 338
10.2.2.5.5.4 Second Harmonic Generation (SGH) .. 339
10.2.2.5.5.5 Kerr effect .. 339
10.2.2.5.5.6 Electric-field induced SGH ... 341
10.2.2.5.6 Four-wave mixing .. 341
10.2.2.6 Magnetic properties ... 341
10.2.2.6.1 Magnetic Induction, Field and Magnetisation 341
10.2.2.6.2 Diamagnetics ... 342
10.2.2.6.3 Paramagnetics .. 342
10.2.2.6.4 Ferro- and ferrimagnetics ... 343
10.2.2.7 Mechanical properties ... 344
10.2.2.7.1 Static mechanical properties ... 344
10.2.2.7.2 Bulk Acoustic Waves (BAW) ... 349
10.2.2.8 ThermoElectric (TE) properties .. 352
10.2.2.8.1 Pyroelectricity ... 352
10.2.2.8.2 Seebeck and Peltier effects .. 352
10.2.2.8.2.1 Non-magnetic Crystal, H = 0 .. 352
10.2.2.8.2.2 Crystal under H ... 354
10.2.2.8.3 Power Factor ... 354
10.2.2.8.4 Figure of Merit .. 354
10.2.2.9 ThermoMechanic (TMe) properties .. 355
10.2.2.10 ElectroMechanic (EMe) properties .. 356
10.2.2.10.1 Piezoelectric effect ... 356
10.2.2.10.2 Acoustic waves propagation in piezoelectrics 362
10.2.2.10.3 2nd order Piezoelectric effect .. 363
10.2.2.10.4 Electrostriction .. 364
10.2.2.11 MagnetoMechanic (MMe) properties ... 365
10.2.2.11.1 PiezoMagnetic effect ... 365
10.2.2.11.2 Acoustic waves propagation in piezomagnetics 366
10.2.2.11.3 2nd order Piezomagnetic effect .. 367
10.2.2.11.4 Magnetostriiction ... 367
10.2.2.12 MagnetoElectric (ME) properties ... 368
10.2.2.12.1 Linear magnetolectric effect ... 368
10.2.2.12.2 Non-Linear magnetolectric effect ... 369
10.2.2.12.3 Hall effect and magnetoresistance .. 370
10.2.2.13 MagnetoOptic (MO) effects and magnetic birefringence 370
10.2.2.13.1 Generalised MagnetoOptic formulation 370
10.2.2.13.2 Faraday rotation ... 370
10.2.2.13.3 Cotton-Mouton effect .. 371
10.2.2.13.4 Magnetic birefringence ... 371
10.2.2.13.5 Induced Gyrotropic Birefringence (IGB) 371
10.2.2.14 Mechano-Optic (MeO) properties .. 371
10.2.2.14.1 Linear Photoelastic effect ... 371
10.2.2.14.2 AcousticOptic effect ... 373
10.2.2.15 Atomic diffusion ... 373
10.2.2.16 PiezoMagnetoElectric (PME) properties 373
10.2.2.17 Multiferroics .. 374
10.2.3 Macroscopic properties anisotropy and modelling 374
10.2.3.1 Averaging of tensors .. 374
10.2.3.1 Volume average ... 374
10.2.3.1.2 Arithmetic average over orientations 375
10.2.3.1.3 Geometric average over orientations 375
10.2.3.1.3.1 Scalar case ... 375
10.2.3.1.3.2 2nd order tensors case ... 376
10.2.3.2 Heat capacity ... 376
10.2.3.3 Thermal expansion ... 376
10.2.3.4 Electric polarisation ... 376
10.2.3.5 Mechanical properties .. 377
10.2.3.5.1 The Voigt model .. 377
10.2.3.5.2 The Reuss model .. 378
10.2.3.5.3 The Hill model .. 378
10.2.3.5.4 The geometric mean model 379
10.2.3.5.5 Some examples ... 380
10.2.3.5.5.1 Constant elastic stiffness tensor in Ni thin rolled sheets with different grain sizes 380
10.2.3.5.5.2 Geometric mean applied to molluc shell’s mineral 380
10.2.3.6 Bulk Acoustic Waves from OD and Cl intr ... 382
10.2.3.6.1 Photoexcited acoustic waves in fibre textured Au films 383
10.2.3.6.2 Hetero-epitaxial and fibre textured LiNbO3 films 386
10.2.3.7 Thermoelectric properties ... 388
10.2.3.7.1 RTGG Co349 ceramics ... 388
10.2.3.7.2 Hot-Forged [Bi0.81CaO2][CoO2]1.69 misfit ceramics 389
10.2.3.8 Magnetisation in oriented easy-plane ErMn4Fe8C 390
10.2.3.8 Dielectric constant ... 395

References .. 396
General Bibliography ... 415
Glossary ... 418
Abbreviations .. 420
Mathematical operators .. 421
Acknowledgements .. 423
Warnings and comments ... 424
Figures caption .. 425
Tables caption .. 433

Some typographical mistakes may have been introduced throughout this document. Suggestions and corrections are very welcome.
0 Introduction

Solid state chemistry and technology recent developments gave rise to the necessity of intensive structural analysis from single crystal diffraction. However for many solids, single crystal growth is not easy to manage and sometimes impossible. When this is the case, or when structural defects cannot be overcome, the corresponding phases have often been forsaken, due to the inherent difficulties to carry out crystallographic characterisations on polycrystals. But in the last decades powder diffraction techniques progressed significantly, notably due to the Rietveld approach (Rietveld, 1969) and computer science developments. Undoubtedly these developments are of prior importance in the study of solids that do not form large crystals, but also of all materials elaborated by classical solid state reactions, thin deposited structures, natural materials like clays and more recently nanomaterials in which the required properties are intimately linked to the stabilisation of small crystals.

Since the Rietveld method's birth, several ten thousands of structures have been refined and some thousands have been resolved ab-initio from the only diffraction data of powder samples. The number of laboratories and industries using this technique, still fairly new when dealing with the incorporation of various formalisms like in the combined approach, does not stop increasing. However, materials having specific properties are often elaborated from low symmetry phases, which are consequently anisotropic. Property's optimisation is then conditioned by the elaboration processes which have to keep the intrinsic microscopic anisotropy of the constituting crystals at the macroscopic level. These elaboration techniques are complex (alignment under uniaxial pressure, magnetic or electric fields, thermal gradients, flux or substrate growing ... and combinations) and often sample preparation is a hard, time consuming, matter. Naturally, non-destructive characterisations are then required. Unfortunately, when samples are oriented, which was not often the case until recently, most of the characterisation techniques (as the Rietveld analysis of concerns here) require samples grinding. Very often this grinding is not acceptable, for the previously described reasons, but also in the case of rare samples (fossils, comets ...) or simply when grinding modifies the physical behaviour of the samples themselves (thin films, residual stress materials ...). Sometimes grinding is simply not possible, imagine peeling off a 10 nm thick film on a substrate!

In all these cases, the combined analysis becomes essential.

The first part of this document is dedicated to some basic notions concerning diffraction by polycrystals. The various peak profiles used are described and some, most common combined analysis instrumental set-up detailed.

In the second part, powder diffraction data treatment is introduced. In particular, the Rietveld analysis is detailed, including treatment of all the information provided by diffraction diagrams, when texture is not present in the sample or simple to treat.

The third part deals with the automatic phase indexing, necessary step to solve a structure ab-initio. Since its effect prevails on real samples where textures are often stabilised, quantitative texture analysis is detailed in the fourth part.

The fifth part is dedicated to microstructural aspects (isotropic and anisotropic crystal sizes and microdistortions) of the powder diffraction profiles.

In part six, quantitative phase analysis from Rietveld analysis is introduced.
Part seven describes residual stress analysis for isotropic and anisotropic materials. The eighth part focuses on specular x-ray reflectivity and the various models associated. Part nine introduces the combined analysis concept, showing all the dilemma that show up when one looks at only one part of the analyses, and case examples are shown as illustration of the methodology. The 10th part is dedicated to the anisotropic and tensorial macroscopic properties and their simulations to account for the distribution of crystallite orientations in samples.

This book is not intended to provide the reader a complete description of all the approaches dealt within it, though quantitative texture analysis is more deeply detailed than others since texture appears to be the largest signal biaser, but a red wire to follow the many concepts introduced through so many years and necessary to understand scattering patterns.
References

Bernoulli D., Allen C.G. (1961). The most probable choice between several discrepant observations and the formation therefrom of the most likely induction. *Biometrika* 48(1-2) 3-18

Cardwell D.A. (1998). Processing and properties of large grain (RE)BCO. *Textures and Microstructures* 51(1-2) 1-10

Chateigner D. (2002), POFINT: a MS-DOS program for Pole Figure Interpretation. http://www.ecole.ensicaen.fr/~chateign/qta/POFINT/

Daniel Chateigner 26/10/2010 399

Dehne L., Imbs F., Lebeau C., Rios J.L., Chateigner D. (2010). Effect of RF bias sputtering on texture and residual stress of AlN films deposited on Pt/TiO x/Al2O3 multilayer structures using the X-ray combined analysis. To be published

Dehne L., Imbs F., Lebeau C., Rios J.L., Chateigner D. (2010). Effect of RF bias sputtering on texture and residual stress of AlN films deposited on Pt/TiO x/Al2O3 multilayer structures using the X-ray combined analysis. To be published

Esling C., Muller J., Bunge H.-J. (1982). An integral formula for the even part of the texture function or “the apparition of the fπ and fϕ ghost distributions”. Journal of Physique 43(2) 189-196

Guilmeau E., Chateignier D., Noudem J. (2002). Sinter-forging of strongly textured Bi2223 discs with large Js: nucleation and growth of Bi2223 from Bi2212 crystallites. *Superconductor Science and Technology* 15 1436-1444

Guilmeau E., Chateignier D., Noudem J.G. (2003). Effect of the precursor powders on the final properties of hot-forged Bi2223 textured discs. *Superconductor Science and Technology* 16 484-491

Hauptman H., Karle J. (1953a). The probability distribution of the magnitude of a structure factor. II. The non-centrosymmetric crystal. *Acta Crystallographica* 6 136-141

Imhof J. (1982). The resolution of orientation space with reference to pole figure resolution. *Textures & Microstructures* **4** 189-200

Daniel Chateigner 26/10/2010 403

Lambert S., Leligny H., Grebille D. (2001). Three Forms of the Misfit Layered Cobaltite \([\text{Ca}_2\text{CoO}_3][\text{CoO}_2]_{1.62}\cdot\text{A}\)

Combined Analysis

Ruer D. (1976). "Méthode vectorielle d'analyse de la texture", Thesis Université de Metz, France

daniel chatteigner 26/10/2010 410

Shannon C.E., Weaver W. (1963), *The mathematical theory of communication*, Univ. of Illinois Press, Urbana, 125 pages

Shikano M., Funahashi R. (2003). Electrical and thermal properties of single-crystalline (Ca$_2$CoO$_3$)$_{0.7}$CoO$_2$ with a Ca$_3$Co$_4$O$_9$ structure. *Applied Physics Letters* 82(12) 1851-1853

Vadon A. (1981), "Généralisation et optimisation de la méthode vectorielle d’analyse de la texture". Thesis, Université de Metz, France

Van Houte P. (1983). The Use of a Quadratic Form for the Determination of Non-negative Texture Functions. Textures and Microstructures 6(1) 1-19

Von Laue M. (1926). The Lorentz factor and distribution of intensity in Debye-Scherrer fringes. Zeitschrift für Kristallographie 64(1) 115-142

Combined Analysis

Young R.A., Larson A.C., Paiva-Santos C.O. (1999). DBWS-9807a, Program for Rietveld analysis of x-ray and neutron powder diffraction patterns. School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA

General Bibliography

Bunge H.-J. (1986). "Experimental techniques of Texture Analysis", DGM, Oberursel, Germany

Legrand C. (1967). "La radiocristallographic", Presses universitaires de France
Lipson H., Cochran W. (1953). "The determination of crystal structures", G. Bell and Sons
Glossary

- \(\rho \) Material density
- \(\rho_e \) Material electron density
- \(dS \) Surface element of the Pole Sphere
- \(a, b, c, \alpha_c, \beta_c, \gamma_c \) Unit-cell parameters
- \(a, b, c \) Unit vectors of the unit-cell
- \(\Delta k \) Scattering vector
- \(n \) Normal to the sample surface
- \(S \) Spectrometer (Diffractometer) space
- \(\delta_p \) Physical 3D space
- \(\delta_e \) External (reciprocal) 3D space
- \(\delta_i \) Internal (reciprocal) superspace orthogonal to \(\delta_e \)
- \(\chi \) Polar angle in the diffractometer space
- \(\phi \) Azimuthal angle in the diffractometer space
- \(\gamma \) Pole figure space
- \(\theta_y \) Polar angle in the pole figure space
- \(\phi_y \) Azimuth of pole figures
- \(h\ell \) Miller indices
- \((h\ell) \) Crystallographic plane \(h\ell \)
- \(\{h\ell\} \) Crystallographic planes \(h\ell \) and diffracting equivalents
- \([h\ell] \) Crystallographic direction \(h\ell \)
- \([h\ell]^* \) Crystallographic direction \(h\ell \) of the reciprocal space
- \(<h\ell> \) Crystallographic direction \(h\ell \) and diffracting equivalents
- \(<h\ell>^* \) Crystallographic direction \(h\ell \) and diffracting equivalents of the reciprocal space
- \(\text{L}_{h\ell} \) Lotgering factor
- \(p, p_0 \) ratio entering the Lotgering factor for a textured and a random sample respectively
- \(h \) \(<h\ell>^* \) directions
- \(y \) \(\theta_y, \phi_y \) direction in \(\gamma \)
- \(I_m(y) \) Direct pole figure
- \(P_n(y) \) Normalised pole figure
- \(K_A \) Sample reference frame
- \((x_A, y_A, z_A) \) Unit-vectors of the sample reference frame
- \(X_A, Y_A, Z_A \) Sample axes aligned with \(x_A, y_A, z_A \) respectively
- \([XYZ] \) Vector of the sample reference frame
- \(K_B \) Crystal reference frame
- \((x_B, y_B, z_B) \) Unit-vectors of the crystal reference frame
- \(X_B, Y_B, Z_B \) Crystal axes aligned with \(x_B, y_B, z_B \) respectively
- \(\mathcal{H} \) Orientation space
- \(g \) Set of three Euler angles defining one orientation
- \(g \) Orientation distance
- \(dg \) Orientation element in the \(\mathcal{H} \)-space
- \(\alpha, \beta, \gamma \) Euler angles in the \(\mathcal{H} \)-space in the Roe-Matthies convention
- \(\phi_1, \Phi, \phi_2 \) Euler angles in the \(\mathcal{H} \)-space in the Bunge convention
\(f(g) \)
Orientation Distribution of crystallites

\(f_0(g) \)
OD of ferroelectric domains

\(d_{hk\ell} \)
Inter-reticular distance between \((hk\ell)\) planes

\(\omega \)
Angle between the incident beam and the sample surface: incidence angle

\(\theta \)
Angle between the incident beam and the scattering planes \(\{hk\ell\}\): Bragg angle

\(\delta \)
Angle running along the Debye ring on a 2D detector

\(V \)
Irradiated volume of the sample

\(dV(y) \)
Volume of crystallites having \(h \) between \(y \) and \(y + dy \)

\(dV(g) \)
Volume of crystallites which orientation is between \(g \) and \(g + dg \)

\(J_c \)
Superconducting transport critical current density

\(F_d \)
Damaged (amorphous) fraction of an irradiated sample

\(F_c \)
Crystalline fraction of a sample

\(\gamma \)
Microscopic tensor for a property

\(\gamma^M \)
Macroscopic tensor

\(<\gamma> \)
Arithmetic average of the tensor \(\gamma \)

\(\mathbf{p}_{h} \)
electric polarisation vector of a ferroelectric domain

\(\varepsilon_{ij} \)
strain tensor

\(\varepsilon_{ij}^M \)
macroscopic strain tensor

\(\sigma_{ij} \)
stress tensor

\(\sigma_{ij}^M \)
macroscopic stress tensor

\(S_{ijkl} \)
elastic compliance tensor

\(S_{ijkl}^M \)
macroscopic elastic compliance tensor

\(S_{ijkl}^{V,R,H} \)
macroscopic elastic compliance tensor calculated using the Voigt, Reuss, Hill models

\(C_{ijkl} \)
elastic stiffness tensor

\(C_{ijkl}^M \)
macroscopic elastic stiffness tensor

\(C_{ijkl}^{V,R,H} \)
macroscopic elastic stiffness tensor calculated using the Voigt, Reuss, Hill models

\(\xi \)
mixing parameter of the Hill model

\(\chi_{m,ij} \)
Magnetic susceptibility tensor

\(\mu_{r,ij} \)
Magnetic relative permeability tensor

\(\varepsilon_{r,ij} \)
Dielectric relative permittivity tensor

\(\varepsilon_0 \)
Dielectric permittivity of vacuum

\(L \)
Atomic orbital angular momentum

\(S \)
Atomic spin angular momentum

\(J \)
Atomic total magnetic momentum

\(g_{ij} \)
Anisotropic Landé factor

\(\mu_B \)
Bohr magneton

\(k_B \)
Boltzmann constant

\(c \)
light speed

\(N \)
Avogadro number
Abbreviations

14:24 (Sr,Ca)$_{14}$Cu$_{24}$O$_{41}$
BAW Bulk Acoustic Waves
Bi2223 (Bi,Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+x}$
Bi2212 (Bi,Pb)$_2$Sr$_2$Ca$_1$Cu$_2$O$_{8+x}$
CAPS Curved-Area Position Sensitive detector
CCL Comarginal Crossed Lamellar layer
CPS Curved Position Sensitive detector
CSL Coincidence Site Lattices
EBSD Electron Back-Scattering Diffraction
EDX Energy Dispersive X-ray
ESR Electron Spin Resonance
FAp Ca$_{10}$(PO$_4$)$_6$F$_2$
FWHM Full Width at Half Maximum
HAp Ca$_{10}$(PO$_4$)$_6$(OH)$_2$
HRTEM High-Resolution TEM
HWHM Half Width at Half Maximum
HWHD Half Width at Half maximum of the distribution Density
ILL Institut Laue-Langevin
LN LiNbO$_3$
MPB Morphotropic Phase Boundary
MQTA Magnetic Quantitative Texture Analysis
m.r.d. multiple of a random distribution
MTG Melt Texture Growth
NMR Nuclear Magnetic Resonance
ODF Orientation Distribution Function
PSD Position Sensitive Detector
PZT Pb(Zr,Ti)O$_3$
PL PhotoLuminescence
PLE PhotoLuminescence Excitation
QMA Quantitative Microstructure Analysis
QPA Quantitative Phase Analysis
QTA Quantitative Texture Analysis
RCL Radial Crossed Lamellar layer
RSA Residual Strain-stress Analysis
RTGG Reactive Templated Grain-Growth
SBN SrBi$_2$Nb$_2$O$_9$
SEM Scanning Electron Microscope
TEM Transmission Electron Microscope
TGG Templating Grain Growth
TSMTG Top-Seeded Melt Texture Growth
XRR X-Ray specular Reflectivity
Y123 YBa$_2$Cu$_3$O$_{7.5}$
Y211 Y$_2$BaCuO$_5$
Constants

We used in this book the following values of the constants of physics:

- **Avogadro number** \(N = 6.022 \times 10^{23} \)
- **Electron charge** \(e = -1.6021892.10^{-19} \text{C} \)
- **Boltzmann constant** \(k_B = 1.380662.10^{-23} \text{J.K}^{-1} \)
- **Planck constant** \(h = 6.626176.10^{-34} \text{J.s} \)
- **Rydberg constant** \(R_H = 1.1 \times 10^7 \text{m}^{-1} \)
- **Electron mass** \(m_e = 9.109534.10^{-31} \text{kg} \)
- **Free-space permittivity** \(\varepsilon_0 = 8.8541878.10^{-12} \text{A.s.A}^{-1} \text{m}^{-1} \)
- **Free-space permeability** \(\mu_0 = 4\pi \times 10^{-7} \text{V.s.A}^{-1} \text{m}^{-1} \)
- **Free-space light speed** \(c = 299792458 \text{m.s}^{-1} \)

Acknowledgements

I am indebted to Magali Morales (CIM AP-Caen) whom constantly comes with new issues, criticisms, advices and proposals. She suffered the first times of building the Combined Analysis when taking part into the ESQUI European project. This work should be understood within hers.

Luca Lutterotti (DIM-Trento) is entirely devoted to this thematic and programming, without him nothing could have been carried out.

Jesus Ricote (DMF-Madrid), Michele Zucali and Emmanuel Guilmeau (CRISMAT-Caen), provided some of the worst samples to test, Salim Ouhenia (Physics Dept. Bejaia) for his work on CaCO3-PAA films and Charonia shell, Hans-Rudolf Wenk (DEPS-Berkeley) and Siegfried Matthies, are pioneers in the field with the so-called "Rietveld-Texture Analysis", Bachir Ouladdiaf was of so much constant help during the multiple stays at ILL needed to achieve these works. Please receive my warmest sympathy and friendship.

I wish to thank in particular M.L. Calzada (DMF-Madrid) for the preparation of PCT ferroelectric films, E. Dermaux and P. Kayser (ONERA-Paris) for the elaboration of AlN films, G. Leclerc, R. Bouregba and G. Poullain (CRISMAT-Caen) for the PZT film elaboration and hysteresis characterisation, R. Whatmore (Cranfield University) for the elaboration of the spin coated PZT films, V. Bornand (Univ. Montpellier) for the elaboration of the LiNbO3 films, M. Bouguerra for the GaN-SiO2 composite elaboration and PL and PLE characterisation, R. Kaptein and C. Krauss for the CaCO3 thin layer electrodeposition, C. Keller and E. Hug (CRISMAT-Caen) for the mechanical characterisation of the polycrystalline Ni samples, S. Deniel and P. Blanchart (ENSCI-Limoges) for the elaboration of mullite composites and their mechanical characterisation, F. Léon for his experimental help in MQTA, O. Pérez (CRISMAT-Caen) for the fruitful discussions around superspaces.

The work has been periodically ameliorated through remarks and notifications of mistakes. I would like to thank Piotr Ozga for this.

This work could not have been carried out without supports from the following institutions and organisms, through constant financial or contracts:
- Ministère de l'Enseignement Supérieur et de la Recherche
- Délégation Régionale à la Recherche et à la Technologie, Conseil Régional de Basse-Normandie
- GdR Nomade: Groupement de Recherche "NOuveaux MAtériaux pour les DEchets radioactifs"
- The European Union project ESQUI "X-ray Expert System for microelectronic films Quality Improvements" within the GROWTH program (G6RD-CT99-00169)
- European Concerted Action "ELENA: ELEctroceramics from NAnopowders produced by innovative methods" (COST n° 539, 2005-2009)
- European Concerted Action "Application of ferroelectric thin-films for SAW devices" (COST n° 514, 1998)
- The Spanish advanced fellowship program “Ramón y Cajal” of the Spanish MCyT
- The Spanish MCyT projects MAT2000-1925-CE and MAT2002-00463
- The Spanish FINNOVA program (CAM)
- The Mat 2005-01304 FEDER-MEC-Spain: "Materiales ceramicos ferroelectricos con alta deformacion bajo el campo electrico nuevas soluciones solidas con frontera de fases morfotropica y texturacion"

Warnings and comments

This text is appended regularly. If you detect any incoherence, mistake, typos, lost or missing reference or whatsoever, or if you miss some explanation or development, please warn the author directly by email at daniel.chateigner@ensicaen.fr
Figures caption

Figure 1: Definitions of grains (green), crystallites (black and red) and crystallographic planes (dashes) in a polycrystalline sample.

Figure 2: Schematic illustration of Bragg's law.

Figure 3: Simulated x-ray diffraction diagrams for a Si powder, for $\lambda = 1.5406$ Å (a) and for $\lambda/2 = 0.7703$ Å (b). Intensities for the $\lambda/2$ contributions have been enhanced for visibility.

Figure 4: Ewald and pole sphere, Debye-Scherrer rings, geometrical interpretation of diffraction.

Figure 5: Instrument resolution curves for a neutron (D1B-ILL, calcite rostrum sample) and an x-ray (CRISMAT, LaB$_6$ standard powder) constant wavelength diffractometer set-up.

Figure 6: Least-squares result on a polypropylene sample.

Figure 7: Refinement of an anatase/rutile powder operated by Whole Pattern Fitting using Fullprof.

Figure 8: 4-circles reflection Geometry using a CPS detector.

Figure 9: 4-circles transmission Geometry using a 2D detector.

Figure 10: a) View of the D19-ILL CAPS detector (Sax Mason, ILL courtesy), and b) Schematic of the CAPS detector geometry. The Ewald (largest) and Pole (smallest) spheres are drawn, together with detector and angle coordinates.

Figure 11: Intensity calibration using a CPS 120 detector, by moving the detector in front of the direct x-ray beam.

Figure 12: a) Intensity response of the D19-ILL CAPS detector under vanadium flat-field scatterer exposure, b) Raw and c) intensity-corrected Debye-Scherrer diagram obtained on a calcite standard.

Figure 13: Series of diffractograms measured on the LaB$_6$ standard from NIST, with corresponding simulated diagrams (lines). Tilt angle χ is 0 for the bottom diagram, 60° for the top. Line broadening as χ increases is due to beam defocusing, as explained later.

Figure 14: Experimental and recalculated normalised pole figures for the limestone Round-Robin neutron texture standard obtained at the D20 ILL beamline. Equal-area projections, Logarithmic density scale (multiplied by 100).

Figure 15: {006} and {300} normalised pole figures of the Belemnite rostrum from the Cretaceous (Lambda=2.4 Å, D20-ILL beamline).

Figure 16: Thicknesses $T(\omega, \mu, I_f/I_o)$ as calculated from Equation -45, in function of 20. a) increasing ω angles (1, 5, 10 and 20°), for $\mu = 208$ cm$^{-1}$ and $I_f/I_o = 0.95$. b) increasing μ (208 and 2000 cm$^{-1}$), for $\omega = 20^\circ$ and $I_f/I_o = 0.95$. c) increasing I_f/I_o (0.63 and 0.95), for $\omega = 10^\circ$ and $\mu = 208$ cm$^{-1}$.

Figure 17: Debye-Scherrer of the Belemnite rostrum of Figure 3b represented in the pole figure frame K_2. The vertical axis correspond to the number of the discretised diagrams using a 5° grid.

Figure 18: Model functions for surface roughness corrections from various authors. The parameters used in the models are not intended to fit the closest same solution.

Figure 19: Schematic of a diffraction experiment using the 0-20 geometry. The plane of the figure is the scattering plane.

Figure 20: Calculated diagrams of α-SiO$_2$ for a): a bulk powder without preferred orientation and b): an oriented powder showing strong orientation with {001} planes parallel to the sample surface.

Figure 21: Asymmetric geometry of measurement.

Figure 22: Asymmetric geometry using a PSD or a CPS.

Figure 23: ω-scan (rocking curves arrangement) for measuring orientations.

Figure 24: ω-scan of a single crystal having a 0.1° FWHM of its {002} reflection centred at $2\theta = 18^\circ$.

Figure 25: Theoretical diagram in the 20-165° 2θ-range, for diamond measured with Cr K_α_2 radiation.

Figure 26: Two texture components differing only by their orientation in the sample plane.

Figure 27: Illustration of crystallographic planes rotation when planes are perpendicular (dotted or continuous lines) or parallel (rectangles) to the diffraction plane.

Figure 28: Two orientation components, represented by their c axes.

Figure 29: Two orientation components, Gaussians with 0.1° FWHMs, as described in.

Figure 30: Representation of a crystallite orientation on the Pole Sphere.

Figure 31: (a) Stereographic projection of Figure 30 and (b) Wulff net to manually read angles in the projection.

Figure 32: Lambert projection of Figure 30.

Figure 33: Stereographic (a) and Equal-area (b) projections of 1368 points located at every 5° in χ and φ on the Pole Sphere.
Figure 34: Scanning strategy for the complete coverage of the pole figures using the D19-ILL CAPS detector.

Figure 35: Illustration of the pole figure coverage. (a) for an initial 10° x 10° grid scan in χ and ϕ in the diffractometer space and for a pole figure at $20 = 2\theta$ (symmetric position) using a CPS detector, (b) for the same ϕ position as previously but for a pole figure at $0-\phi = 10^\circ$. (c) using a CPS detector and an azimuthal scan step of 30° and $\chi_{plane} = 30^\circ$ and 55° only and (d) for four χ_{plane} orientations (5°, 30°, 55° and 80°) and a 5° step in ϕ.

Figure 36: Defocusing effect in reflection geometry illustrated for a symmetric diffraction line. Two sample orientations are shown, $\chi = 0$ (blue) and $\chi > 0$ (red).

Figure 37: a) Peak broadening due to defocusing, illustrated at $\chi = 0$ (left) with typical detecting slits corresponding to a point detector, and at $\chi = 30^\circ$ (right) using integrating slits as available using a 1D detector. b) Typical defocusing curves of a randomly oriented sample obtained theoretically (dark bold), measured using a 0D detector (blue) and measured using integrated intensities and a 1D detector (red).

Figure 38: Example of peak defocusing for the (100/013/110) three-components line of an orthorhombic YBCO random powder.

Figure 39: Measurable range limitation illustrated for two cases. A) 20 limitation in reflection geometry and b) ϕ limitation in transmission.

Figure 40: The sample reference frame $K_\Lambda = (x_A, y_A, z_A)$.

Figure 41: Crystal and sample reference frames $K_\eta = (x_\eta, y_\eta, z_\eta)$ and $K_\Lambda = (x_A, y_A, z_A)$ respectively. Only one crystallite is shown.

Figure 42: a): $P_h(y)$ Diffraction pole figure for one crystallite. The direction y is associated to the [hk*l] normal.
b): Pole figure of a texture component centred on the previous y, having a Gaussian shape of 10° FWHM, for $h = <001>*$ of an orthorhombic crystal structure.

Figure 43: $\{001\}$ pole figure for the two-components texture of.

Figure 44: $\{001\}$ pole figure for the component C_1 of.

Figure 45: Pole figures for the C_1 component for a tetragonal crystal system. a): $\{001\}$ b): $\{100\}$

Figure 46: $\{100\}$, $\{010\}$, $\{001\}$ and $\{110\}$ pole figures of an aragonite (orthorhombic crystal system) layer from the sea shell gastropod *Cypraea testudinaria*.

Figure 47: Schematic representation of Curie (limit) groups, φ left and right (a), $\chi = m$ (b), $\chi = m$ (e), $\varphi = 2$ left and right (d), ∞/mm (e), ∞ right and left (f) and ∞/m (g).

Figure 48: $\{100\}$, $\{001\}$ and $\{110\}$ pole figures of a random sample. Three degrees of freedom to orient each crystallite.

Figure 49: $\{100\}$, $\{001\}$ and $\{110\}$ pole figures of a planar texture of the orthorhombic crystal system. Rotation axis of the planar texture is with $\{100\}* \perp Z_\Lambda$ and $\{110\}* \perp Z_\Lambda$.

Figure 50: $\{100\}$, $\{001\}$ and $\{110\}$ pole figures of a cyclic-planar texture of the orthorhombic crystal system.

Figure 51: $\{100\}$, $\{001\}$ and $\{110\}$ pole figures of a fibre texture of the orthorhombic crystal system. Fibre axis is with $\{001\}* \perp Z_\Lambda$.

Figure 52: $\{100\}$, $\{001\}$ and $\{110\}$ pole figures of a cyclic-fibre texture of the orthorhombic crystal system.

Figure 53: $\{100\}$, $\{001\}$ and $\{110\}$ pole figures of a 3D texture of the orthorhombic crystal system, with $\{001\}* \perp Z_\Lambda$ and $\{100\}* \perp Z_\Lambda$.

Figure 54: Difference between a perfect single crystal and a polycrystal having perfect 3D crystallite orientations. Normalised pole figures would be identical.

Figure 55: Definition of the three Euler angles that define the position of the crystallite co-ordinate system $K_{X} = (a, b, c)$ of an orthogonal crystal cell in the sample co-ordinate system $K_{X} = (X, Y, Z)$. Note, 100, 010 and 001 are not Miller indices but vectors referring to an ortho-normal frame aligned with K_{X}.

Figure 56: Definition of the three Euler angles in the a) Roe-Matthies and b) Bunge’s conventions.

Figure 57: $\{001/100/010\}$ multipole figures for an orthorhombic crystal structure for the orientations a): $\{45,0,0\}$; b): $\{45,45,0\}$; c): $\{45,55,45\}$. Roe-Matthies convention.

Figure 58: Used sample reference frames K_{X} in texture analysis in, a) metallurgy, b) geology/geophysics, c) molluscan studies, d) thin film growth, e) centrifugation, f) magnetic alignment with $H_{text} \perp R$ for $H_{meas} // H_{text}$ and g) for H_{text} with H_{ext} (easy-plane samples).

Figure 59: Pole figure co-ordinates in the sample reference frame K_{X}.

Figure 60: Relationship between the 3D object $f(g)$ and the pole figures $P_0(y)$. To each pole figure cell corresponds several ODF boxes, and each ODF box is linked to several pole figure cells.
Figure 61: Isodensity surfaces representing OD isolated components in a casein coordinate system for the space. 142

Figure 62: Several isodensity surfaces representing a cyclic-fibre OD (a) and a cyclic-planar OD (b) in the space. 143

Figure 63: a) Cartesian and b) polar coordinate systems to plot a 2D γ-section. c) OD plot as polar γ-sections using 5° γ steps of a hexagonal crystal system. 144

Figure 64: a) 3D isometric plot of a sample with several orientation components with no specific symmetry, and a random FON at 0.2 m.r.d. b) Same OD represented as cartesian γ-sections from γ = 0° to 40° (step 10°). 145

Figure 65: {100} and {001} pole figures corresponding to the OD of Figure 63c. 146

Figure 66: Evaluation of OD coverage for neutron diffraction measurements of a YBa-Cu-O ceramic containing two main phases, YBa2Cu3O7-(a) and Y2BaCuO5-(b). 155

Figure 67: Visual examination of the OD refinement reliability, using experimental and recalculated normalised pole figures (in successive order). WIMV refinements from Beartex. Linear density scale, equal angular projections. a) {111}, {012}, {102} and {221} pole figures of the aragonite outer comarginal crossed lamellar layer of the burgundi snail Helix pomatia, maximum density: XXXX m.r.d., minimum density: 0 m.r.d. b) {104}, {110}, {113}, {202}, {116}, {211}, {125} and {300} pole figures of the calcite outer prismatic layer of the deep-ocean mussel Bathymodiolus thermophilus, maximum density: 6.3 m.r.d., minimum density: 0 m.r.d. 160

Figure 68: The inverse pole figure sectors in function of the crystal symmetry. The non-redundant sectors are indicated by bold edges. a) triclinic, b) monoclinic, B-setting has been used, c) orthorhombic, d) tetragonal, e) rhombohedral using hexagonal unit-cell, f) hexagonal, g) cubic crystal systems h) inverse pole figure for the drawing axis of an aluminum wire elaborated by cold drawing (linear density scale, cubic sector, equal-area projection). 162

Figure 69: Entropy variation with Texture index. a): for real samples, b): for modelled textures. 165

Figure 70: Example of an x-ray diffraction diagram for a plasma-treated polypropylene film. 168

Figure 71: Illustration of a case for which a magnetisation measurement operated in two perpendicular directions cannot reveal the magnetic anisotropy. (a) virtual distribution of the magnetic moments, (b) corresponding virtual magnetisation curves. 169

Figure 72: A specific sample holder for MQTA measurements by difference, mountable in a goniometer head. Cd shields allow insertions of permanent magnets below the sample without visible signals from them in the diagrams. 170

Figure 73: One 2D Debye-Scherrer pattern for one sample orientation without field (a) and difference pattern for the corresponding sample orientation (b). 177

Figure 74: {110} pole figures at zero field (a), under 0.3 T (b) and difference (c). Fit of the sum of all diagrams at zero field using the orthorhombic magnetic sub-group in Fullprof (d), and WIMV recalculated-normalised nuclear {110} pole figure (e). Inverse nuclear pole figure for the cylinder sample axis direction (f) and WIMV recalculated-normalised magnetic-scattering contribution for the main orthorhombic axes (g). Recalculated-normalised magnetic-scattering polarisation pole figures for the positive (h) and negative (i) parts of the difference pole figures, and corresponding positive {001} magnetic-scattering pole figure illustrating the magnetic moment reorientation (j). 193

Figure 75: Typical shape of the (t(m)) function obtained by Fourier transform of a broadened line, provided no truncation effect occurs. 187

Figure 76: Various crystallite shapes obtained by variation of the Rf factors in the triclinic crystal system (only non-zero factors are indicated). a): R0 = 500, R1 = -500, c): R0 = 500, R1 = 500, d): R0 = 500, R3 = 500. e): R0 = 500, R2 = 500. f): R0 = 500, R4 = 500. g): R0 = 500, R4 = 500. h): R0 = 500, R0 = 100. i): R0 = 500, R2 = 500, R4 = 100. j): R0 = 500, R0 = -100. 194

Figure 77: Various crystallite shapes obtained by variation of the Rf factors in the 4/m tetragonal crystal systems (only non-zero factors are indicated). a): R0 = 500, R1 = 100. b): R0 = 500, R1 = -100. c): R0 = 500, R3 = 100. d): R0 = 500, R4 = -100. e): R0 = 500, R5 = 100. f): R0 = 500, R3 = -100. 194

Figure 78: Various crystallite shapes obtained by variation of the Rf factors in the 3 trigonal crystal system (only non-zero factors are indicated). a): R0 = 500, R1 = 100. b): R0 = 500, R1 = 100. c): R0 = 500, R5 = 100. 195

Figure 79: Various crystallite shapes obtained by variation of the Rf factors in the 6/m hexagonal crystal system (only non-zero factors are indicated). a): R0 = 500, R1 = 100. b): R0 = 500, R1 = 100. c): R0 = 500, R6 = 100. 195

Figure 80: Various crystallite shapes obtained by variation of the Rf factors in the 3/m cubic crystal system (only non-zero factors are indicated). a): R0 = 500, R1 = 200. b): R0 = 500, R2 = 200. c): R0 = 500, R3 = 200. 196

Figure 81: Various crystallite shapes obtained by variation of the Rf factors in the cubic m3m Laue group. a): R0 = 500, R1 = 100. b): R0 = 500, R1 = -100. c): R0 = 500, R5 = 200. d): R0 = 500, R3 = -200. 196
Figure 82: Example of a neutron diffraction diagram (dots) of a biphasic sample, and corresponding fit (line) using QPA as implemented in the MAUD program. ... 206
Figure 83: QPA refinement example of an x-ray diagram measured on a 85 % amorphous fluorapatite sample. Refinement operated in MAUD, Miro et al. (2005). ... 208
Figure 84: Phenomenological classification of internal stresses. σ^I, σ^{II} and σ^{III} are respectively macro-, meso- and microscopic stresses. One could have drawn the same diagram with strain types ϵ^I, ϵ^{II} and ϵ^{III} respectively. ... 209
Figure 85: Schematics of a) specular and b) off-specular reflectivity configurations. The off-specular geometry is illustrated here in the (X_A, Z_A) plane. ... 215
Figure 86: Calculated specular (line) and specular + off-specular curves of a sample exhibiting strong diffuse signal. ... 216
Figure 87: Simultaneous acquisition of specular and off-specular scans for a CoSi2 thin film using a CPS detector. Four scans have been measured at four different counting times to avoid detector saturation at low ω values. ... 217
Figure 88: Classical wave propagation of a plane wave at an interface. ... 221
Figure 89: Simulated reflectivity curves for a GaAs layer on a Si substrate, with GaAs thickness at 140 Å (a), 280 Å (b) and 1400 Å (c). In (d) a single layer of SiO2 on Si. Perfect flatness at surface and interface and no background are assumed. ... 222
Figure 90: Specular reflectivity curves from Si-O-N films deposited on Si(100). An increasing NO content was added during nitridation in the NO:N2 atmosphere from sample A to E ... 223
Figure 91: Evolution of the transmission factor with χ, at an interface. ... 224
Figure 92: Schematic representation of Yoneda wings on each side of the specular peak ... 224
Figure 93: 1D schematics of three different characteristic types of interfaces between two layers, with p(z) profiles a) Ideal perfectly flat interface, b) purely rough interface and c) purely diffuse interface [Steams 1989] ... 225
Figure 94: Simulation of roughness effect on a bulk silicon substrate for $\sigma = 0, 5, 10, 20$ and 50 Å respectively from the upper to the lower curve. ... 227
Figure 95: Simulated reflectivity curves for a 140 Å – thick GaAs layer on a Si substrate, with a 10 Å roughness at the surface (a) at interface (b) and at both surface and interface (c). No background is included in the calculation. ... 228
Figure 96: Electron Density Profile of the films of Figure 90, and the electron density difference (inset) with respect to Sample A (a), together with compositional profiles obtained by ToF-SIMS (b). ... 230
Figure 97: Simulated specular reflectivity of a stack of 12 (Si/GaAs) bilayers on Si(100) substrate. The Si and GaAs layers are 30 Å and 20 Å thick respectively. All interfaces are considered perfectly flat. ... 231
Figure 98: Beam imprinty effect occurring at low incidence angle ω. The insert is a schematic view of a specular reflectivity curve showing this effect. ... 232
Figure 99: Simulated specular reflectivity of a stack of 12 (Si/GaAs) bilayers on Si(100) substrate. The Si and GaAs layers are 30 Å and 20 Å thick respectively. All interfaces are considered perfectly flat, but some energy distribution of the x-ray beam has been included. ... 232
Figure 100: Combined algorithm, using least-squares, simulated annealing or genetic refinement procedures. ... 238
Figure 101: The x-ray diffractometer as set-up at CRISMAT (a) and its schematic showing the angle convention (b). ... 239
Figure 102: Illustration of defocusing and misadjustment effects on peak shapes and diffractometer resolution function. Measurements on a KCl powder. Diagrams appear on top of each other from $\chi = 0^\circ$ to $\chi = 60^\circ$ by steps of 5° for (a) $\omega = 20^\circ$ and (b) $\omega = 40^\circ$. ... 240
Figure 103: Illustration of the χ-defocusing effect on peak shapes. Z_S is the spectrometer Z axis. For a given width of incident beam, at larger χ values (blue) the peak broadens. ... 241
Figure 104: Illustration of the ω-defocusing effect on peak shapes. Z_S is the spectrometer Z axis. For a given ω, at larger 20 values the peak becomes broader. ... 242
Figure 105: Illustration of the ω-defocusing effect on peak shapes. Z_S is the spectrometer Z axis. At larger ω values, the peak becomes narrower. ... 243
Figure 106: Origins of the a) 20 and b) ω broadenings ... Erreur ! Signet non défini.
Figure 107: (a) Experimental (×) and fitted (line) 20 patterns for selected χ orientations for a nanocrystalline SiC film deposited on a Si single crystal substrate; Bottom pattern: $\chi = 0^\circ$; top pattern: $\chi = 35^\circ$; $\Delta \chi = 5^\circ$. Differences between measured and calculated diagrams are shown for the bottom and top patterns. (b) 2D representation of the experimental (bottom) and simulated (top) datasets for a Co349 ceramic. (χ, φ) diagrams are pulled up from $(0,0)$ to $(0,355^\circ)$, to $(60^\circ, 355^\circ)$ in a successive manner from bottom to top of the 2D representations. ... 246
Figure 108: Backscattering SEM image of optimised pure PbO flux PZT powder

Figure 109: (001), {100} and {111} pole figures recalculated from the OD refined by combined analysis, for the a) as-cast and b) cast and sintered PZT samples synthesised by the pure PbO flux route. Linear density scale, equal area projection.

Figure 110: 001 inverse pole figure for the as cast PZT sample, recalculated from the OD for the casting axis. Linear density scale, equal area projection.

Figure 111: Normalised {111}, {200} and {220} pole figures for typical samples with a) d=40 µm, b) d=120 µm and c) d=220 µm, recalculated from neutron diffraction data. Linear density scales, cut below the 1 m.r.d. level.

Figure 112: Typical Stress-strain curves for three specimens: t/d=1, 5 and 14.

Figure 113: a) evolution of σ/ε vs. dε/τ = f(σ) for 3 Ni polycrystals with t/d = 1, 5 and 14. All the stresses are normalized by the yield stress σ with ε=0.002. b) evolution of the strain length of the second hardening stage and c) evolution of the hardening rate dσ/dτ of the second stage versus t/d.

Figure 114: evolution of a) σeff and b) X components of the flow stress with strain for three t/d values...

Figure 115: evolution of a) overall flow stress, b) σeff and c) X components of the flow stress with strain for three ε=0.08. Numbers in parenthesis are the t/d ratio.

Figure 116: a) SEM image of a kaolinite-muscovite composite sintered at 1250°C without Bi2O3 addition, and b) corresponding set of x-ray patterns measured at increasing χ-values (from bottom to top)

Figure 117: a) Recalculated-normalised {020}, {200} and {001} pole figures for the main axes of mullite. b) {001} pole figure represented to show the pole reinforcements linked to the in-plane triangular-like organization of the mullite needles (Figure 116a). Linear density scales.

Figure 118: a) Fracture toughness and b) Young modulus of well (lines) and poorly (dashed lines) organised mullite samples in function of the mullite crystal length...

Figure 119: Intensity vs. Potential diagram used to adjust the experimental potentials around the frontier between water and oxygen reduction.

Figure 120: Experimental x-ray diffraction diagram (dots) of a typical nacre-like film. Note the enhanced (002) line compared to a plain powder, indicating the pronounced (00/) orientation. Only lines from aragonite are observed. The diagram (line) corresponds to a Rietveld fit without texture correction.

Figure 121: SEM backscattering images of aragonite deposits on titanium foils for a) non-optimised deposition conditions showing typically cauliflower-shaped aragonite, b) optimised conditions with nacre-like pseudo-hexagonal-shaped crystals and c) same as b) using a larger magnification showing cross-sectionning cracks...

Figure 122: X-ray pole figures recalculated from the OD. a) {002} and b) {200} pole figures of an optimised film on Ti foil.

Figure 123: X-ray pole figures recalculated from the OD a) {002} and b) {200} pole figures of the inner columnar nacre layer of the gastropod Halitost tuberculata.

Figure 124: X-ray pole figures recalculated from the OD a) {002} and b) {200} pole figures of the inner sheet nacre layer of the bivalve Pinctada maxima. Note the pseudo-hexagonal symmetry of the layer on the {200} pole figure.

Figure 125: SEM images of the columnar nacre of Halitost tuberculata (left) and the sheet nacre of Pinctada maxima.

Figure 126: Neutron diffraction patterns obtained on one Al2O3 magnetically aligned slip-cast ceramic (Sample sintered at 1300°C).

Figure 127: {006}, {113} and {110} pole figures recalculated from the OD refined using WIMV. Sample sintered at 1300°C. Linear Density scale, equal area projections. Only a fourth of the axially symmetric pole figures is shown.

Figure 128: Inverse pole figures calculated for the Zt cyclic fibre direction for the sintered samples. Linear density scale, equal area projection.

Figure 129: Schematics of a film composed of anisotropically shaped crystallitles in a randomly oriented (a) and a textured (b) sample.

Figure 130: Selected fitted χ-scans that shows large peaks and the presence of texture in a Si thin film deposited on amorphous SiO2 substrate by magnetron sputtering. The insert shows the net intensity variation of the main peaks, to better visualise the texture.

Figure 131: Inverse pole figure for the normal direction of the Si thin film of Figure 130 calculated from the refined ODF (linear density scale, equal area projection, max = 1.59 m.r.d., min = 0.45 m.r.d.) (a), schematics of the refined mean crystallite shape from Table 8 (b) and (c) high resolution TEM image of the Si crystallitles.

Figure 132: Experimental and WIMV-recalculated {111} and {202} pole figures for the 15 nm thick gold film. Linear density scale, equal area projection. Max value is 3 m.r.d.
Figure 140: The 1368 neutron 20-diagrams measured on the foam sample of Figure 139 a) and Rietveld refinement of their sum b), allowing phase, particle size and cell parameters quantitative determinations. Reliability factors: Rexp = 5.43 %, R = 19.71 %, used wavelength: 2.53 Å. 279

Figure 141: (003)-Y123 and (010)-Y123 recalculated pole figures of the perforated sample a) and of the foam b) samples of Figure 139. Linear density scales, equal area projections. ... 280

Figure 142: Jc(B) curves at 77 K for the plain a) and drilled b) samples, and corresponding normalised trapped magnetic field maps field cooled in 0.4 T at 77 K c) and d) respectively. .. 280

Figure 143: SEM image of a Bi2223 aligned platelet microstructure resulting from the sinter-forging process under uniaxial pressure. Pressure and mean c-axis directions are vertical (a). Corresponding {119} pole figure showing the axially symmetric texture. Pressure and mean c-axis directions are perpendicular to the pole figure plane, logarithmic density scale, equal area projection (b). ... 281

Figure 144: Neutron χ-scans from the D1B-ILL beamline. Note the strong decrease of 00’ line in the lower χ range, and the strong increase of hk0 lines in the higher χ range (a). e-scans fit using the combined approach (b). ... 282

Figure 145: Inverse pole figures of the Bi2223 phase calculated for the direction of the applied pressure (fibre axis of the texture). Samples textured during (a) 20h, (b) 50h, (c) 100h and (d) 150h. Logarithmic density scale, equal area projection. ... 283

Figure 146: Correlation between FWHD, applied unidirectional stress σ and transport Jc in Bi2223 sinter forged samples. Points for the same σ correspond to identical measurements on various points of the same sample .. 284

Figure 147: TEM micrograph of a fluoroapatite crystal irradiated by 70 MeV Kr ions with a fluence of 9.5 10^{10} Kr.cm^{-2} (a) and x-ray diagram of a virgin sample showing the presence of texture (b). The diagram has been measured during sample rotation around its normal. ... 285

Figure 148: Same diagram as in Figure 147a with the application of an arbitrary texture correction model (a), and 10^{13} Kr.cm^{-2} irradiated sample with 85 % of amorphous phase (b). ... 286

Figure 149: Rietveld refinements of (a) the least (5.10^{11} Lcm^{-3}) and (b) most (10^{13} Lcm^{-3}) I-irradiated samples, with arbitrary texture correction. ... 287

Figure 150: Damaged fraction as revealed by x-ray analyses for Kr- (a) and I-irradiated samples (b) 288

Figure 151: XRD diagram showing the experimental (blue points) and fit (line) of the GaN-SiO2 composite. GaN and silica peak positions are shown, together with the difference curve between simulation and experiment. Note the large bump of silica glass correctly reproduced from the Le Bail model. This fit was obtained with the following reliability factors: Rw = 3.31 %, Rexp = 1.11 %, GoF = 8.9. Insert: illustration of the slightly anisotropic mean GaN crystallite shape. ... 292

Figure 152: TEM and HRTEM micrographs of the GaN powder used to dope the SiO2 matrix. (a) grain distributions are multimodal. (b) larger magnification of an isolated particle showing several subgrains. (c) large magnification of an isolated grain showing the absence of periodicity (scale bar is 50 nm). (d) poor crystalline quality at the surface. ... 292

Figure 153: Room temperature PL spectrum of the GaN-SiO2 composite excited with an energy of a) 3.75 eV (325 nm) and b) 3.44 eV (360nm). Dots are the experiments and lines the fit with three Gaussian-like bands. The PL spectrum of the free GaN powder is shown for comparison .. 294

Figure 154: PLE spectra of YL in the 2.4-6.0 eV range at room temperature for the GaN-SiO2 composite and the Free GaN powder .. 295

Figure 155: Used supercell approximant for the Co349 aperiodic structure ... 273
Figure 156: Experimental (dots) and calculated (lines) diagrams for the whole set of χ-scan measurements of a uniaxial stress and magnetically aligned Co349 ceramic ... 297
Figure 157: [003], [-183] and [-201] experimental (left column) and recalculated (right column) neutron pole figures of the Co349 oriented ceramic. Logarithmic density scale, equal area projection, max density values are 32.5, 2.8 and 2.5 m.r.d. respectively, min density values are 0 m.r.d. ... 298
Figure 158: Inverse pole figure for the fibre direction of the Co349 oriented ceramic. Logarithmic density scale, equal area projection. .. 298
Figure 159: X-ray diffraction diagrams of the RTGG Co349 ceramic Sample 3, as a function of tilt χ. 299
Figure 160: Layered crystal structure of [Bi0.81Ca2O4][CoO2]1.62 misfit phase .. 300
Figure 161: a: Neutron diffraction pattern (D1B-ILL) of the hot-forged Bi-Ca-Co-O ceramics operated for 19χ-scans from χ = 0 to 90° (step 5°) using a fixed incidence angle 6 of 25.11° (0010) Bragg position. b: Experimental (dots) and calculated (lines) neutron diffraction patterns for the corresponding χ orientations (0 to 90°). .. 301
Figure 162: a: {006}, {024} and {100} pole figures recalculated from the refined orientation distribution, assuming an axially symmetric texture. b: Inverse pole figures calculated for the fiber direction (P direction of the hot-forging process) .. 302
Figure 163: a): 2D plots of the 936 experimental (lower half) and fitted (upper half) diagrams and b) 2D difference diagrams to reveal the errors. .. 303
Figure 164: Randomly selected diagrams (from bottom to top at increasing χ values and broadening due to defocusing) illustrating the quality of the fit, together with the texture of AlN and Pt. .. 304
Figure 165: Low-index recalculated pole figures and 00Z inverse pole figures for the three textured phases of the stack. a): AlN, b): Pt and c): Ni-based alloy. Equal-area density projections, linear density scale. 305
Figure 166: Residual stress to texture correlation between the Pt and AlN layers versus the applied electrical bias. .. 306
Figure 167: a) The Charonia lampas lampas shell and b) Cross section SEM image of the fractured shell. The (G,N,M) reference frame indicated is slightly rotated around N compared to the pole figure frame (Figure 58c) .. 307
Figure 168: SEM images of (a) the outer comarginal first order lamellae (b) the outer second order lamellae (c) intermediate first order radial crossed lamellae and (d) second order lamellae (e) first and second (f) order lamellae of the inner comarginal crossed lamellae layer. .. 309
Figure 169: Randomly selected diagrams showing the reproducibility of the experimental (dots) patterns from the combined analysis refinement (lines) for the (a) outer (b) intermediate and (c) inner layers. (d) is a 2D plot of experimental (bottom) and recalculated (top) diagrams showing the reproducibility on all the diagrams for the intermediate layer. .. 311
Figure 170: {110}, {020}, {002} and {200} recalculated normalised pole figures of the (a) outer (b) intermediate and (c) inner layers. Linear density scale, equal area projections ... 312
Figure 171: SEM images and {002} and {040} pole figures of aragonite films on Ti-6Al-4V foils, with addition of organic extrata during electrodeposition. a) Addition of WSM b) Addition of ESM. .. 319
Figure 172: Polar a) and axial b) vectors, and mirror plane effects on axial and polar vectors c-e).............................. 328
Figure 173: Behaviour of the heat capacity with temperature in monoatomic compounds. N stands for the Avogadro number. .. 331
Figure 174: Correspondence between tensor χ_{ij} (left-hand side) and matrix χ_{ij} (right-hand side) notations for the Kerr tensor. .. 340
Figure 175: Behaviour of the inverse of magnetic susceptibility with température for a perfect paramagnetic compound (dashed line) and for a paramagnetic with atomic moments orienting under magnetic field. ... 343
Figure 176: Stress definition relative to the three axes 1, 2 and 3 (a), and projection on the (2,3) plane (b). e_{ij}, j is the force direction, i is the surface normal to which the force is applied .. 345
Figure 177: Correspondence between tensor (left-hand side) and matrix (right-hand side) notations for the compliance (a) and stiffness (b) constants ... 346
Figure 178: Correspondence between tensor (left-hand side) and matrix (right-hand side) notations for the direct (a) and converse (b) piezoelectric constants... 357
Figure 179: W_{1s}(y), W_{2s}(y) and W_{1}(y) plots (from left to right) for a single crystal of gold (a) and for the 40 nm-thick DC sputtered film (b). Minimum and maximum values can be found for each wave mode in Table 38. Linear velocity scale values. Equal-area plots. .. 384
Figure 180: Radial distributions of the [111] pole figures for the 20 nm RF-sputtered (a) and 40 nm DC- sputtered (b) gold films. Fits are Gaussians. The two lateral peaks correspond to <111> equivalents at 70° from the normal to the films. Since the diagrams were measured in a symmetric arrangement, χ = θ, 385
Figure 181: Dispersion curves of both longitudinal and shear modes of the gold films. The slopes give the average acoustic speeds in the films. The intercepts are zero within experimental uncertainties 386
Figure 182: Wave velocity pole figures calculated from the single crystal (a), LN/Al₂O₃ (b) and LN/Si (c) tensors. The left column figures are \(W_1(y) \) waves, the central and right columns \(W_{T1}(y) \) and \(W_{T2}(y) \) waves respectively. Minima and maxima units are \(\text{km.s}^{-1} \). ... 387

Figure 183: Variation of the electrical conductivity and thermoelectric power factor with \(P \) duration time.
Corresponding maxima of the \(\{00\ell\} \) pole figures are 13.6, 19.8 and 31.8 m.r.d. for 2h, 6h and 20h of UP time respectively. .. 389

Figure 184: Variation of the resistivity a) and of the thermoelectric power factor b) with temperature, for a sintered powder, a single crystal and a hot-forged ceramic of the Bi-Ca-Co-O compound. .. 390

Figure 185: Classical (a) and Rotation (b) alignment procedures. The diffraction measurement geometry is also shown. ... 391

Figure 186: Configurations for the magnetisation measurements: \(M \) corresponds to the magnetisation curve of Sample B, with \(\mathbf{H}_{\text{meas}} \parallel \mathbf{c} \) and \(M \) to the \(\mathbf{H}_{\text{meas}} \perp \mathbf{c} \) configuration (Sample A). ... 391

Figure 187: \(\{001\} \) and \(\{100\} \) normalised pole figures of Sample B, showing the major \(<001> \) fibre texture. . 392

Figure 188: The two possible configurations for the measurement of the magnetisation curves. We use the left one in this work. .. 393

Figure 189: \(M \) measured (circles) and simulated (squares) anisotropic magnetisation curves of our magnetically aligned carbide .. 395
Tables caption

Table 1: Correspondences between the most used Euler angle sets

Table 2: Definitions of sample configurations in absence of applied magnetic field

Table 3: Resulting possible sample states after application of a magnetic field

Table 4: Typical q_x, p_x, δ and β values for few elements and compounds. δ and β are given for $\lambda = 1.5418$ Å

Table 5: Model functions to represent typical interface roughness

Table 6: Example of six heat treatment conditions and the corresponding mean grain size and t/d ratio

Table 7: Results obtained on the four samples in terms of texture strength and crystallites and grain sizes

Table 8: Refined parameters for 8 analysed Si films deposited on various substrates [Morales et al. 2005]

Numbers in parentheses are one standard deviations as refined

Table 9: Thicknesses as measured by profilometry and refined by the combined analysis, compared to the porosity as determined by x-ray reflectivity [Morales et al. 2005] on two Si nanocrystalline thin films deposited on amorphous SiO$_2$ substrates

Parentheses are one standard deviations

Table 10: QTA characteristics of the five analysed gold films

Table 11: Crystalline anisotropic shape refinement of the analysed gold films

Table 12: Layer and structural characteristics of the sample of Figure 137

Table 13: Cell parameters and volume fractions of the Y211 and Y123 phases of the foam sample as refined for the summed diagram of Figure 140. Parentheses are one standard deviation

Table 14: Refined parameters obtained from different sinter-forging time samples. Transport critical current densities, measured on each sample

Transport critical current densities, measured on each sample, are also reported

Table 15: Fitted parameters for the different samples irradiated under Kr and I ions with various fluences

Parentheses are one standard deviations

Table 16: Radiation damage fit results of Figure 150

Table 17: Maximum density of the [003] pole figure, Full Width at Half Density of the [003] pole and Texture Index (F^2) values for different uniaxial pressures and duration times

Table 18: Results obtained from the combined analysis on a AlN/Pt/TiO$_2$/Al$_2$O$_3$/Ni-Co-Cr-Al-Y stack. Standard deviations in parenthesis for the last digit

Table 19: Combined analysis results for the outer, intermediate and inner layers of Charonia lampas lampas

We took as reference unit-cell for non-biogenic crystals: $a = 4.9623(3)$ Å, $b = 7.968(1)$Å, $c = 5.7439(3)$Å (ICDD Card N° 41-1475)

Table 20: Refined cell parameters, atomic positions and ΔZ values for C. lampas layers, our non-biogenic reference and the Strombus species of Pokroy et al. [2007]

Table 21: Combined analysis results for three mullite shells, composed of nacres and prismatic aragonitic layers

Table 22: Combined analysis results for the electrodeposited aragonite layers on titanium foils

Table 23: Pure and coupled coefficients of the constitutive thermodynamic relations, with the corresponding tensor rank, units and character

Table 24: Tensor and polar/axial characters in function of their invariance versus time and/or space inversion, and number of Shubnikov point groups for which the property tensor can be non-zero

Table 25: Distribution of some tensors versus types and rank

Table 26: Nye representation for the κ_0 thermal conductivity tensor for all crystal classes

Table 27: Some thermal conductivities κ_0 (WK$^{-1}$m$^{-1}$) and diffusivities K_0 (m2s$^{-1}$) for some crystalline phases at room temperature

Table 28: Nye representation for the χ_0 dielectric susceptibility tensor for all relevant crystal classes. The twofold axis for the monoclinic case is taken parallel to the x_2 axis. Only above-diagonal terms are shown because of the symmetric character of these tensors

Table 29: Relative dielectric permittivity of BaTiO$_3$ at 25°C

Table 30: Nye representation for the g_{ij} gyration tensor in the relevant non-centrosymmetric point groups

Table 31: Some electrical resistivities ρ_{xx} (108 Ωm) for some crystalline phases at room temperature

Table 32: Nye representation for the χ_{jk} electrooptic tensors for relevant crystal point groups

Table 33: Nye representation for the χ_0^{L} electrooptic Kerr tensor for all relevant crystal classes

Table 34: Nye representation for the S_{ab} compliance tensor for all crystal classes

Table 35: Stiffness tensors (GPa) for some crystalline phases at room temperature

Table 36: Expressions of the wave velocities for the three main propagation directions of a cubic crystal system

Table 37: Nye representation for the p_0 pyroelectric vectors in the relevant non-centrosymmetric crystal classes
Table 38: Nye representation for the Sc\textsubscript{ij} and Pe\textsubscript{ij} Seebeck and Peltier thermoelectric tensors for all crystal classes .. 354
Table 39: Nye representation for the d\textsubscript{ij} piezoelectric moduli for relevant crystal point groups............................. 358
Table 40: Piezoelectric coefficients d\textsubscript{ijk} (10^{-12} m/V) for some compounds at room temperature. Point groups are indicated when necessary. Monoclinic groups are with the "standard" convention, 2 // x\textsubscript{2}, and m \perp x\textsubscript{2}.... 359
Table 41: Nye representation for the b\textsubscript{ijk} piezomagnetic moduli for relevant magnetic point groups.................. 366
Table 42: Nye representation for the m\textsubscript{ij} magnetoelectric tensors in the relevant non-centrosymmetric magnetic point groups.. 369
Table 43: Nye representation for the p\textsubscript{ijkl} elastooptic tensor for all relevant crystal classes 372
Table 44: Mean grain size and macroscopic stiffness tensor calculated using the OD and the geometric mean approach, for five rolled Ni samples. ... 380
Table 45: Elastic properties of the five samples of Table 35. ... 380
Table 46: Macroscopic elastic stiffness tensors (in GPa) for a single crystal of aragonite (Table 29), and the mineral part of the three layers of Charonia as calculated from the OD using the geometric mean.. 382
Table 47: W\textsubscript{1}(y), W\textsubscript{11}(y) and W\textsubscript{12}(y) minimum, maximum and for y = (0,0) values for a single crystal of gold and for the four DC sputtered gold films analysed. Stiffness values are taken from Table 29. 384
Table 48: Elastic stiffness (GPa) for a LiNbO\textsubscript{3} single crystal and calculated from QTA for two films. For this space group, c\textsubscript{66} = (c\textsubscript{11}–c\textsubscript{12})/2; c\textsubscript{24} = -c\textsubscript{14}; c\textsubscript{56} = 2c\textsubscript{14} ... 387