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The minimum enclosing ball problem [Tax and Duin, 2004]

Given n points, {x;,i =1, n}

min R2
ReR,ceRY

with Ixi —c|?<R?, i=1,...,n

What is that in the convex programming hierarchy?
LP, QP, QCQP, SOCP and SDP

J
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The convex programming hierarchy (part of)

LP QCQP
min  fTx min  1xTGx +fx
{ W)i(th Ax <d with  xT Bix + a,-Tx <d;
and 0<x i=1,n
QP SOCP
: T
min %XTGXJrfo min f'x
with Ax <d with |x —aj| <b/x+d;
N i=1n

The convex programming hierarchy?
Model generality: LP < QP < QCQP < SOCP < SDP
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MEB as a QP in the primal

Theorem (MEB as a QP)

The two following problems are equivalent,

min R2 min 1 w 2 _
ReR,ceRY wyp 2 Il &
with I —c|?<R?, i=1 ,n with w'x; > p+ %||x,-||2

PR

with p = %(|lc|® — R?) and w = c.

Proof:
e < R
Ixl? —2x/c + |2 < R?
2 < Rl fef?
2] c > R4 il + el
e > (el ~ R?) 4

| ——
p
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MEB and the one class SVM

L2
min  z||w|* —
SVDD. min - 3llwll®—p
with w'x; > p+ 1|[x;?

SVDD and linear OCSVM (Supporting Hyperplane)
if Vi =1,n, ||x;]|> = constant, it is the the linear one class SVM (OC SVM) J

The linear one class SVM [Schélkopf and Smola, 2002]
{ min 3 fwlf* — o'

w,p’
with  w'x; > p/

with p' = p+ 3|Ix;[|> = OC SVM is a particular case of SVDD
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When Vi =1,n, ||x;||> =1

[x; —c||® < R? = wix;>p
with .
p=3(lcl? ~ R+1)
SVDD and OCSVM
"Belonging to the ball" is also "being above" an hyperplane J
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MEB: KKT

[,(C, R,a) = R2 + Zai(Hxi - C||2 - RZ)

i=1

KKT conditionns :

stationarty
i-1 i-1
n
> 11— Z a; =0
i=1
primal admiss. |x; — ¢||? < R?
dual admiss. a; >0

complementarity o;(||x; —¢||*> — R?) =0
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MEB: KKT

[,(C, R,a) = R2 + Zai(Hxi - C||2 - Rz)

i=1

KKT conditionns :

stationarty
i=1 i=1

n
> 1 — Z o = 0
i=1
primal admiss. |x; — c||? < R?
dual admiss. a; >0

complementarity o;(||x; —¢||*> — R?) =0

Complementarity tells us: two groups of points

the support vectors ||x; — ¢|[> = R? and the insiders o; = 0

n n
» 2c¢> a;—2> a;x; =0 <« The representer theorem
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MEB: Dual
The representer theorem: n
Z QX n

i=1
C=—7—= E a;X;
Z [o% i=1
i=1

n n

La) = aillxi =) axil?)
j=1

i=1

n n n
Z Za,-ajx,-—rxj =a'Ga and Za,-x,-—rx,- = o' diag(G)

i=1 j=1 i=1
with G = XXT the Gram matrix: G; = x." x;,

. T o Td.
fnin -« Ga — o' diag(G)
with ela=1

and 0<q;, i=1...n
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SVDD primal vs. dual

Primal J Dual
min R? min o' Ga — o diag(G)
RER,ccRY 'ah T
with x; — CH2 < R27 with e'a=1
i=1,...,n and 0 <oy,
i=1...n

o d+ 1 unknown @ n unknown with G the pairwise
@ n constraints influence Gram matrix
@ can be recast as a QP @ n box constraints
e perfect when d << n @ easy to solve

@ to be used when d > n



SVDD primal vs. dual

Primal J Dual
min R? min o' Ga — o diag(G)
RER,ceR? a T
with x; — CH2 < R?, with e'a=1
i=1,...,n and 0 <oy,
i=1...n

o d+ 1 unknown @ n unknown with G the pairwise
@ n constraints influence Gram matrix
@ can be recast as a QP @ n box constraints
e perfect when d << n @ easy to solve

@ to be used when d > n

But where is R2?



Looking for R?
min o' Ga — o' diag(G)
with efa=1, 0<q;, i=1,n
The Lagrangian: L(a,p,B) =a'Ga—a'diag(G)+ule"a—1)-BTa
Stationarity cond.: V,L(a,u,3) =2Ga — diag(G) +pue—3=0
The bi dual
min o' Ga+
with  —2Ga + diag(G) < pe

by identification

RP=p+a'Ga=p+|c|?

n
1 is the Lagrange multiplier associated with the equality constraint Z ai=1
i=1

Also, because of the complementarity condition, if x; is a support vector, then
B; = 0 implies a; > 0and R? = ||x; — ¢/
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The minimum enclosing ball problem with errors

The same road map:

®o e initial formuation
the slack
e reformulation (as a QP)
@ Lagrangian, KKT

@ dual formulation

® @ bi dual

Initial formulation: for a given C

. R2 i
pir Frcre
with |Ix; —¢c[2?<R2+¢&, i=1,...,n
and ¢ >0, i=1,...,n
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The MEB with slack: QP, KKT, dual and R?
min 3wl —p+$> ¢

w,p

i=1
SVDD as a QP: with wTx; > p+ 3[|x;[|2 - 1¢;
and & >0,
i=1n

again with OC SVM as a particular case.

With G = XxT
min o' Ga — o' diag(G)
Dual SVDD: with efa =1
' and 0<q; <C,
i=1,n

for a given C < 1. If C is larger than one it is useless (it's the no slack case)

RP=p+c'c

with p denoting the Lagrange multiplier associated with the equality
constraint >7 ; a; = 1.



Variations over SVDD

e Adaptive SVDD: the weighted error case for given w;,i =1,n

n
min R+ C w;&;
ceRP,RER,EER" + Z idi

i=1
with Ixi — c|*> < R+&
& =0 i=1n

The dual of this problem is a QP [see for instance Liu et al., 2013]

acR"”

min o' XX a—a'diag(XX")
with E;’:la;zl 0<a; < Cw i=1,n

o Density induced SVDD (D-SVDD):

n
min R+ C ;
c€RP,RER,ECR" Z §i

i=1
with wil[x; — c||? < R+&;
gi > 0 = 17 n
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SVDD in a RKHS

The feature map: RP — H
c — f(o)
X; — /((X,'7 O)

Ixi — cline < B2 [[k(xi,®) ~ F(o)]f3, < 2

Kernelized SVDD (in a RKHS) is also a QP
. 2 .
Fer.RER ccRn R+ C;f,
with — [[k(xi. o) — F(o)3 < R2+E  i=
§ >0 =



SVDD in a RKHS: KKT, Dual and R?

L = R2+CZ£,+ZO<, Ik(xi,.) = FOIB = RP=&) = > Biti
=1

- R2+CZ£,+Z a;i(k(xi,xi) = 2F(xi) + [IF 13, — R*=&) = > Bi&
i=1

KKT conditions
@ Stationarity

» 2f ()7 o — 237 aik(.,x;)) =0 <« The representer theorem

> 1 - Z, L0 =0
» C—a;—B;=0

@ Primal admissibility: ||k(x;,.) — F()I?P < R?+ &, & >0
@ Dual admissibility: a; >0, 5; >0
@ Complementarity

> ai([lk(xi,.) = f()IIP—R?*—¢&) =0
» Bi&i =0



SVDD in a RKHS: Dual and R?

:iaik(xi, x;) 2Zf )+ IFI3,  with f(. Za,k( x;)
i=1
:;a;k(x;, i ZZ@ aj k(x;, X;)

i=1 1
Jj= Gii

G,'J' = k(X,’,XJ')
min o' Ga — o diag(G)
(e}
with ela=1
and 0< ;< C, i=1...n

As it is in the linear case:
R =+ |3

with 1 denoting the Lagrange multiplier associated with the equality
constraint Y7, o; = 1.



SVDD train and val in a RKHS
Train using the dual form (in: G, C; out: «, )

min o' Ga — o' diag(G)
with ela=1

and 0< ;< C, i=1...n

Val with the center in the RKHS: £(.) = >"7; aik(., x;)

o(x) = Ilk(x,.) — FO)I3, - R?
= k(e Il — 2k(x, ). FC)a +IFCII5, — R?
= k(2x x) —2f(x) + R?2 — u — R?

f(nx) + k(x,x) — p
-2 Z aik(x,x;) + k(x,x) — p

i=1

@(x) = 0 is the decision border
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An important theoretical result

For a well-calibrated bandwidth,
The SVDD estimates the underlying distribution level set [Vert and Vert,
2006]

The level sets of a probability density function IP(x) are the set

G, = (xe R?| P(x) = p}

It is well estimated by the empirical minimum volume set

Vo = {(x € R | [[k(x..) ~ F()]3 — R> > 0}

The frontiers coincides



SVDD: the generalization error

For a well-calibrated bandwidth,
(X1,...,%p) i.i.d. from some fixed but unknown IP(x)

Then [Shawe-Taylor and Cristianini, 2004] with probability at least 1 — 9,
(Vo €]0,1[), for any margin m > 0

2
6R 43 In(2/6)
my/n 2n

1 n
P(|lk(x,.) = FO)lI5 = R*+ m) < E;& +



Equivalence between SVDD and OCSVM for translation
invariant kernels (diagonal constant kernels)

Theorem

Let H be a RKHS on some domain X endowed with kernel k. If there
exists some constant ¢ such that Vx € X, k(x,x) = c, then the two
following problems are equivalent,

min R+ C ; min  i||f|Z —p+C D ¢
my RO v IR~ p+
with [[k(xi,) = F()IZ, < R+& widn S e

§& >0 i=1,n gi >0 i=1,n

with p = 3(c + [IF|3 — R) and &; = 3¢;.




Proof of the Equivalence between SVDD and OCSVM

min R+ Ciﬁ;

feH,RER,EER" Py
with Ik(xi,) = FOIF < R+&, &>0  i=1n
since [|k(x;, ) = F()I5, = k(xi,xi) + [I£]15, — 2f (x)
renAteens RTCLE
with 2f(xi) > k(xj,xi) + I3, — R=&, & >0 i=1n.

)

Introducing p = 3(c + ||f||3, — R) that is R = ¢ + ||f||3, — 2p, and since k(x;,x;)

is constant and equals to ¢ the SVDD problem becomes

n
i Lif112, — < .
feH,pneq{Q,feR" 2” HH P 2 ;&
with f(X,') > p—%f,’, 5,' >0 i=1,n



leading to the classical one class SVM formulation (OCSVM)

n
. 16|12
min =flls, —p+ C €;
feH,peR ECR” 21l = p ; !
with f(xi)>p—cei e >0 i=1n

with ¢; = %f,-. Note that by putting v = % we can get the so called v

formulation of the OCSVM

min
freM,p'eR, &R -
with f'(xi) > p' =&, £ >0 i=1,n

n
SIFB, =g+ ¢
i=1

with ' = Cf, p' = Cp, and ¢’ = C¢.



Duality
Note that the dual of the SVDD is
min a' Ga—a'g
acR"
with > 7 jai=1 0<aq;<C i=1,n
where G is the kernel matrix of general term G;; = k(x;,x;) and g the

diagonal vector such that g; = k(x;,x;) = c. The dual of the OCSVM is
the following equivalent QP

min %aTGa
aceR”
with Y7 a;=1 0<a;<C  i=1n

Both dual forms provide the same solution «, but not the same Lagrange
multipliers. p is the Lagrange multiplier of the equality constraint of the

dual of the OCSVM and R = ¢ + o' Ga — 2p. Using the SVDD dual, it
turns out that R = A\eg + ' G where \oq is the Lagrange multiplier of
the equality constraint of the SVDD dual form.
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The two class Support vector data description (SVDD)

.@
®
®
b, mic(See T 6)
Al R Y 6
with  ||x; — c||2 R2+£ & >0 isuchthaty, =1
and xi —c||> > R?—¢;, & >0 i such that y; = —1
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The two class SVDD as a QP
min - RHC(Y g+ Y &)

yi=1 yi=—1

with  [|x; — ¢[]® < R*+¢], & >0

and [lx; —¢|* > R?-¢, & >0

i[> — 2% ¢ + [|]|* < R?+¢/, & >0
i[> = 2x ¢ + [|e]|* > R?—¢7, & >0
2x/c > lc]]® = R? + [xi[IP=¢f & >0
-2xj/ ¢ > —|c[]* + R? — |Ixi[*=¢7, & >0
2yixf e > yi(l[c]? — R? + [[xilI*) ¢, & >0

change variable: p = ||c[|? — R?

min e[ —p + CX1, &
c,p,€

with  2y;x;Tc > yi(p — [|xi[*) =&
and & >0

i such that y; =1
i such that y; = —1

i such that y; =1
i such that y; = —1

i such that y;
i such that y;

i=1,n

- -

)

_ =

S S



The dual of the two class SVDD

i = viyixix]
min ol Ga— 3, aiyilxl?

n
The dual formulation: with Zyiai -1
i1

OSOZ,'SC i:1,n
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The two class SVDD vs. one class SVDD

The two class SVDD (left) vs. the one class SVDD (right)
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Small Sphere and Large Margin (SSLM) approach

Support vector data description with margin [Wu and Ye, 2009]

e RHC( )
R VA
with |[x; — cH2 <R%?- 1—6—5,+ & >0 i such that y; =1
and xi —cll?>R>+1-¢7, & >0 isuchthaty, =—1

[xi —c?>R?+1-¢ and y; = -1 <= yillx; —c|]> < y;R? — 14¢;

L(c,R & a,8)=R+CY &+ ai(yillxi — ¢l — yiR? +1-&) = > Big;

i=1 i=1




SVDD with margin — dual formulation

L(c, R & a,B)=R*+CY &+ Y ai(yillxi —c? — yiR* +1-&) = > Bi¢;

i=1 i=1

n
Optimality: ¢ = Zoz,-y,-x,- : Za, yvi=1 0<a;<C
i=1

£(a) Zo« yillxi - Zaij,u +Zo«
S D) L x,+Z||x,u yiai + za,

i=1 j=1

Dual SVDD is also a quadratic program
min o' Ga—ela—fla
problem D with yla=1
and 0<a;<C i=1,n

with G a symmetric matrix n x n such that G; = y,-ijij,- and f; = ||x;||?y;




Conclusion

@ Applications

» outlier detection
» change detection

» clustering

» large number of classes
» variable selection, ...

@ A clear path
» reformulation (to a standart problem)
» KKT
» Dual
» Bidual
@ a lot of variations
» L2 SVDD
» two classes non symmetric
» two classes in the symmetric classes (SVM)
» the multi classes issue

@ practical problems with translation invariant
kernels
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