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@ Separating hyperplanes
@ The margin
@ Linear SVM: the problem
@ Linear programming SVM

""The algorithms for constructing the separating hyperplane considered
above will be utilized for developing a battery of programs for pattern
recognition.” in Learning with kernels, 2002 - from V .Vapnik, 1982



Hyperplanes in 2d: intuition

It's a linel



Hyperplanes: formal definition

Given vector v € RY and bias a € R J

Hyperplane as a function h,

h: RY — R
x +— h(x)=vix+a

Hyperplane as a border in RY
(and an implicit function)

A(v,a) = {x e R? ]vTx—l—azo}

The border invariance property A={xeR?|v x+ax0}

the decision border

Vk e R, A(kv,ka) = A(v,a)



Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign (vTx + a)
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Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign(v'x + a)

the decision border:

vix+a=0

there are many solutions...
The problem is ill posed

How to choose a solution?




This is not the problem we want to solve

{(xj,yi); i =1:n} a training sample, i.i.d. drawn according to IP(x, y)
unknown

we want to be able to classify new
observations: minimize IP(error)
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Looking for a universal approach

R T s @ use training data: (a few errors)
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This is not the problem we want to solve

{(xi,yi); i =1:n} a training sample, i.i.d. drawn according to IP(x,y)
unknown

we want to be able to classify new
observations: minimize IP(error)

Sl Looking for a universal approach
@ use training data: (a few errors)

@ prove IP(error) remains small

@ scalable - algorithmic complexity

with high probability (for the canonical hyperplane):

P(error) < I/IS(error) + o( )
~——

margin
=0 here M




Margin guarantees

min  dist(x;, A(v, a))
i€[1,n]

margin: m

Theorem (Margin Error Bound)

Let R be the radius of the smallest ball Br(a) = {x € RY | |x —c|| < R},

containing the points (X1, ...,X,) i.i.d from some unknown distribution 1P.
Consider a decision function D(x) = sign(v ' x) associated with a
separating hyperplane v of margin m (no training error).

Then, with probability at least 1 — § for any 6 > 0, the generalization error
of this hyperplane is bounded by

IP(error) < 2\/’?2 + 3\/'”(2/5)

n m? 2n




Statistical machine learning — Computation learning theory

(COLT)




Statistical machine learning — Computation learning theory

(COLT)

X

|
oyt A =Vt 2

!

y Loss L— yp = f(x)

=

®

IP(error) < P error)

error (
vIP € P Prob( ( ) < %L(f(xi),)/i)

+ w(vil) ) > 6



linear discrimination

Find a line to classify blue and red

D(x) = sign (vTx + a)

0 ° the decision border:

vix+a=0

How to choose a solution ?
=

there are many solutions...
The problem is ill posed

choose the one with larger margin
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Maximize our confidence = maximize the margin
the decision border: A(v,a) = {x € R? | vix+a=0}
maximize the margin

max min_dist(x;, A(v, a))
v,a  ig[l,n]

/

~~

margin: m

Maximize the confidence

max m
v,a
Tsrs
% with  min o4&l >
i=Ln  ||v]|

the problem is still ill posed

if (v, a) is a solution, ¥ 0 < k (kv, ka) is also a solution. ..




Margin and distance: details

Theorem (The geometrical margin)

Let x be a vector in R? and A(v,a) = {s € R? |vis+a=0}an
hyperplane. The distance between vector x and the hyperplane A(v, a)) is

dist(x;, A(v,a)) = %

Let sx be the closest point to x in A, sy = argmin ||x —s||. Then
s€EA

v v
X =Sx +r—r r—— = X— Sx
(vl vl

So that, taking the scalar product with vector v we have:

Trﬂ =vi(x—sx)=V X—V'sy=v x+a—(vsx+a)=v x+a
v (S
=0
and therefore
- vix+a
fIvll
leading to:
~vTx+ 3

dist(x;, A(v, a)) = ;neig Ix=s||=r= T



Geometrical and numerical margin

[vTx + al
(vl

the geometrical margin

d(x,A) =

)
S

-
" m=|vix+ al
(xb,v " xp + 2) the numerical margin
A={xecR?|vix+a=0}

the decision border



From the geometrical to the numerical margin

Valeur de la marge dans le cas mono

dimensionnel

xIwx=0}

with yi(w'x; +b)>1 ;i=1,n

and

00 0 +1

1wl
=1iwl
1 - -
-
change variable: w =
max m
w,b

m= L
wi

Maximize the (geometrical) margin

max m
v,a
Ty.
with  min v_xi + 4] >
o I

if the min is greater, everybody is greater
(yf € {_17 1})

max m
v,a .
with yi(v_xi +2) >m, i=1,n
v
_ _ 1
m\‘|’v|| and b = mﬁ’v” = ||lw|| = -
min  ||wl[?
with yi(w'x; +b) > 1
i=1,n



The canonical hyperplane

min  |lw]?
with y;(w'x; +b) > 1 i=1,n

Definition (The canonical hyperplane)
An hyperplane (w, b) in IRY is said to be canonical with respect the set of
vectors {x; € RY,i = 1,n} if

min |w'x; 4+ b| =1

1I=1,

so that the distance

min dist(x;, A(w, b)) =
fmin, distlxi, Aw, D)) = =0 = ]

The maximal margin (=minimal norm) canonical hyperplane
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Linear SVM: the problem

The maximal margin (=minimal norm)
canonical hyperplane

Linear SVMs are the solution of the following problem (called primal)

Let {(x;,y;); i=1:n} be a set of labelled data with x € RY, y; € {1, -1}
A support vector machine (SVM) is a linear classifier associated with the
following decision function: D(x) = sign(w ' x + b) where w € R and

b € IR a given thought the solution of the following problem:

min 5wl
weRY, beR
with  yi(w'x;+b)>1, i=1n

min % z2'Az—d"z

This is a quadratic program (QP): z
. prog (Q){With Bz<e




Support vector machines as a QP
The Standart QP formulation

min 3 [jwl? min  1zTAz—d'z
) = ZE]{d+1
with yi(w'x; +b)>1,i=1n with Bz<e

2= (w.b) d= (0. 0) A= | o 0], B = ~[isgy)X.y] and
e=—(1,...,1)7

Solve it using a standard QP solver such as (for instance)

% QUADPROG Quadratic programming.

% X = QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:
%

7 min 0.5%x’xH*x + f2xx subject to: A*x <= b

% x

% so that the solution is in the range LB <= X <= UB

For more solvers (just to name a few) have a look at:

@ plato.asu.edu/sub/nlores.html#QP-problem
@ www.numerical.rl.ac.uk/people/nimg/qp/qp.html


plato.asu.edu/sub/nlores.html#QP-problem
www.numerical.rl.ac.uk/people/nimg/qp/qp.html
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Other SVMs: Equivalence between norms

@ [ norm max  m
m,v,a
@ variable selection 1
- T
(especially with with  yi(v' xj +a) = m|v[z = m ﬁHVHl
redundant noisy features) i=1,n

@ Mangassarian, 1965
1-norm or Linear Programming-SVM (LP SVM)

o _ P i
{ min - [lwll =357, [wl

with yi(w'x;+b)>1; i=1,n

Generalized SVM (Bradley and Mangasarian, 1998)
min  [lwZ
with YI(WTX; +b)>1; i=1n

p=2: SVM, p = 1: LPSVM (also with p = ), p = 0: Lo SVM,
p= 1 and 2: doubly regularized SVM (DrSVM)



Linear support vector support (LP SVM)

. _ +
min  fwll = W W
with yi(w'x; + b) > 1 : i=1,n
w=w"—w" with wm>0andw™ >0

The Standart LP formulation

min  fTx
with Ax <d
and 0<x

x=[ww; b f=[1...1,0] d=—[1...1]7 A= [-yiXiyiXi — yi]

% linprog(f,A,b,Aeq,beq,LB,UB)

% attempts to solve the linear programming problem:
% min f’xx subject to: A*xx <= D

) x

% so that the solution is in the range LB <= X <= UB



An example of linear discrimination: SVM and LPSVM

— true line
——QPSVM
[} LPSVM
o
o

o

Figure: SVM and LP SVM



The linear discrimination problem

...the story of the sheep dog who was herding his sheep, and serendipitously invented

the large margin classification and Sheep Vectors ...

(drawing by Ana Martin Larranaga)

from Learning with Kernels, B. Schélkopf and A. Smolla, MIT Press, 2002.



Conclusion

SVM =
@ Separating hyperplane (to begin with the simpler)

@ + Margin, Norm and statistical learning
@ + Quadratic and Linear programming (and associated rewriting issues)
@ + Support vectors (sparsity)

SVM preforms the selection of the most relevant data points
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