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ALGEBRAIC AND HOMOLOGICAL PROPERTIES OF POWERS AND

SYMBOLIC POWERS OF IDEALS

JÜRGEN HERZOG

Lahore, February 21–28, 2009

1. LECTURE: ON THE REGULARITY OF POWERS OF AN IDEAL

In this lecture we study the asymptotic behaviour of Catelnuovo–Mumford regularity of

powers of a graded ideal I and give a proof of the theorem, proved by Cutkosky, Herzog,

Trung [3] and Kodiyalam [7], that the regularity of Ik is a linear function of k for large

k. First we recall some basis facts from commutative homological algebra. We consider

graded free resolutions, regularity and projective dimension of a graded ideal and the Rees

algebra associated to an ideal.

The study of powers of an ideal was initiated by a result of Bertram, Ein and Lazarsfeld

[1] who proved the following vanishing theorem: let X be a smooth projective variety, and

let dX denote the minimum of the degrees d such that X is a scheme-theoretic intersection

of hypersurfaces of degree at most d. Then there is a number e such that

H i(Ps,I n
X (a)) = 0 for all a ≥ ndX + e, i ≥ 1.

The proof uses the Kodaira vanishing theorem. Later Swanson [8] showed that for any

graded ideal I ⊂ K[x1, . . . ,xn] the regularity of its powers are bounded by a linear func-

tion. In case that dimS/I one even has reg(Ik) ≤ k reg(I), as was shown by Geramita,

Gimigliano and Pittelloud [4] and Chandler [2].

Let K be field and S = K[x1, . . . ,xn] the polynomial ring over K. We consider S as a

standard graded K-algebra by assigning to each xi the degree 1. Let M be a a finitely

generated graded S-module. Then M admits a minimal graded free resolution

0 −→ Fp −→ ·· · −→ F1 −→ F0 −→ M −→ 0,

with Fi =
⊕βi

j=1 S(−ai j) for i = 0, . . . , p. The numbers ai j are uniquely determined by M.

In fact, since the resolution is minimal, one obtains the graded isomorphisms

Tori(M,S/m) ∼= Hi(F ⊗S S/m) ∼= Fi/mFi
∼=

⊕

j

K(−ai j).
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We write

Fi =
⊕

j

S(− j)βi j(M),

and call βi j = βi j(M) the i jth graded Betti number of M.

The graded Betti numbers determine the most important invariants of M: dimM, depthM,

the Hilbert series and multiplicity of M, the a-invariant, and of course

projdimM = max{i : βi j 6= 0 for some j},

and

regM = max{ j : βi,i+ j 6= 0 for some i}.

Now let I ⊂ S be a graded ideal. What can be said about reg(Ik) as a function of k? For

example, if I = (x2
1x2,x

2
1x2

4,x2x2
4), then a calculation with CoCoA shows that reg(Ik) = 4k

for k ≤ 5.

Theorem 1.1 (Cutkosky-Herzog-Trung, Kodiyalam). Let I ⊂ S be a graded ideal. Then

reg(Ik) = ak + c for k ≫ 0.

For the proof of the theorem one considers the Rees algebra of I:

R(I) =
⊕

k≥0

Iktk ⊂ S[t].

The Rees algebra has a natural bigraded structure. For ( j,k) we set R(I)( j,k) = (Ik) jt
k.

Then R(I) =
⊕

( j,k)∈Z2 R(I)( j,k).

Let I = ( f1, . . . , fm), deg fi = di, and consider the S-algebra homomorphism

ε : T = S[y1, . . . ,ym] −→ R(I) = S[It], y j 7→ f jt.

We set degxi = (1,0) and degy j = (d j,1) for all i and j. Then ε : T → R(I) is an epi-

morphism of bigraded algebras. Thus we may view R(I) a bigraded T -module and may

consider its bigraded minimal free T -resolution

· · · −→ G1 −→ G0 −→ R(I) −→ 0.

For any bigraded T -module E we set Ek = ⊕ jE( j,k). The each Ek is a graded S-module.

The bigraded T -resolution of R(I) yields for each k a graded free S-resolution

· · · −→ (G1)k −→ (G0)k −→ R(I)k = Ik −→ 0.

Thus the bigraded resolution T -resolution of R(I) encodes all graded S-resolutions of the

powers Ik of I. The resolution obtained in this way are in general not minimal, but the

information provided by them allows to deduce Theorem 1.1. The details of the proof can

be found in [3].

The proof of Theorem 1.1 as given in [3] provides some more information. For a

finitely generated graded S-module M we set

regi(M) = max{ j : βi,i+ j(M) 6= 0}.

Then one has

regi(I
k) = aik + ci for k ≫ 0,

and hence reg(Ik) = maxi{aik + ci} for k ≫ 0.
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Problem 1.2. Is it true that all ai are the same. This is known to be true for i ≤ height I,

[6].

Additional information:

(1) Let reg(Ik) = ak + c for k ≫ 0. Kodiyalam showed that

a = min{reg0(J) : J is a graded reduction of I}.

A graded reduction of I is a graded ideal J such that Ik+1 = JIk for all k ≫ 0. In particular

it follows that

a ≤ reg0(I) = d(I) = highest degree of a generator in a minimal set generators of I.

(2) limk→∞ d(Ik)/k = limk→∞ reg(Ik)/k.

(3) Let I be a graded ideal generated in degree d with dimS/I = 0. Then reg(Ik) = kd +ck

with c1 ≥ c2 ≥ ·· · , and this sequence stabilizes.

Eisenbud, Huneke and Ulrich [6] proved, that if dimS/I = 0 and I has linear relations,

then Ik has a linear resolution for k ≫ 0.
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2. LECTURE: POWERS OF IDEALS WITH LINEAR RESOLUTION AND LINEAR

QUOTIENTS

If an ideal I has a linear resolution, then this does not imply that all powers Ik of I

have a linear resolution. The Stanley–Reisner ideal of the projective plane is such an

example, as was first observed by Terai. There are examples given by Conca [5] which

demonstrate that the powers of an ideal may all have a linear resolution up to given power

k, but then fail to have a linear resolution for the (k + 1)th power. On the other hand it

will be shown that if the defining ideal J of the Rees algebra R(I) of I satisfies a certain

Gröbner basis condition, then all powers do indeed have a linear resolution. A somewhat

stronger condition on the Gröbner basis makes even sure that all powers of I have linear

quotients. Finally we discuss ideals whose powers are componentwise linear and present

some open conjectures.
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We begin with the example of Conca [5]: Let I = (x1zd
1,x1zd

2,x2zd−1
1 z2,) + (z1,z2)

d+1.

Then reg(Ik) = k(d + 1), i.e. Ik has a linear resolution for k < d, while reg(Id) ≥ d(d +
1)+(d −1), i.e. Id goes not have a linear resolution.

The question arises how one check that all powers of I have a linear resolution. We

assume that all generators f1, . . . , fm of I have the same degree d. Then the Rees ring R(I)
can be given the standard bigrading:

degxi = (1,0), deg f j = (0,1),

and we set degy j = (0,1), so that T = S[y1, . . . ,ym] is a standard bigraded K-algebra. Let

0 → Fp −→ ·· · −→ F0 −→ R(I) −→ 0

a minimal bigraded free T -resolution. Then

Fi =
⊕

j

T (−ai j,−bi j) for i = 0, . . . , p.

Definition 2.1. The x-regularity of R(I) is the number regx(R(I)) = maxi, j{ai j − i}.

With the methods used in the proof of Theorem 1.1 one gets

Theorem 2.2 (Römer). reg(Ik) ≤ kd + regx R(I) for all k.

Corollary 2.3. If regx R(I) = 0, then all powers of I have a linear resolution.

The x-regularity is not so easy to determine. But one has the following weaker condi-

tion which guarantees that all powers of I have a linear resolution.

Corollary 2.4 (Herzog-Hibi-Zheng). Suppose I is generated in one degree, and write

R(I) = T/J. Then each power of I has a linear resolution, if for some monomial order <
on T , the ideal J has Gröbner basis G, whose elements are at most linear in the xi, that

is, degx f ≤ 1 for all f ∈ G.

This criterion was used in [3] to prove the following

Theorem 2.5 (Herzog-Hibi-Zheng). Let I be an ideal generated in degree 2 with linear

resolution. Then all powers of I have a linear resolution.

Ideals with linear resolution arise naturally as follows:

Definition 2.6. Let I be a graded ideal which is generated in one degree. Then I has

linear quotients, if I can be minimally generated by f1, . . . , fm such that the colon ideals

( f1, . . . , fi−1) : fi are generated by linear forms for i = 1, . . . ,m.

One easily proves

Proposition 2.7. If I has linear quotients, then I has a linear resolution.

Examples 2.8. (1) Let I be generated by all (squarefree) monomials of degree d. Then I

has linear quotients with respect to the lexicographic order of the generators.

(2) Let I be the Stanley–Reisner ideal of the natural triangulation of the real projective

plane. The I has a linear resolution, but no linear quotients.

(3) Let P be a finite poset. A subset I ⊂ P is called a poset ideal, if for p ∈ I and q ≤ p it

follows that q ∈ I. We denote by I (P) the set of all poset ideals of P, and define the ideal
4



HP ⊂K[{xp,yp}p ∈ P] which is generated by the monomials ∏p∈P xp ∏p6∈P yp, I ⊂I (P).
Then all powers of the ideal HP have linear quotients. This can be shown by using the

following theorem.

Let I be a monomial ideal minimally generated by u1, . . . ,um with all ui of same degree.

As before we consider the presentation T = S[y1, . . . ,ym] → R(I), yi 7→ uit, and define a

monomial order as follows:

(1) Let <lex be the lexicographic order induced by x1 > x2 > · · · > xn.

(2) Let <♯ be any monomial order on K[y1, . . . ,ym]. Then if u = xayb, v = xcyd , we

set u <♯
lex v, if

(i) yb <♯ yd , or

(ii) yb = yd and xa <lex xc.

Theorem 2.9 (Herzog-Hibi). If I satisfies the x-condition with respect to <♯
lex, then all

powers of I have linear quotients.

A natural generalization of the concept linear resolution, is that of componentwise

linearity.

Definition 2.10. A graded ideal I ⊂ S is said to be componentwise linear, if (I j) has a

linear resolution for all j.

If I has a linear resolution, then it is componentwise linear.

Examples 2.11. (1) Any stable monomial ideal is componentwise linear.

(2) Let G be a graph on the vertex set [n]. A vertex cover of G is a subset C of [n] such

that C∩{i, j} 6= /0 for all edges {i, j} of G. C is called minimal, if no proper subset of C

is a vertex cover.

Let G be a chordal graph. We consider the ideal

IG = {xC : C is a minimal vertex cover of G}

of vertex covers of G. Francisco and van Tuyl proved [2] that IG is componentwise linear.

Conjectures: (1) If G is a chordal graph, then all powers of G are componentwise linear.

(2) Let I be the defining ideal of a rational normal scroll, i.e. the ideal of 2-minors of a

matrix consisting of blocks where each block is of the form

Then all powers of I have a linear resolution. This is proved in several cases, for

example when I is the ideal of 2-minors of

In both cases conjectured here, the x-condition does not help. However there exist a

necessary and sufficient condition for an ideal I that all its powers are componentwise

linear. To describe this condition we recall

Definition 2.12 (Huneke). Let R be a ring and M an R-module. A sequence f1, . . . , fm ∈ R

is called a d-sequence with respect to M, if

( f1, . . . , fi−1)M :M fi ∩ ( f1, . . . , fm)M = ( f1, . . . , fi−1)M for all i = 1, . . . ,m.

Theorem 2.13 (Herzog-Hibi-Ohsugi). Suppose K is an infinite field, I ⊂ S = K[x1, . . . ,xn]
a graded ideal and y1, . . . ,yn a generic K-basis of S1. Then the following conditions are

equivalent:
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(a) All powers of I are componentwise linear.

(b) The sequence y1, . . . ,yn is a d-sequence with respect to R(I).
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3. LECTURE: ON THE THE GROWTH OF THE BETTI NUMBERS AND THE DEPTH OF

POWERS OF AN IDEAL

Let S be either a Noetherian local ring or a standard graded K-algebra, and let I ⊂ S be a

(graded) ideal. A classical result by Burch [4] says that mink depthS/Ik ≤ d−ℓ(I), where

ℓ(I) the analytic spread of I. By a theorem of Brodmann [2], depthS/Ik is constant for

k ≫ 0. We call this constant value the limit depth of I, and denote it by limk→∞ depthS/Ik.

Brodmann improved the Burch inequality by showing that limk→∞ depthS/Ik ≤ d − ℓ(I).
Eisenbud and Huneke [5] showed that equality holds, if the associated graded ring grI(S)
is Cohen–Macaulay. This is for example the case if S and R(I) are Cohen–Macaulay, see

Huneke [7]. We will present a proof of these facts.

What can be said about βi(I
k) for k ≫ 0? We have

βi(I
k) = dimK TorS

i (S/m, Ik) = dimK Hi(x; Ik),

where Hi(x;M) denotes the Koszul homology of a module with respect to x = x1, . . . ,xn.

Since Hi(x;R(I))k = Hi(x; Ik) It follows that βi(I
k) = dimK Hi(x;R(I))k. We observe that

Hi(x;R(I)) is a graded H0(x;R(I))-module and since

H0(x;R(I)) = R(I)/mR(I) =
⊕

k≥0

Ik/mIk = R(I) = the fiber ring of I,

we see that Hi(x;R(I)) is a graded R(I)-module. The Krull dimension of R(I) is called

the analytic spread of I. By using the theory of Hilbert functions we deduce that

βi(I
k) = Hilb(k,Hi(x;R(I)))

is a polynomial function for k ≫ 0 of degree dimHi(x;R(I))−1≤ dimR(I)−1 = ℓ(I)−1.

We denote by Pi(I) the polynomial with Pi(I)(k) = βi(I
k) for k ≫ 0. Using the fact that

the Koszul complex is a rigid complex one shows

Proposition 3.1. ℓ(I)−1 = degP0(I) ≥ degP1(I) ≥ degP2(I) ≥ ·· ·

As an immediate consequence one obtains
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Corollary 3.2. projdim Ik and depth Ik stabilize for k ≫ 0.

Question 3.3. Is it true that degP0(I) = degP1(I) = · · ·= degPq(I), where q = projdim Ik

for k ≫ 0? This is known to be the case, if dimS/I = 0. Thus in this case it follows that

µ(Ik) := dimK(Ik/mIk) has the same degree of growth as dimK Socle(S/Ik) = dimK(Ik :

m/Ik).

Concerning the limit behavior of the depth the following is known [7].

Theorem 3.4. The limits limk→∞ depth Ik, limk→∞ depthS/Ik and limk→∞ depth Ik/Ik+1

exist and

lim
k→∞

depthS/Ik ≤ lim
k→∞

depthS/Ik lim
k→∞

depth Ik −1 = lim
k→∞

depth Ik/Ik+1 = dimS− ℓ(I).

What is the initial behavior of depth Ik? As a first result we have

Proposition 3.5. If I ⊂ S is a graded ideal all of whose powers have a linear resolution.

Then depthS/Ik ≥ depthS/Ik+1 for all k.

Problem 3.6. Is Proposition 3.5 also true for componentwise linear ideals?

Now suppose that I has linear quotients with respect to the homogeneous minimal

system of generators of I. We denote by qi(I) the minimal number of generators of

( f1, . . . , fi−1) : fi and by q(I) = maxi{qi(I)}. By using a mapping cone argument one

easily shows that

depthS/I = n−q(I)−1.

We use this formula to compute for a finite poset P the depth of the ideal

Hk
P ⊂ K[x1, . . . ,xn,y1, . . . ,yn]

defined in Lecture 2. Here q(Hk
P) has the following interpretation. It is the largest integer

N for which there exists a sequence (A1,A2, . . . ,A : r), r ≤ k of antichains of P such that

(i) Ai ∩A j = /0 for i 6= j;

(ii) 〈A1〉 ⊂ 〈A2〉 ⊂ · · · ⊂ 〈Ar〉, where for a subset A ⊂ P, the set 〈A〉 denotes the poset

ideal generated by A.

(iii) N = ∑r
i=1 |Ai|.

From this formula for q(Hk
p) one easily deduces

Corollary 3.7. Given integers a1 ≥ a2 ≥ ·· · ≥ ar > 0 with ∑ai = n. There exists a poset

P such that

depthS/Hk
P ==

{

2n− (a1 + · · ·+ak)−1, if k ≤ r−1,
n−1, if k > n.

Now Corollary 3.7 implies

Corollary 3.8. Given a nonincreasing function f : N → N with f (0) = 2limk→∞ f (k)+1

for which the difference function ∆ f is also nonincreasing. Then there exists a squarefree

monomial ideal I ⊂ S with depthS/Ik = f (k) for all k.

So far we have only seen nondecreasing depth functions. The more surprising is the

following
7



Theorem 3.9. Let f : N \ {0} → N be any bounded nondecreasing function. Then there

exists a monomial ideal I such that depthS/Ik = f (k) for all k.

But there exist also depth functions which are not monotonic. Consider for example

the monomial ideal

I = (a6,a5b,ab5,b6,a4b4c,a4b4ed,a4e2 f 3,b4e3 f 2) ⊂ K[a,b,c,d,e, f ].

Then depthS/I = 0, depthS/I2 = 1, depthS/I3 = 0 and depthS/I4 = depthS/I5 = 2.

Problem 3.10. Given any function f : N \ {0} → N which is eventually constant. Does

there exist a graded ideal I such that depthS/Ik = f (k) for all k? Or at least can one find

examples of graded ideals whose depth function has any given number of local maxima?
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4. LECTURE: SYMBOLIC POWERS

Let K be an algebraically closed field, Y ⊂A
n an affine variety, P = Z(Y ) the vanishing

ideal of Y and a = (a1, . . . ,an) ∈ A
n a point. We say that f ∈ S = K[x1, . . . ,xn] vanishes

at a of order ≥ k, if f ∈ m
k
a, where ma = (x1 − a1,x2 − a2, . . . ,xn − an), and set P〈k〉 =

{ f ∈ S : f vanishes of order ≥ k at every point of Y}. On the other hand, one defines the

kth symbolic power P(k) of P as follows: P(k) = { f ∈ S : f g ∈ Pk for some g 6∈ P}.

It is easily seen that P(k) = Ker(S → SP/PkSP). We have P(1) = P and Pk ⊆ P(k). In

this lecture we first prove the theorem of Zariski-Nagata which says that P〈k〉 = P(k).

A generalization of this theorem was given by Eisenbud and Hochster [4]. Finally we

consider more general symbolic powers.

Theorem 4.1 (Zariski-Nagata). P〈k〉 = P(k).

Proof. Here we only show: if charK = 0, then P(k) ⊆ P〈k〉. Considering the Taylor ex-

pansion of f at a point, we see that f ∈ P〈k〉 if and only if f and all its derivatives of order

< k vanish at all points of Y .

In order to prove P(k) ⊆ P〈k〉 we show that if f g ∈ Pk and g 6∈ P, then f ∈ P〈k〉. Indeed,

since g 6∈ P, there exists a ∈Y such that g 6∈ ma. Since f g ∈ m
k
a, we conclude that f ∈ m

k
a.

Therefore f and all derivatives of f of order < k vanish on the set

X = {a ∈ Y : g(a) 6= 0}.

Let h be such a derivative. Then hg vanishes on Y . Hilbert’s Nullstellensatz implies that

h ∈ P. It follows that f ∈ P〈k〉. ¤
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What can be said about the regularity of the symbolic powers? In general the symbolic

Rees algebra is not finitely generated, see [2], [3] , [7] and [8]. We introduce generalized

symbolic powers and show that for monomial ideals these powers have a finitely generated

symbolic Rees algebra. Consequently the regularity of these powers is linearly bounded.

Other cases for which there exists linear bounds are given in the paper [6].

One defines the symbolic Rees algebra of P as

R
s(P) =

⊕

k≥0

P(k)tk ⊂ S[t].

In 1985 Cowsik [5] showed that if a prime ideal P in a regular local ring R with dimR/P =
1 has the property that its symbolic Rees algebra Rs(P) is Noetherian, then P is a set theo-

retic complete intersection, and he raised the question whether under the given conditions,

Rs(P) is always Noetherian. P. Roberts [8] was the first to find a counterexample based

on the counterexamples of Nagata to the 14th problem of Hilbert.

Since Rs(P) is in general not finitely generated, we cannot hope that regP(k) is a linear

function for all k ≫ 0. But do there exist integers a,c such that regP(k) ≤ ak + c for all k.

There is no counterexample known to this question. We only know

Theorem 4.2 (Herzog-Hoa-Trung). Let P∈Spec(S) be a graded prime ideal with dimS/P =
1. Then there exist a,b ∈ Z such that

reg(P(k)) ≤ ak +b.

Let I ⊂ S be an arbitrary graded ideal and m = (x1, . . . ,xn) the graded maximal ideal of

S. One may also consider saturated powers of I which are defined as follows:

(Ik)sat = Ik : m
∞ = { f ∈ S : m

n f ⊂ Ik for some n}.

In [3] it is shown that the regularity of saturated powers can be linearly bounded. On the

other hand, it is shown that for any prime number p > 0 with p ≡ mod3, there exists a

field k of characteristic p and a graded ideal I ⊂ k[x,y,z] such that

reg(I5n+1)sat =

{

29n+7, if n is not a power of p,
29n+8, otherwise.

The examples show that regularity of saturated powers of a graded ideal may not be a

periodic linear function.

We now consider general symbolic powers: Let I,J ⊂ S = k[x1, . . . ,xn] be graded ideals.

Then we call

Ik : J∞ = { f ∈ S : f Jn ⊂ Ik for some k}

the kth symbolic power of I with respect to J. The following examples show how this

definition is related to the concepts introduced before.

Examples 4.3. (1) Let J = m = (x1, . . . ,xn). Then Ik : J∞ = (Ik)sat.

(2) Set Ass∗(I) = {P∈ Spec(S) : P∈Ass(In) for some n}. By a theorem of Brodman

[?], Ass(Ik) is asymptotically stable. In other words, there exists an integer d such that
9



Ass(Ik) = Ass(Ik+1) for all k ≥ d. In particular, Ass∗(I) is a finite set. It is called the set

of asymptotic prime ideals of I. We set

J =
⋂

P∈Ass∗(I)\Min(I)

P.

Then the ideals I(k) = Ik : J∞ are called the ordinary symbolic powers of I. In case I = P

is a prime ideal, then these are the symbolic powers defined before.

We set

RJ(I) =
⊕

k≥0

(Ik : J∞)tk

RJ(I) is the symbolic Rees algebra of I with respect to J.

Even though we cannot expect in general that RJ(I) is finitely generated one has

Theorem 4.4 (Herzog-Hibi-Trung). Let I and J be monomial ideals. Then RJ(I) is a

finitely generated S-algebra.

As a consequence of this result one obtains

Corollary 4.5. Let I and J be a monomial ideals and I(k) = Ik : J∞ for all k. Then reg(I(k))
is a periodic linear function for k ≫ 0, i.e. there exists an integer d and integers ai and bi

such that reg(I(k)) = aik +bi for k ≡ imodd and all k ≫ 0.
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