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"The algorithms for constructing the separating hyperplane considered
above will be utilized for developing a battery of programs for pattern
recognition." in Learning with kernels, 2002 - from V .Vapnik, 1982



Hyperplanes in 2d: intuition

It’s a line!



Hyperplanes: formal definition

Given vector v ∈ IR
d and bias a ∈ IR

Hyperplane as a function h,

h : IR
d −→ IR

x 7−→ h(x) = v⊤x + a

Hyperplane as a border in IR
d

(and an implicit function)

∆(v, a) = {x ∈ IR
d

∣∣ v
⊤
x + a = 0}

The border invariance property

∀k ∈ IR, ∆(kv, ka) = ∆(v, a)

∆ = {x ∈ IR
2 | v⊤

x + a = 0}

the decision border

∆

(x, h(x)) = v
⊤
x + a)

(x, 0)

h
(x
)

d(x,∆)



Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign
(
v
⊤
x + a

)
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Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign
(
v
⊤
x + a

)

the decision border:

v
⊤
x + a = 0

there are many solutions...
The problem is ill posed

How to choose a solution?



This is not the problem we want to solve

{(xi , yi ); i = 1 : n} a training sample, i.i.d. drawn according to IP(x, y)
unknown

we want to be able to classify new
observations: minimize IP(error)
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{(xi , yi ); i = 1 : n} a training sample, i.i.d. drawn according to IP(x, y)
unknown

we want to be able to classify new
observations: minimize IP(error)

Looking for a universal approach

use training data: (a few errors)

prove IP(error) remains small

scalable - algorithmic complexity

with high probability (for the canonical hyperplane):

IP(error) < ÎP(error)︸ ︷︷ ︸
=0 here

+ ϕ(
1

margin︸ ︷︷ ︸
=‖v‖

)

Vapnik’s Book, 1982



Margin guarantees

min
i∈[1,n]

dist(xi ,∆(v, a))

︸ ︷︷ ︸
margin: m

Theorem (Margin Error Bound)

Let R be the radius of the smallest ball BR(a) =
{
x ∈ IR

d | ‖x − c‖ < R
}
,

containing the points (x1, . . . , xn) i.i.d from some unknown distribution IP.
Consider a decision function D(x) = sign(v⊤x) associated with a
separating hyperplane v of margin m (no training error).

Then, with probability at least 1 − δ for any δ > 0, the generalization error
of this hyperplane is bounded by

IP(error) ≤ 2

√
R2

n m2
+ 3

√
ln(2/δ)

2n

R

v’x = 0

m

theorem 4.17 p 102 in J Shawe-Taylor, N Cristianini Kernel methods for pattern analysis, Cambridge 2004



Statistical machine learning – Computation learning theory

(COLT)

{xi , yi}{xi , yi}
i = 1, n

A f = v⊤x + a

x

yp = f (x)

ÎP(error)
=

1
n
L(f (xi ), yi )

Loss L

Vapnik’s Book, 1982



Statistical machine learning – Computation learning theory

(COLT)

{xi , yi}{xi , yi}
i = 1, n

A f = v⊤x + a

x

yp = f (x)

ÎP(error)
=

1
n
L(f (xi ), yi )

Loss Ly

IP(error)
=

IE(L)
∀IP ∈ P

P IP

Prob
( )

≥ δ≤ + ϕ(‖v‖)

Vapnik’s Book, 1982



linear discrimination

Find a line to classify blue and red

D(x) = sign
(
v
⊤
x + a

)

the decision border:

v
⊤
x + a = 0

there are many solutions...
The problem is ill posed

How to choose a solution ?

⇒ choose the one with larger margin
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Maximize our confidence = maximize the margin

the decision border: ∆(v, a) = {x ∈ IR
d

∣∣ v
⊤
x + a = 0}

0

0

0

margin

maximize the margin

max
v,a

min
i∈[1,n]

dist(xi ,∆(v, a))

︸ ︷︷ ︸
margin: m

Maximize the confidence




max
v,a

m

with min
i=1,n

|v⊤xi + a|
‖v‖ ≥ m

the problem is still ill posed

if (v, a) is a solution, ∀ 0 < k (kv, ka) is also a solution. . .



Margin and distance: details

Theorem (The geometrical margin)

Let x be a vector in IR
d and ∆(v, a) = {s ∈ IR

d
∣∣ v⊤s + a = 0} an

hyperplane. The distance between vector x and the hyperplane ∆(v, a)) is

dist(xi ,∆(v, a)) = |v⊤x+a|
‖v‖

Let sx be the closest point to x in ∆ , sx = arg min
s∈∆

‖x − s‖. Then

x = sx + r
v

‖v‖
⇔ r

v

‖v‖
= x − sx

So that, taking the scalar product with vector v we have:

v
⊤r

v

‖v‖
= v

⊤(x − sx ) = v
⊤

x − v
⊤

sx = v
⊤

x + a − (v⊤sx + a)
︸ ︷︷ ︸

=0

= v
⊤

x + a

and therefore

r =
v
⊤

x + a

‖v‖

leading to:

dist(xi ,∆(v, a)) = min
s∈∆

‖x − s‖ = r =
|v⊤x + a|

‖v‖



Geometrical and numerical margin

∆ = {x ∈ IR
2 | v⊤

x + a = 0}

the decision border

∆

d(x,∆) =
|v⊤

x + a|

‖v‖

the geometrical margin

d(xb,∆)

(xr , v
⊤
xr + a)

(xr , 0)
m

r d(xr ,∆)

(xb, v
⊤
xb + a)

m
b

(xb, 0)

m = |v⊤
x + a|

the numerical margin



From the geometrical to the numerical margin

+1

1

1/|w|

1/|w|

{x | w
T
x = 0}

marge< >

x

w
T
x

Valeur de la marge dans le cas monodimensionnel

Maximize the (geometrical) margin



max
v,a

m

with min
i=1,n

|v⊤xi + a|
‖v‖ ≥ m

if the min is greater, everybody is greater
(yi ∈ {−1, 1})





max
v,a

m

with
yi (v

⊤xi + a)

‖v‖ ≥ m, i = 1, n

change variable: w = v

m‖v‖ and b = a
m‖v‖ =⇒ ‖w‖ = 1

m





max
w,b

m

with yi (w
⊤xi + b) ≥ 1 ; i = 1, n

and m = 1
‖w‖





min
w,b

‖w‖2

with yi (w
⊤xi + b) ≥ 1

i = 1, n



The canonical hyperplane

{
min
w,b

‖w‖2

with yi (w
⊤xi + b) ≥ 1 i = 1, n

Definition (The canonical hyperplane)

An hyperplane (w, b) in IR
d is said to be canonical with respect the set of

vectors {xi ∈ IR
d , i = 1, n} if

min
i=1,n

|w⊤
xi + b| = 1

so that the distance

min
i=1,n

dist(xi ,∆(w, b)) =
|w⊤x + b|

‖w‖ =
1

‖w‖

The maximal margin (=minimal norm) canonical hyperplane
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Linear SVM: the problem

The maximal margin (=minimal norm)
canonical hyperplane

0

0

0

margin

Linear SVMs are the solution of the following problem (called primal)

Let {(xi , yi ); i = 1 : n} be a set of labelled data with x ∈ IR
d , yi ∈ {1,−1}

A support vector machine (SVM) is a linear classifier associated with the
following decision function: D(x) = sign

(
w⊤x + b

)
where w ∈ IR

d and
b ∈ IR a given thought the solution of the following problem:

{
min

w∈IR
d
, b∈IR

1
2
‖w‖2

with yi (w
⊤xi + b) ≥ 1 , i = 1, n

This is a quadratic program (QP):

{
min

z

1

2
z⊤Az − d⊤z

with Bz ≤ e



Support vector machines as a QP

The Standart QP formulation

{
min
w,b

1
2
‖w‖2

with yi (w
⊤xi + b) ≥ 1, i = 1, n

⇔
{

min
z∈IR

d+1

1
2

z⊤Az − d⊤z

with Bz ≤ e

z = (w, b)⊤, d = (0, . . . , 0)⊤, A =

[
I 0
0 0

]
, B = −[diag(y)X , y] and

e = −(1, . . . , 1)⊤

Solve it using a standard QP solver such as (for instance)

% QUADPROG Quadratic programming.

% X = QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:

%

% min 0.5*x’*H*x + f’*x subject to: A*x <= b

% x

% so that the solution is in the range LB <= X <= UB

For more solvers (just to name a few) have a look at:

plato.asu.edu/sub/nlores.html#QP-problem

www.numerical.rl.ac.uk/people/nimg/qp/qp.html

plato.asu.edu/sub/nlores.html#QP-problem
www.numerical.rl.ac.uk/people/nimg/qp/qp.html
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Other SVMs: Equivalence between norms

L1 norm

variable selection
(especially with
redundant noisy features)

Mangassarian, 1965





max
m,v,a

m

with yi (v
⊤xi + a) ≥ m ‖v‖2 ≥ m

1√
d
‖v‖1

i = 1, n

1-norm or Linear Programming-SVM (LP SVM)
{

min
w,b

‖w‖1 =
∑p

j=1
|wj |

with yi (w
⊤xi + b) ≥ 1 ; i = 1, n

Generalized SVM (Bradley and Mangasarian, 1998)

{
min
w,b

‖w‖p
p

with yi (w
⊤xi + b) ≥ 1 ; i = 1, n

p = 2: SVM, p = 1: LPSVM (also with p = ∞), p = 0: L0 SVM,
p= 1 and 2: doubly regularized SVM (DrSVM)



Linear support vector support (LP SVM)
{

min
w,b

‖w‖1 =
∑p

j=1
w+

j + w−

j

with yi (w
⊤xi + b) ≥ 1 ; i = 1, n

w = w
+ − w

− with w
+ ≥ 0 and w

− ≥ 0

The Standart LP formulation




min
x

f⊤x

with Ax ≤ d

and 0 ≤ x

x = [w+;w−; b] f = [1 . . . 1; 0] d = −[1 . . . 1]⊤ A = [−yiXi yiXi − yi ]

% linprog(f,A,b,Aeq ,beq ,LB,UB)

% attempts to solve the linear programming problem:

% min f’*x subject to: A*x <= b

% x

% so that the solution is in the range LB <= X <= UB



An example of linear discrimination: SVM and LPSVM

 

 

true line

QP SVM

LPSVM

Figure: SVM and LP SVM



The linear discrimination problem

from Learning with Kernels, B. Schölkopf and A. Smolla, MIT Press, 2002.



Conclusion

SVM =

Separating hyperplane (to begin with the simpler)

+ Margin, Norm and statistical learning

+ Quadratic and Linear programming (and associated rewriting issues)

+ Support vectors (sparsity)

SVM preforms the selection of the most relevant data points
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